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ABSTRACT

The relationships existing between melting temperature and other
macroscopic physical quantities are investigated. A new dimensionless
quantity Q, not containing the Griineisen parameter proves to be suited
for serving in future studies as a tool for the determination of the
melting temperature in the outer core of the Earth. The pressure depen-
dence of more general dimensionless quantities Q, is determined analy-
tically and, for the chemical elements, numerically, too. The patterns of
various interesting dimensionless quantities are shown in the Periodic
Table and compared.

ZUSAMMENFASSUNG

Die Beziehungen der Schmelztemperatur zu anderen makroskopischen
physikalischen MefBgrofen wurden untersucht. Eine neuc dimensionslose
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geeignet, in kiinftigen Arbeiten als Hilfsmittel fiir die Bestimmung der
Schemelztemperatur im duferen Kern der Erde zu diernen. Die Druck-
abhangigkeit noch allgemeinerer dimensionsloser Grofen Q, wurde ana-
lytisch und fiir die chemischen Elemente auch numerisch bestimmt.
Verschiedene interessante dimensionslose Grofen wurden im Perioden-
system dargestellt und verglichen.

RIASSUNTO

Nel presente articolo si investigano le interrelazioni esistenti fra tem-
pcrature di fusione ed altre grandezze fisiche macroscopiche. Si mostra
che pu0 essere consigliata una nuova quantita adimensionale Q, non
contenente il parametro di Gruneisen, come strumento di indagine in
futuri studi della temperatura di fusione del nucleo terrestre esterno.
Viene determinata poi analiticamente e per elementi chimici anche nume-
ricamente, la dipendenza dalla pressione di pit generali grandezze adi-
mensionali Q,. Sono inoltre mostrate e confrontate le caratteristiche degli
andamenti di varie interressanti quantita ademensionali nel sistema
periodico.

1. INTRODUCTION

It is the objective of this study to approximately express the
melting temperature T. of elements and anorganic chemical
compounds as a function of other physical quantities. The spe-
cific requirements are that (I), to permit an application in future
studies, we endeavour to use only such quantities that are re-
liably known also for the outer core of the Earth from modern
seismological and other geophysical models (e.g., after Dzie-
wonski et al. 1975) and (II) the relationship is to be valid at
least for high pressures ranging between 1354 and 3289 kbars
(1 kbar = 100 MPa).

We start the search for this relationship in the normal
pressure range. The starting point is a paper by Plendl (1974)
from which Fig. 1 has been taken. Z, is the atomic coor-
dination valency which is defined as the product of the
atomic valence in the eclemental state and the ratio of the first
order atomic coordinations of two successive polymorphs. Cy, is
the structural parameter, C™'y, is proportional to the density of
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paching of the atoms C~' is also proportional to the number
of significant approaches of adjacent oscillating atoms. If we
compare Fig. 1 with Fig. 2, we find that although there is an
indication of the anticipated proportionality T, ~ Z, - Cs., but
scattering unfortunately is considerably greater than given by
Plendl. According to Plendl and Gielisse (1969, 1970), there is
also a proportionality between bulk modulus » and Z,  Cun
Consequently, we may also expect a proportionality between melt-
ing temperture and bulk modulus. To verify this, we plot the
melting temperature data of the elements after Gschneidner (1964)
versus the bulk modulus for zero pressure after the data collected

0 2 4 6 8
Za Cstr—

Fig. 1 - Linear relationship between the experimental data

of the melting point (T,) and the atomic data of (Z,C,,)

for 20 metallic elements with strong bondings (Figure and
caption after Plendl, 1974).
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by Ullmann and Pan’kov (1976) (see Fig. 3). The coordination
numbers in the diagram are designated by symbols. There is, in
fact, an indication of proportionality. But scattering is so great
here, too, that it is hardly suited for practical purposes. If,
however, we form in section 3 dimensionless quantities as few
material-dependent as possible, we can assume from Fig. 3 that
it must contain the quotient T,,/x.

2. COMPARISON OF A FEW DIMENSIONLESS QUANTITIES FOR ZERO
PRESSURE

In this section, let us form a few dimensionless quantities
for the chemical elements and study their correlations at the
pressure P — 0. We define

N, (1]
Ru Tm P

and plot this quantity in Fig. 4 versus the group numbers of
the Periodic Table. R, = 8.31441 J/(K - mol) is the universal
gas constant. We take the numbers for the formula weight F in
kg/mol from Ebert (1976), for the bulk modulus % and density
p from Ullmann and Pan’kov (1976) and for the melting tem-
perature T, from Gschneidner (1964). Moreover, we define

3o %
N, = 2
2 R [2]

and plot this quantity, too, in the Periodic Table (see Fig. 5),
using the linear coefficient of thermal expansion «;, the atomic
volume F/p and density ¢ from Geschneidner (1964). According
to Gschneidner (1964) the product 27',, = 0.0186 + 0.0080 is nearly



4000
+W
3500
°Re
oTa *0s
3000
+Mo
+Nb olr
2500 HE o8 "R
R
o/r +V+Cr "
oTh o Pt
2000 N o
: Dy oS Ni
1500 " Sdevn "o
3l ? e
ooPr nGe *Ad
. oC oAs
1000 %e N [ e
oP(r)° %sb g :
oTe o ' 70 4o
a7|®eCd
500 + oSe Bi oS
+l:(l3_iS( )‘lﬂ n
bS(r
Cs Rb Hq o(Ga
0 L1 I R N I L1
0 500 1000 1500 2000 2500 3000 3500 4000
¢, [kbar]

Fig. 3 - Melting temperature T,, versus bulk modulus for
zero pressure %,. The legend shows the assignment between
symbols and coordination number.
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Fig. 2 - Melting temperature T,, after values given by Gseh-

neidner (1964) versus the atomic data Z,C_,,, after given by

Plendl and Gielisse (1972), plotted by the author. Elements

with strong bondings, i. e., elements for which Z, > 9/2, arc

marked by an encircled point. Attention was given to the
correct assignement of the phases.

constant for all elements, 2 being the coeffincient of thermal
expansion. However, the parallelism between the curves in Figs.
4 and 5 is not as good as expected. Incidentally, there is a
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surprisingly good parallelism between N, and the Griineisen
parameter

v = AAs _ GAr (3]
pCe pCv

where %s is the adiabatic bulk modulus, % the isothermal bulk
modulus, Cr the specific heat at constant pressure, Cv the specific
heat at costant volume.

This is true irrespective of whether we use the generally, ie.,
irrespective of the author, somewhat problematic y-values after
Gschneidner (1964) or those after Guinan and Steinberg (1974).
This is revealed by a comparison between Fig. 5 and Figs. 6
and 7. As it is obvious when considering the relations 2 and 3,
this implies an approximate proportionality between specific
heat and the reciprocal value of the formula weight.

3. COMPUTATION OF NEW DIMENSIONLESS QUANTITIES Q, AS A
FUNCTION OF PRESSURE

Following the considerations presented above, we now study
the pressure dependence of dimensionless quantities containing
the melting temperature. Expecting these quantities to be little
dependent on pressure in the outer core of the Earth, we now
define dimensionless quantities Q,

Qn [\/1_I Y” [4]

n being a real number. A look at formulas [1] and [4] shows
that, if a certain Q, in the outer core of the Earth is known as a
function of depth, the quotient T,./F can be determined, when
p, » and y are taken from seismological models of the Earth.
T, is the melting temperature and F the formula weight. The
problematic Griineisen parameter y (see discussion by Anderson
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Fig. 5 - The dimensionless quantity N,, defined by Eq. [2],
of the elements of the second, third, fourth, fifth and sixth
periods of the Periodic Table.
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and Mulargia 1977), is not required for Q.. The quantity Q, could,
for instance, become known as a function of pressure in the
outer core by the possibility that Q, of the core-candidate ma-
terials for core pressures lie closely adjacent to one another.
To be able to study the pressure dependence of the quantities
Q., we have to make an assumption as to the form of the
interatomic potential. It has already been pointed out by Boschi

Group

Fig. 6 - Griineisen ratio y calculated from the lattice con-
tribution to the heat capacity at constant volume, after
Gschneidner’s (1964) Table XXIV, plotted in the Periodic

Table.
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et al. (1979) that the behaviour of the melting temperature in
the outer core considerably depends on the interatomic pot-
ential assumed. In the following, we assume the Lennard-Jones
potential. This is a rough but realistic approximation. The author
has shown in another study (Walzer, 1982b) that another, more
complicated expression for the potential arrived at by means
of quantum mechanics reveals the best agreements with exper-
imental data for metals, halides and some oxides. However, a
Lennard-Jones potential can be used as a rough first approxim-
ation, even more so since this greatly facilitates computation:

B
2u/3 1-”/3 [S]

O

A, B and n are constants which depend only on the material.
x—V/V,, V being the volume, V, the volume at vanishing pressure
P. Starting from [5] and a dislocation model, the author has
proven (1982a) that Lindemann’s melting law

T, dT,/dP = 2(y—1/3) /= [6]

holds for pressure ranges where the solid is present in the
densest spherical packing (i.e., in fcc or hcp structure). Stacey
and Irvine (1977), using a different, i. e. a thermo-dynamical,
approach also achieved this result. T, is the melting temperature,
% is the bulk modulus. Irvine and Stacey (1975) have shown that
for purely central forces, and thus also for potentials of form
[5], the Griineisen parameter Y depends on pressure P in the
following manner:

dx S+i
dpr 6 9

Y = 5 [7]

3 A

P
X,i
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This formula had already been deduced in a completely
different way from the free volume theory by Vashchenko and
Zubarev (1963). Using a simple method that has already been
employed by Kittel (1953), we deduce the equation of state
belonging to [5]. From [5] we obtain

P — _ 00  2n A 3 B
- dx 3 g 3 e
oP 2n \
%= + 1)
3 x2n/3+l
n [ n ; B
— + 1 9
303 ] xe 9]
as well as
% 211 [ 2n A
- x ox 2341 +
V2
()T [10]
313
o%
If we note that —— _—
OP dx
and if we use %, =%
x=1
and #, =0% /0P
x=1

the costants A, B, n can be expressed through %, and %, with the
help of [8], [9] and [10]. This is very advantageous, becausc
the latter quantities are macroscopically observable. In this
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way, using a different approach, we obtain from [8] the equation
of state M1 by Ullmann and Pan'kov (1976)

- 1 !
p= — % x5 ] [11]

We now use the compatible formulas [6], [7] and [11] for
an examination of the pressure dependence of the dimensionless
quantities Q, and N

From formula [1] it follows that

R, ON, 1 dx % O0Tm % op
F QoP Twme P T’.e OP Tw(? OP
[12]

which is reformulated by means of Lindemann’s law into

9In N, Ox 2(y_l\—13&1 P,
P ‘op 3) o AP [13]

v can be eliminated by formula [7]. Furthermore, we note that

— — . Thus, we obtain from [13]
OP %

P

dln N, %

Sx
oP [14]
P

3
_'7'_
4
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Through similar computations we obtain from Vashchenko's
and Zubarev’s (1963) formula [7]

Fr 4 (1 P oxN 4L
dlny  oP* 9 \x %2 aP)+9\v. %2 BP)
oP dx o 1
OP 3 9 =% 3 9
[15]
From equations [1], [4] and [14] we obtain
CH
9lnQ, % OP dlny
-+ —_—
P " Tap [16]
— x—P

If [15] is substituted in [16], we obtain a formula by
means of which it is principally possible to determine Q. = O, (P)
by integration. So far, no use has been made of the spccially
chosen equation of state [11]. One mathematical difficulty arises
because of the fact that the Ullmann-Pan’kov equation of state
(like its special case, the Birch equation of state) cannot be
analytically transformed from P = P (x) to x = x (P). This diffi-
culty has been eluded by the following transformations

P(x) Ox | ¢x | 1

alanPQu %(x) O% LOx [17]
%(x)— P (x)
% = —xaP/ax []8]

oy " ox [19]
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Na Mg Al

aeu=iiil T
N snlnliinl:

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Fig. 7 - Griineisen ratio y after values given by Guinan and

and Steinberg (1974), plotted in the Periodic Table. This

means in cases where the column has a disappearing height
that no numerical value is known.

a2 - —2 2 - 2 2
P /ap_) [ &% o &P/0x [20]

o p? \ 9x \ o dx OoP/9x
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In the auxiliary function g, defined by [16] we eliminate
P, %, 9x/0P and &*x/P? through the equations [11], [15] and [17]
to [20]. Thus, g. is known as a function of x. The equation of
state effects that P-values bi-uniquely correspond to the x-values.
Using a computer, we calculated Q, as a function of pressure P
by means of numerical integration of [16].

4. THE SYSTEMATICS OF THE QUANTITIES Q, IN THE PERIODIC TABLE

To study the distribution of the dimensionless quantity Q, (i.e.,
Q. for n—1), we plotted this quantity in Fig. 8 against the groups of
the Periodic Table. Using the formulas of the previous section; we
computed Q, for the pressure at the core-mantle boundary (CMB)
for the chemical elements and plotted it in Fig. 9 against the gro-
ups. Fig. 10 shows the corresponding distribution for the pressure
at the inner-core boundary (ICB). A comparison of these three
Figures shows that the change seen in the characteristic curves
is less considerable for the outer core than for the mantle. The
material parameters required for the computation have been
listed in Tab. 1, their origin is given in the legend of the Table.
In Figures 11 to 13, the quantities Q, have been plotted as a
function of pressure. Generally, no strong concentration of the
curves can be found for the elements of periods 4 to 6. It is
particularly apparent for the 5th and 6th periods that the
elements with the densest spherical packing (i. e., those present
in hcp or fecc structure) are predominant in the upper curves.
Much more favourable results are obtained for the dimension-
less quantity Q, which is plotted against the pressure in Fig. 14
for the 4th period, in Fig. 15 for the 5th period and in Fig. 16
for the 6th period. In Fig. 14, all fcc and hcp materials arc
found in the strong middle bundle. Only the element Sc does
not fit in this scheme. In Fig. 15, the same result is found for
the elements of the 5th period- With the exception of Y and Sr,
all elements with fcc or hcp lattices are found in the strong
middle bundle of curves. Two clearly separated curve bundles
can also be seen for the elements of the 6th period in Fig. 16.
Except Hf and Re, all elements with fcc and hcp structures
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Fig. 8 - Plot of the dimensionless quantity Q, in the Periodic

Table for the elements of the 4th pericd (continuous line),

5th period (dotted line) and 6th period (point line) at
pressure P = 0.
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are found in the lower narrow bundle of curves, while the bce
structure is predominant in the upper bundle. Since, if the
temperatures were lower, one would have to reckon with the
densest spherical packings for the pressures existing in the
outer core, the fcc-hep bundles of Q. provide a possibility for
estimating the quotient 7,.,/F for the outer core without becom-
ing too specific in regard of the chemical composition. In Fig. 17,
Q. has been plotted against the groups of the Periodic Table, the
pressure being P = 1354 kbars. These characteristics do not
significantly vary for the higher pressures existing in the interior
of the outer core. The characteristic curves of Q, at P = Pcus
reveal a slight similarity to the Leibfried number L, the modified
Leibfried number L', and the Bragg number B, as can be seen
from a comparison of Fig. 17 with Figs. 18 to 20. However, these
quantities are given for zero pressure. The Figures were plotted
according to the numerical values given by Gschneidner (1964).
As defined in the paper by Leibfried (1950), the Leibfried number
is

L= RTo (211

v

where v is the atomic volume and 1 the shear modulus. This
quantity was modified by Gschneidner (1964):

K T"l
iy

L' = [22]

In this modified Leibfried number, K is a constant which,
however, has a different value for each crystal structure, while
R, denotes the universal gas constant as before. The Bragg (1948)
number, on the other hand, is defined by

B = — [23]
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fig. 10 - Plot of the quantity Q, in the Periodic Table at
the pressure existing at the inner-core boundary. Design.
ations as in Fig. 8.
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Fig. 11 - Dependence of the dimensionless quantity Q, on
pressure for the chemical elements on pressure for the
chemical elements of the 4th period of the Periodic Table
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Fig. 13 - Dependence of the quantity Q, on pressure for
the elements of the 6th period.
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Fig. 14 - Dependence of the dimensionless quantity Q, on

pressure for the chemical elements of the 4th group of

the Periodic Table. A comparison with Fig. 11 reveals a
significantly closer proximity of the curves.
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Fig. 15 - Pressure dependence of the quantity Q, for the
elements of the 5th period.
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Fig. 17 - The dimensionless quantity Q, subjected to the

pressure existing at the core-mantle boundary (CMB).

Representation in the Periodic Table for the elements of

the 4th period (continuous line), 5th period (dotted line)
and 6th period (point lint).
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Fig. 18 - The Leibfried number L, plotted in the Periodic
Table for zero pressure. Designations as in Fig. 17.
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Fig. 19 - The modified Leibfried number L', plotted in the

the Periodic Table for zero pressure. Designations as in
Fig. 17.
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Fig. 20 - The Bragg number, plotted in the Periodic Table
for zero pressure. Designations as in Fig. 17.
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where AH is the heat of fusion. In view of Richard’s rule
AH ~ R,T.. is does not surprise that L. L' and B, when plotted
in the Periodic Table, yield very similar characteristic curves
(cf. Figs- 18 to 20). However, these quantities are not suited
for estimating T, in the outer core, because the shear modulus

disappears in the liquid state. In contrast to this the bulk
modulus % does not vary considerably during melting. Therefore,
Q. appears to be a quantity useful for geophysical purposes.
It goes without saying that the pressure dependence of the
individual quantities must be taken into account. Thus, Fig. 17
shows a comparable representation of Q, for the pressure at
the core-mantle boundary.

5. CONCLUSIONS

A systematic correlation between the melting temperature
and other physical quantities has been found. In particular, two
new, dimensionless quantities, Q; and Q., depending on T,, were
investigated with respect to their dependence on pressure as
well as to their distribution in the Periodic Table. While the
Q, for pressures in the Mbar range stronglv differ from ore
another for the individual chemical elements, it was found for
Q, that the curves of materials having the same lattice structure
prior to melting run very close to one another. The results
suggest that it should be possible even without detailed know-
ledge of the chemical composition of the outer core to deter-
mine the melting temperature to formula weight ratio as a
function of depth.
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TABLE 1

See caption at page 34.

B - . Tl .
- T,[K] plg/cm3] =z [kbar] F{kg/mol] N
Li 454 0.534 115 6.94 39.59 3.56
Be 1557 1.84 1100 9.01 41.61 4.6
B 2498 2.31 1785 10.81 40,22 3.26
Na 3708 0.970 61.8 22.99 47.51 3.59
Mg 923 1.74 344.2 24.31 62.66 4.16
Al 9332 2.697 729.1 26.98 94.00 47
Si 1685 233 970.8 28.09 83.54 4.16
P(r) 868 2.35 192 30.97 35.06 6.68
K 336.6 0.86 31.2 39.10 50.69 3.85
Ca 1112 1.53 163 40.08 46.18 2.7
Sc 1812 2.98 546 4496 54.68 2.1
Ti 1941 4.50 1060 47.90 69.91 4.37
Cr 2148 7.194 1600 52.00 64.76 4.89
\Y% 2178 6.09 1537 50.94 70.99 35
Mn 1517 7.47 597 54.94 34 81 5.0
Fe(e) 1808 8.36 2060 55.85 91.55 4.0
Co 1765 8.79 1860 58.93 84.98 4.26
Ni 1726 8.90 1790 58.71 82.28 6.20
Cu 1356 8.932 1330 63.55 8393 5.65
Zn 692.655 7.14 647 65.37 102.86 6.40
Ga 302.8 5.91 568 69.72 266.15 3.6
Ge 1209 5.33 724.3 72.59 98.13 4.35
As 1090 5.77 631 74.92 90.40 5.2
Se 490 4.81 89.7 78.96 36.14 5.8
Rb 311.8 1.53 26.2 85.47 56.46 3.39
Sr 1045 2.58 116.1 87.62 45.38 2.1
Y 1775 447 410 88.91 55.26 2.1
Zr 2123 6.53 949 91.22 75.11 4.11
Nb 2741 8.63 1690 9291 79.84 6.9
Mo 2888 10.218 2610 95.94 102.06 44
Tc 2443 98.91
Ru 2553 12.44 3030 101.07 115.97 6.61
Rh 2233 12.42 2820 102.91 126.87 4.50
Pd 1825 12.04 1880 106.4 109.49 5.35
Ag 1234 10.50 1015 107.87 101.63 5.53

Cd 594.18 8.65 4579 112.40 120.44 6.77
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TaBLE I (continuation)

33

Ele-
ment T,[K] plg/cm3] % [kbar] Fl[kg/mol] %
In 429.76 7.29 392 114.82 172.78 6.0
Sn 505.06 7.28 532 118.69 206.55 6.01
Sb 903.6 6.69 411 121.75 99.56 49
Te 722.8 6.27 233 127.60 78.90 8.3
Cs 301.8 1.83 179 13291 51.81 3.17
Ba 998 3.61 94.3 137.34 4324 243
La 1193 6.16 267 138.91 60.70 3.2
Ce 1070 6.77 239 140.12 55.60
Pr 1208 6.78 306 140.10 62.95
Nd 1297 7.00 327 144.24 62.48
Pm 1308 14191

Sm 1345 7.54 294 150.4 52.44

Eu 1099 5.25 147 151.96 46.57
Gd 1585 7.89 383 157.25 57.92
Tb 1629 8.27 399 158.93 56.61

Dy 1680 8.53 384 162.50 52.37

Ho 1734 8.80 397 164.93 51.61

Er 1770 9.04 411 167.26 51.67
Tm 1818 9.32 397 168.93 47.61
Yb 1097 6.97 133 173.04 36.20
Lu 1925 9.84 411 179.97 46.97

Hf 2495 13.25 1080 178.49 70.13 395
Ta 3271 16.62 1910 180.95 76.46 3.15
W 3653 19.26 3060 183.85 96.17 395
Re 3423 21.03 3587 186.2 111.27 5.41
Os 3300 22.58 4200 190.2 128.94 34
Ir 2716 22.65 3580 192.22 134,53 4.83
Pt 2042 2147 2770 195.09 148.25 5.18
Au 1336.2 19.30 1664 196.97 152.86 6.51
Hg 234.28 14.24 282 200.59 203.92 4.6
Ti1 576 11.85 337 204.37 121.37 5.1
Pb 600.576 11.34 419 207.2 153.31 5.72
Bi 544.525 9.807 332 208.98 156.26 6.06
Th 2024 11.72 543 232.04 63.88

U 1404 19.05 987 238.03 105.65
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TasLE I - Physical constants of chemical elements used for P = 0. Melting

temperature T,, according to Gschneidner (1964), formula weight
F according to Ebert (1976), density 52 and bulk modulus x for
the lanthanons and actinons according to Kittel (1973), density,
bulk modulus and its derivative with respect to pressure for
the other elements according to Ullmann and Pan’kov (1976).
N, is the dimensionless quantity for P = 0 defined by Eq. [1],
where R, = 831441 J/(K .- mol). The value denoted by a) actually
applies to bcc iron, if the hypothetical melting point curve for
hep iron by Liu (1975) is drawn for low pressures, one attains
the same value. The Griineisen parameters y used are not listed
in the Table. The values given by Guinan and Steinberg (1974)
were used. Only for Fe, the value y = 1.67 according to Plendl
(1973) was preferred.
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