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ABSTRACT

The present study proposes a theoretical modeling of  simultaneous and
noninvasive measurements of  electrical resistivity and dielectric permittivity
using a quadrupole probe on a subjacent medium. A mathematical-physical
model is applied to the propagation of  errors in the measurement of
resistivity and permittivity based on a sensitivity functions tool. The findings
are also compared with results of  the classical method of  analysis in the
frequency domain, which is useful for determining the behavior of  zero and
pole frequencies in the linear time invariant circuit of  the quadrupole. This
study underlines that average values of  electrical resistivity and dielectric
permittivity can be used to estimate complex impedance over various terrains
and concretes, especially when they are characterized by low levels of  water
saturation (content), and are analyzed within a bandwidth ranging only
from low to middle frequencies. To meet the design specifications, that ensure
satisfactory performances of  the probe (inaccuracies of  no more than 10%),
the forecasts provided by the sensitivity functions approach are discussed in
comparison with those foreseen by the transfer functions method (in terms of
both the band of  frequency f and the measurable range of  resistivity t, or
permittivity fr ).

1. Introductory review

1.1. Electrical resistivity survey in soil science
The electrical resistivity of  a surface is a proxy for the

spatial and temporal variability of  many other physical
properties of  the subjacent medium. Samouëlian
[Samouëlian et al. 2005] discussed the basic principles of  data
interpretation and the main advantages and limits of  such an
analysis. This method allows nondestructive and very
sensitive investigations, which can describe subsurface
properties without direct inspection. Various techniques are
applied according to the required scales of  resolution and the
heterogeneities of  the area. A suitable probe injects
generated electric currents into a medium, and the resulting
potential differences are measured. The information is
recovered from the potential-difference patterns, which

provide the form of  the medium heterogeneities and their
electrical properties [Kearey et al. 2002]. The greater the
electrical contrast between the subsurface matrix and a
heterogeneity, the easier the detection. Other studies have
shown that surface resistivity can be considered as a good
indication of  the variability of  other physical properties
[Banton et al. 1997]. The current pattern distributions
depend on the medium heterogeneities and they are
concentrated in a conductive volume. Some linear
distributed arrays use four-electrode cells, which are
commonly used in the laboratory for resistivity calibration
[Rhoades et al. 1976] and in the field for vertical electrical
sounding [Loke 2001].

1.2 Middle frequency
dielectric permittivity surveys in soil science
Analyses in the middle frequencies (MFs; 300 kHz <f <3

MHz) allow measurements of  dielectric permittivity. Fechant
and Tabbagh [1999] developed an interesting approach,
whereby they used a MF band for the characterization of
permittivity in a natural media. This approach used an
electrostatic quadrupole probe that was designed to measure
resistivity at several hundreds of  kHz [Tabbagh 1994]. A
quadrupole working at a frequency 455 kHz can measure
permittivity for the determination of  water content [Fechant
1996]. However, this approach requires calibration in the
laboratory.

1.3. Low frequency electrical resistivity
and dielectric permittivity surveys in soil science
Analyses in the low frequencies (LFs; 30 kHz <f <300

kHz) allow simultaneous measurements of  both electrical
resistivity and dielectric permittivity. A series of  studies has
shown that the resistivity and dielectric constant (the
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complex permittivity) of  a surface can be measured using a
set of  four electrodes [Grard 1990a, Grard 1990b, Grard and
Tabbagh 1991, Tabbagh et al. 1993]. This novel approach was
first introduced by Wenner [1915], and it improved on the
system existing at the time, which provided only a resistivity
assessment. In this new method, the four electrodes are
manually inserted into the subjacent medium. Permittivity,
which is sensitive to the presence of  water, can also be
determined using a LF probe (below 300 kHz) and it has an
important role in the detection of  anomalies in the
subsurface.

Vannaroni and Del Vento [Vannaroni et al. 2004, Del
Vento and Vannaroni 2005] used a dielectric spectroscopy
probe to determine the complex permittivity of  a surface
from measurements of  transfer impedance of  a four-
electrode system that was electrically coupled to the
medium. They defined the transfer impedance as the ratio
between the voltage measured across a pair of  receiving
electrodes and the current transmitted by a second pair of
electrodes [Vannaroni et al. 2004]. This impedance
measurement was performed in an alternating current (AC)
regime capacitive coupling, and it strongly depended on the
geometry of  the electrode array and also on the complex
permittivity of  the subsurface. The advantages offered by
this method include that the exciter current can be injected
into the surface even in the absence of  galvanic contact, and
that in the AC regime, both conduction and displacement
currents of  the medium can be measured, obtaining further
information on the polarizability. In this case, the frequency
band is 10 kHz to 1 MHz, and the lower limit is effectively
imposed by two aspects. First, the Maxwell-Wagner effect,
which limits probe accuracy [Frölich 1990]. The most
important limitation occurs because of  interface polarization
effects that are stronger at low frequencies, e.g. below 1 kHz,
depending on the medium conductivity. Secondly, there is
the need to maintain the amplitude of  the current at
measurable levels, as given the capacitive coupling between
the electrodes and soil, the current magnitude is
proportional to the frequency. On the other hand, the upper
limit is opportunely fixed to allow analysis of  the system in
a regime of  quasi static approximation and to neglect the
velocity factor of  the cables used for the electrode harness,
which, in turn, reduces the accuracy of  the mutual
impedance phase measurements. Thus, it is possible to

exploit the analysis of  the system in the LF and MF bands
where the electrostatic term is considerable. The general
electromagnetic calculation provides lower values than the
static case, and a high resistivity narrows the differences. So,
in comparison, above 1 MHz the general electromagnetic
calculation must be preferred, while under 500 kHz the static
case would be used, and between 500 kHz and 1 MHz both
of  these methods can be used [Tabbagh et al. 1993].

The present study proposes a theoretical modeling of
simultaneous and noninvasive measurements of  electrical
resistivity and dielectric permittivity using a quadrupole
probe on a subjacent medium [see also arXiv.org's ref.:
Settimi et al. 2009]. A mathematical-physical model is applied
to the propagation of  errors in the measurement of
resistivity and permittivity based on the sensitivity functions
tool. The findings are also compared with the results of  the
classical method of  analysis in the frequency domain, which
is useful for determining the behavior of  zero and pole
frequencies in the linear time invariant circuit of  the
quadrupole. This study underlines that average values of
electrical resistivity and dielectric permittivity can be used to
estimate complex impedance over various terrains and
concretes, especially when they are characterized by low
levels of  water saturation or content [Knight and Nur 1987],
and are analyzed within a frequency bandwidth only ranging
from LFs to MFs [Al-Qadi et al. 1995, Myounghak et al.
2007]. To meet the design specifications that ensure the
satisfactory performance of  the probe (inaccuracies of  no
more than 10%), the forecasts provided by the theory of
error propagation suggested by Vannaroni et al. [2004] that
apply the sensitivity functions approach, as explicitly
developed in the study, are discussed in comparison to those
foreseen by analysis in the frequency domain suggested by
Grard and Tabbagh [1991]. Here, this deepens the transfer
functions method to analyze the zero and pole behavior (in
terms of  both the band of  frequency f and the measurable
range of  resistivity t, or permittivity fr ).

This study is organized as follows. Following this
introductory review, Section 2 discusses the Cole-Cole
empiric function. For simplicity of  analysis, the dielectric
dispersion is assumed to be very low, an operating condition
that is satisfied when the electrical spectroscopy is performed
only on nonsaturated water materials and especially in a
suitable band of  LFs and MFs. Section 3 introduces the
quadrupole probe, and Section 4 provides the theoretical
modeling that applies to both the sensitivity functions
approach (Section 4.1.) and the transfer functions method
(Section 4.2.). In Section 5, the configurations of  the
quadrupole are defined and discussed, and the conclusions
are drawn up in Section 6. Finally, an outline of  the
somewhat lengthy calculations needed is presented in
Appendices A and B.
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Figure 1. Equivalent circuit of  the quadrupole probe.
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2. Discussing Cole-Cole empiric functions
According to Debye polarization mechanisms [Debye

1929] and Cole-Cole diagrams [Auty and Cole 1952], the
complex permittivity of  various materials in the frequency
band from very LF to very high frequency (HF) shows
several intensive relaxation effects and a non-trivial
dependence on the water saturation [Chelidze and Gueguen
1999, Chelidze et al. 1999]. However, average values of
electrical resistivity and dielectric permittivity can be used to
estimate complex impedance over various terrains and
concretes, especially when they are characterized by low
water content [Knight and Nur 1987], and are analyzed
within a frequency bandwidth ranging from only LFs to MFs
[Al-Qadi et al. 1995, Myounghak et al. 2007].

Many functions have been proposed to fit dielectrics
data. Among these, there are those obtained by attempts to
model the physical processes, or those of  simple empirical
functions, which are used to parameterize the data without
knowledge of  the mechanisms involved. A widely used
empirical function was proposed by the Cole brothers, and it
is based on the theory of  Debye relaxation, which was the
first treatment of  this phenomenon.

The Cole-Cole empiric function defines the first-order
dielectric response of  materials in the frequency domain,

(2.1)

which consists of  real and imaginary parts:

(2.2)

(2.3)

where f0 is the dielectric constant in a vacuum.

The electrical conductivity v(f ) and dielectric
permittivity fr(f) show limited values at LFs and HFs, vL, fr,L

and vH, fr,H, which are linked by the relaxation time x:

(2.4)

Thus, as can be seen, permittivity and conductivity
cannot vary independently of  each other [Frölich 1990].

At the characteristic frequency of  relaxation fc = 1/(2r·x),
the permittivity fr assumes an intermediate value between
the LFs and HFs, fr,L and fr,H. Alternatively, the relaxation
frequency fc can be considered as that frequency at which the
conductivity v assumes the middle value between the two
limiting values vL and vH.

In reality, Equation (2.1) is a generalization of  the Debye
equation, which is designed to take into account the
enlargement of  the dispersion region due to the complexity
of  the structure and the composition of  the materials,
through the introduction of  another parameter a (between
0 and 1). Note that for a = 0, Equation (2.1) can be reduced
to exactly the Debye equation. It has to be underlined that
the parameter a is an increasing function of  the water
saturation SW, such that a (SW = 0)→0, reaching a limiting
value aL>0 for SW→1 [Knight and Nur 1987]. Indeed, the
complex dielectric permittivity is flattened with decreasing
water content or increasing frequency [Al-Qadi et al. 1995,
Myounghak et al. 2007].

The complex dielectric permittivity          can be
approximated to a constant if  its dominant term (fr,L− fr,H)/
[1 + (j2rfx)1–a] is a function that is almost independent of  the
frequency:

(2.5)

This operating condition of  Equation (2.5) holds when
the materials are characterized by low water content, i.e.:

(2.6)

and are analyzed over a band lower than the MFs, i.e.:
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Figure 2a. Quadrupole probe in the linear Wenner configuration. Figure 2b. Quadrupole probe in the square configuration.
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(2.7)

Indeed, the constant x depends on the physical
processes under consideration, and it has an order of
magnitude that varies from a few picoseconds for the
orientation of  electrons and small dipolar molecules, up to a
few seconds for the effects of  counter-ions or for interfacial
polarization [Frölich 1990].

Therefore, in the present study let us refer to the (v, fr)
values in the LF to MF bandwidth proposed for various
terrains by Edwards [1998] and for concretes by Polder et al.
[2000] and Laurents et al. [2005].

3. Quadrupole probe
When using a quadrupole probe (Figure 1), the response

depends on both geometrical parameters, like the height of
each electrode above the ground surface and the separation
of  the electrodes, and physical parameters, including
frequency, electrical conductivity and dielectric permittivity.
When a medium is assumed to be linear and its response
linearly dependent on the electrical charges of  the two
exciting electrodes, the simplest approach is a static
calculation [Tabbagh et al. 1993], especially using a low
operating frequency. If  the electrodes have small dimensions
relative to their separation, then they can be considered as
points. Moreover, if  the current wavelength is much larger
than all of  the dimensions under consideration, then the
quasi-static approximation applies [Grard 1990a, Grard
1990b].

The quadrupole probe (Figure 1) measures a
capacitance in a vacuum C0(L) that is directly proportional to

its characteristic geometrical dimension, i.e. the electrode-
electrode distance L, both in a linear Wenner configuration
(Figure 2a),

(3.1)

and in a square arrangement (Figure 2b),

(3.2)

which is greater by a factor a = 1/(2 − 21/2) >1, where f0 is
the dielectric constant in a vacuum.

When the quadrupole specified by the electrode-
electrode distance L has galvanic contact with the subjacent
medium of  electrical conductivity v and dielectric
permittivity fr, it measures a transfer impedance ZN (f, L, v,
fr) that consists of  parallel components of  resistance RN (L, v)
and capacitance CN (L, fr). The resistance RN (L, v) depends
only on L and v [Grard and Tabbagh 1991]:

(3.3)

while CN (L, fr) depends only on L and fr [Grard and Tabbagh
1991]:

(3.4)

As a consequence, as well as grazing the medium, if  the
probe measures the conductivity v and permittivity fr

working in a frequency f much lower than the cut-off
frequency fT = fT (v, fr) = v/(2rf0(fr + 1)), the transfer
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(a) (b)

Figure 3. On the hypothesis that D|Z|/|Z|= DUZ/UZ= 10−3, the inaccuracy Dfr/fr in the measurement of  the dielectric permittivity fr plotted: (a) as a
function Dfr/fr (f, x) of  both the frequency f in the band f∈ [0, flim], with flim= 1 MHz, and the ratio x = h/L between the height h above ground and the
characteristic geometrical dimension L, as 0 < x ≤ 1, when the quadrupole probe designed in the linear Wenner configuration has a capacitive contact on
a non-saturated concrete of  low electrical conductivity, i.e. v = 10−4 S/m, fr= 4; (b) as a function Dfr/fr (v, fr) of  both the conductivity v and the permittivity
fr, when the quadrupole working in a fixed band B = 100 kHz is in galvanic contact on a class of  concretes such that v∈ [10−4 S/m, 2·10−2 S/m].
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impedance ZN (f, L, v, fr) is characterized by the phase UN (f,
v, fr) and modulus |Z|N (L, v). The phase UN (f, v, fr)
depends linearly on f, with a maximum value of  r/4, and it
is directly proportional to the ratio (fr + 1)/v; while |Z|N (L,
v) does not depend on f, and is inversely proportional to both
L and v. Indeed, if  ZN (f, L, v, fr) consists of  the parallel
components of  RN (L, v) – see Equation (3.3) – and CN (L, fr)
– see Equation (3.4) –, then it is fully characterized by the HF
pole fT = fT (v, fr), which cancels its denominator: the transfer
impedance acts as a LF-MF band-pass filter with cut-off  fT =
fT (v, fr); in other words, the frequency equalizing Joule and
displacement current. Under the operating conditions
defined in Section 2, average values of  v can be used over
the band ranging from LF to MF; therefore, |Z|N (L, v) is not
a function of  frequency below fT.

Instead, when the quadrupole probe (Figure 1) has
capacitive contact with the subjacent medium and the
geometry of  the probe is characterized by the ratio x
between the height above ground h and the electrode-
electrode distance L,

(3.5)

its configurations can be entirely defined by a suitable
geometrical factor K(x), which depends on the height/
dimension ratio x. This was introduced by Grard and
Tabbagh [1991], and can be specified for the linear Wenner
configuration (Figure 2a):

(3.6)

MEASUREMENT OF RESISTIVITY AND PERMITTIVITY

(a) (b)

(c) (d)

Figure 4. Sensitivity functions       and       for the transfer impedance both in modulus |Z| and in phase UZ, relative to the dielectric permittivity fr, plotted:
(a, c) as functions (a) and (c) of  both the working frequency f and the height/dimension ratio  x = h/L under the same operative
conditions as Figure 3a; (b, d) as functions                (b) and               (d) of   both  the  conductivity v and the permittivity fr under the same operative
conditions as Figure 3b.
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and the square arrangement (Figure 2b):

(3.7)

Actually, Grard and Tabbagh [1991] preferred to
introduce the complementary d(x) of  the geometrical
factor K(x), i.e.:

(3.8)

where K (x = 0) = 1 and d (x = 0) = 0.
So, if  the quadrupole works in the pulse frequency

~ = 2rf, which can be normalized with respect to the cut-off
~T = 2rfT [Grard and Tabbagh 1991],

(3.9)

then the probe measures a transfer impedance Z (X, x, v, fr)
which consists of  the resistance R (X, x, v, fr) and capacitance
C (X, x, v, fr) parallel components [Grard and Tabbagh 1991],

(3.10)

(3.11)

Inverting Equations (3.10) and (3.11), v and fr can be
expressed as functions of  R and C, i.e.:

(3.12)

(3.13)

In our opinion, once the degrees of  freedom of  the (f, x)
pair are fixed, it is not suitable to choose (R,C) as independent
variables and then (v, fr) as dependent variables (Equations
3.12 and 3.13). Instead, it is more appropriate to consider (v,
fr) as quantities of  physical interest, and consequently
Equations (3.10) and (3.11) as the starting points for the
theoretical development. Indeed, even if  the physics does not
forbid the choice of  (R,C) as independent variables, applying
the function (R,C) → (v, fr), the procedures of  the design
should anyway choose (v, fr) as independent variables,
preferentially applying the inverse function (v, fr) → (R,C).
According to the following two practical approaches: (a) –
(v, fr) as independent variables in order – to establish the
class of  media with conductivity and permittivity (v, fr)
that can be investigated by a quadrupole working in a fixed
band B and specified by a known geometry x; (b) –
preferential way (v, fr) → (R,C) since – once a subjacent
medium with electrical conductivity v and dielectric
permittivity fr is selected, the quadrupole probe
specifications R and C can be projected both in frequency f
and in height/dimension ratio x.

4. Theoretical modeling

The measurements taken using the quadrupole probe
are affected by errors that mainly originate from
uncertainties associated with transfer impedance, from
dishomogeneities between the modeled and the actual
stratigraphy, and from inaccuracies of  the electrode array
deployment above the surface [Vannaroni et al. 2004]. Errors
in impedance result mainly from uncertainties in the
electronic systems that perform the amplitude and phase
measurements of  the voltages and currents [Del Vento and
Vannaroni 2005]. These uncertainties were assumed to be
constant throughout the whole frequency band, even though
their effects that propagate through the transfer function will
produce a frequency-dependent perturbation.

4.1. Sensitivity functions approach
This study proposes to develop explicitly the sensitivity

functions approach that is implied in the theory of  error

MEASUREMENT OF RESISTIVITY AND PERMITTIVITY

6

Figure 5. Ratio C= C1/C2 between the first member C1 and the second
member C2 of  Equation (B.8), plotted as a function C(x, v) of  both the
height/dimension ratio x = h/L and the electrical conductivity v, with the
quadrupole probe designed in the linear Wenner configuration and in
capacitive contact on a selected concrete of  dielectric permittivity fr= 4.
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propagation suggested by Vannaroni et al. [2004]. Indeed,
this section introduces a mathematical-physical model for the
propagation of  errors in the measurement of  electrical
conductivity v and dielectric permittivity fr, based on the
sensitivity functions tool [Murray-Smith 1987]. This is useful
for expressing inaccuracies in the measurements of
conductivity and permittivity (Figure 3) as a linear
combination of  the inaccuracies for the transfer impedance,
both in modulus |Z| and in phase UZ, where the weight
functions are inversely proportional only to the sensitivity
functions for |Z| and UZ relative to v and fr (Figure 4). The
inaccuracies of  transfer impedance depend on the
inaccuracies of  electrical voltage and current that are

assigned by the electronics used, and in particular, by the
sampling methods.

Therefore, the inaccuracies Dv/v in the measurement
of  the electrical conductivity v, and Dfr/fr in the dielectric
permittivity fr, can be expressed as a linear combination of
the inaccuracies D|Z|/|Z| and DUZ/UZ in the measurement
of  the transfer impedance, respectively in modulus |Z| and
in phase UZ,

(4.1)

MEASUREMENT OF RESISTIVITY AND PERMITTIVITY

Figure 6. Conceptual schemes for numerical simulations to design the characteristic geometrical dimensions and the frequency band, limiting
inaccuracies in the measurements of  the quadrupole probe in capacitive contact with selected materials as non-saturated concretes, in the hypothesis
that D|Z|/|Z|= DUZ/UZ= 10−3.
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(4.2)

where                and                are the pairs of  sensitivity
functions for the transfer impedance, both in |Z| and UZ,
relative to the conductivity v and permittivity fr, the
expressions for which are reported in Appendix A. The
conditions v = const and fr = const in Equations (4.1) and
(4.2) underline not so much that constant values of  electrical
conductivity and dielectric permittivity are used to estimate
the complex impedance over various terrains and concretes

under the operating conditions defined in section 2, but that
the quantities v and fr are not independent of  each other,
since the electrical displacement shows a phase-shift with
respect to the electrical field [Frölich 1990]. So, for the need
to distinguish the inaccuracies in measurements of
conductivity and permittivity, the inaccuracy Dv/v can only
be calculated assuming there is no uncertainty for fr (Dfr/fr

= 0 ↔ fr = const), and vice versa.
Moreover, according to the physical problem, the probe

performs measurements of  the transfer impedance Z, both in
modulus |Z| and in phase UZ, which are characterized by the
inaccuracies D|Z|/|Z|> 0 and DUZ/UZ> 0. Mathematically,
application of  the conditions |Z|= const or UZ = const is not
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Figure 7. Conceptual schemes for numerical simulations to establish the measurable ranges of  electrical conductivity and dielectric permittivity, limiting
inaccuracies in the measurements of  the quadrupole probe in capacitive contact, and fixing its optimum working frequencies and characteristic
geometrical dimensions [D|Z|/|Z|= DUZ/UZ= 10−3].

1 1 , for const ,

S Z
Z

S

S Z
Z

S

r

r
Z Z

Z

Z
Z

Z

Z

Z

r r

r r

= + =

= + =

; ; ; ;
; ;

; ;

; ; ; ;
; ;

; ;

f
f

v

D D
U
DU

D
U
DU

; ;

; ;

f f

f f

U

U

( , )S SZ Z; ;
v v

U ( , )S SZ Z

r r

; ;
f f

U



9

allowed. In this context, the sensitivity functions          and
cannot be calculated assuming UZ = const, and then the

sensitivities    and    assuming |Z|= const. Indeed, as
discussed above, once the degrees of  freedom of  the (f, x)
pair are fixed, it is not suitable to choose (|Z|,UZ) or (R,C) as
independent variables. Consequently, the sensitivity
functions cannot be calculated by the dependent variables v
= v(|Z|, UZ) and fr = fr(|Z|, UZ) or by Equations (3.12) and
(3.13). Instead, the physical problem should be approached
recalling that (f, x, v, fr) have been considered as independent
variables. In the simplifying hypothesis that the frequency f
and the height/ dimension ratio x are characterized by
inaccuracies Df/f ≈ 0 and Dx/x ≈ 0 close to zero, the
conditions f = const and x = const can be applied.
Necessarily, the inaccuracy Dv/v in the measurement of  the

electrical conductivity v is calculated assuming fr =const,
and then the inaccuracy Dfr/fr for the dielectric permittivity
fr is calculated assuming v = const. As a consequence, the
mathematical calculations should be done recalling that
Equations (3.10) and (3.11) have been considered as the
starting points for the theoretical development. The
inaccuracies Dv/v for the conductivity v and Dfr/fr for the
permittivity fr can be more directly expressed as functions
of  (f, x, v, fr) by calculating the sensitivity functions
and                in the last part of  Equations (4.1) and (4.2).
These sensitivities are derived from the transfer impedance
1/Z = 1/R + j~C reported in Equations (3.10) and (3.11).

The interesting physical results obtained using this
sensitivity functions approach are discussed below. If  the
quadrupole probe is in galvanic contact with the subsuface,
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Figure 8. Referring to a quadrupole probe designed in the linear Wenner or square configurations and with capacitive contact on a non-saturated
concrete of  low electrical conductivity, i.e. v = 10−4 S/m, fr= 4: (a) plots, as a function of  the ratio x = h/L between the height h above ground and the
characteristic geometrical dimension L, with 0 < x ≤ 1, for the geometrical factor d(x); (b) semi-logarithmic plots for both the zero zM(x) and pole pM(x)
of  the transfer impedance in modulus; (c, d) Bode's diagrams, as a function of  the frequency f in the band f∈ [0, flim], with flim= 1 MHz, for the transfer
impedance both in modulus |Z|(f, xconcrete), units of  1/h, and phase DUZ (f, xconcrete); (e) – see next page – on the hypothesis that D|Z|/|Z|= DUZ/UZ= 10−3,
semi-logarithmic plots for both the inaccuracies Dfr/fr (f, xconcrete) in the measurement of  the permittivity fr, and Dv/v (f, xconcrete) of  the conductivity v,
with the height/dimension ratio designed optimally in the linear Wenner (xW,concrete= 0.087) and square (xS,concrete= 0.078) configurations.
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i.e. h = 0, then the inaccuracies Dv/v in the measurement of
the electrical conductivity v, and Dfr/fr for the dielectric
permittivity fr, are minimized in the frequency band B of  the
quadrupole, for all of  its geometrical configurations and
media, and even if  h ≠ 0, the design of  the probe must still be
optimized with respect to the minimum value of  the
inaccuracy Dfr/fr for fr, which is always higher than the
corresponding minimum value of  the inaccuracy Dv/v in
the band B of  the probe, for all of  its configurations and
media [Tabbagh et al. 1993, Vannaroni et al. 2004].

Under the quasi static approximation, only if  the
quadrupole probe is in galvanic contact with the subjacent
medium, i.e. h = 0, and considering that the sensitivities
functions are defined as normalized functions, then our
mathematical-physical model predicts that the sensitivities
of  the transfer impedance relative to the conductivity v and
permittivity fr are independent of  the characteristic
geometrical dimension of  the quadrupole, i.e. the electrode-
electrode distance L.

If  the probe grazes the medium, then the transfer
impedance ZN (v, L) consists of  the resistance RN (v, L),
which is independent of  fr, and the parallel capacitance CN
(fr, L), which is independent of  v, such that: the sensitivity
function        for R relative to v is a constant equal to (−1); the
sensitivity               for C relative to fr is independent of  v,
and behaves as the function fr/(fr + 1) of  fr; the       function
for R relative to fr and the       function for C relative to v are
identically zero. As a consequence, the inaccuracy DR/R for
R shows the same behavior versus the frequency of  the
inaccuracy Dv/v in the measurement of  v, as DR/R =|    |
Dv/v = Dv/v, and the inaccuracy DC/C for C shows a
similar behavior versus the frequency with respect to the
inaccuracy Dfr/fr for fr, as DC/C =|            |Dfr/fr ≈ Dfr/fr

if  fr>>1. Moreover, as well as the hypothesis h = 0, if  v and
fr are measured in the cut-off  frequency fT = fT (v, fr), then:

the sensitivity functions        and for the transfer
impedance, both in modulus |Z| and in phase UZ, relative to
v, are constant, and respectively (−1/4) and (−1/r); and the
sensitivities              and             for |Z| and UZ relative to fr

are independent of  v, such that they behave as the function
fr/(fr + 1) of  fr. As a consequence, the ratio between Dfr/fr

and Dv/v is independent of  v, and behaves as the function
(1+1/fr) of  fr, and Dv/v is a constant equal to Dv/v =
4D|Z|/|Z|+rDUZ/UZ. As a post-test, only assuming the
conditions v = const and fr = const in Equations (4.1) and (4.2),
the sensitivity functions approach provides results that are in
agreement with a previous report [Vannaroni et al. 2004].

4.2. Transfer functions method
This study proposes to deepen the transfer functions

method by analyzing the zero and pole behavior, which were
implied in the frequency domain analysis suggested by Grard
and Tabbagh [1991]. Indeed, this section introduces the
method of  analysis in the frequency domain for determining
the behavior of  the zero and pole frequencies in the linear
time-invariant circuit of  the quadrupole probe (Figure 1). To
satisfy the operative conditions of  linearity for the
measurements, if  the quadrupole has capacitive contact with
the subjacent medium then the frequency f of  the probe
should be imposed as included between the zero zM and the
pole pM of  the transfer impedance, and so its modulus is
almost constant within the frequency band [Grard and
Tabbagh 1991],

(4.3)

Based on the above conditions, an optimization
equation is deduced for the probe that links the optimal ratio
x between its height above ground and its characteristic
geometrical dimension only to the dielectric permittivity fr

of  the medium, so that:

(4.4)

To satisfy the operative conditions of  linearity for the
measurements, if  the quadrupole is in galvanic contact with
the subjacent medium, then the working frequency f of  the
quadrupole should be imposed as lower than the cut-off
frequency of  the transfer impedance, and so its modulus as
constant below the cut-off  frequency. It is only under these
conditions that it is optimal to design the characteristic
geometrical dimensions of  the probe or to establish the
measurable ranges of  the conductivity v and permittivity fr

of  the medium (Figure 5). Equations (4.3) and (4.4) that were
derived by the classical transfer function method are
demonstrated in Appendix B.

The interesting physical results obtained using this
transfer functions method are discussed below. To meet the
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design specifications that ensure satisfactory performances
of  the probe (inaccuracy of  no more than 10%), the forecasts
provided by the theory of  error propagation suggested by
Vannaroni et al. [2004] that apply the sensitivity functions
approach, as explicitly developed in the study, are less
stringent than those foreseen by the analysis in the frequency
domain suggested by Grard and Tabbagh [1991]. Here, this
deepens the transfer function method to analyze the zero
and pole behavior, in terms of  both larger band of  frequency
f and wider measurable range of  resistivity t or permittivity
fr (Figures 6, 7).

Indeed, given a surface (e.g. a non-saturated concrete
with low conductivity v = 10−4 S/m and fr = 4) with dielectric
permittivity fr (Figure 6):

if  the quadrupole probe has capacitive contact with the
subjacent medium, i.e. h ≠ 0, then having defined an optimal
ratio xopt= hopt/L between an optimal height hopt above
ground and the characteristic geometrical dimension L, the
transfer impedance Z (f, xopt), in units of  1/hopt, calculated in
xopt, is a function of  the working frequency f such that its
modulus |Z|(f, xopt), in units of  1/hopt, is almost constant
between a zero frequency z (xopt) almost one LF decade higher
than a minimum frequency value fmin(xopt), allowing the
inaccuracy Dfr/fr (f, xopt) in the measurement of  fr below a
prefixed limit (10%), and a pole p (xopt) almost one MF decade
lower than the maximum value of  frequency fmax(xopt) that
satisfies the requirement that the inaccuracy Dfr/fr (f, xopt) for
fr below 10% (Figure 8);

if  h = 0, i.e. the quadrupole of  the electrode-electrode
distance L grazes a medium of  conductivity v, then the
transfer impedance Z (f, L), calculated in L is a function of
the working frequency f such that its modulus |Z|(f, L) is
constant down to the cut-off  frequency fT = fT (v, fr), which

is higher than an optimal frequency fopt(L) that minimizes the
inaccuracy Dfr/fr (f, L). Materials characterized by a low v
or a high fr lead to a leftward shift of  the cut-off  frequency
fT, so reducing the optimal frequency fopt(L) (Figure 9);

on a selected surface, it is usually possible to verify that
the probe in capacitive contact performs optimal
measurements over the band [fmin(xopt)<z (xopt),  fmax(xopt)>p (xopt)],
which is shifted towards lower and higher frequencies
compared to when the probe is in galvanic contact, where
the respective band (fmin, fmax) is narrower by almost one LF-
MF decade in frequency, particularly increasing the value of
fr (Figures 8e, 9c).

Moreover, once the frequency band B is fixed (Figure 7):
if  the quadrupole probe has capacitive contact with the

MEASUREMENT OF RESISTIVITY AND PERMITTIVITY

Figure 9c.

(a) (b)

(c)

Figure 9. With reference to a quadrupole probe designed according to an electrode-electrode distance L0= 1 m and in galvanic contact on a concrete of
low electrical conductivity, i.e. v = 10−4 S/m, fr= 4: (a, b) Bode’s diagrams, as functions of  the frequency f for the transfer impedance both in modulus
|Z|(f, L0) (a) and phase UZ (f, L0) (b); (c) semi-logarithmic plots for both the inaccuracies Dv/v (f) in the measurement of  the conductivity v, and Dfr/fr (f)
of  the permittivity fr [D|Z|/|Z|= DUZ/UZ= 10−3].



subjacent medium, then the ratio x = h/L between the
height h above ground and the characteristic geometrical
dimension L ranges from the lower limit xlow, corresponding
to water (fr = 81). In a preliminary analysis based on the
transfer functions approach, it follows that the quadrupole
designed with the height/dimension ratio x = h/L optimally
measures the dielectric permittivity fr, opt ; the modulus |Z|(x,
v, fr, opt), in units of  1/h, of  its transfer impedance, calculated
in x and fr, opt, is a function of  the electrical conductivity v, is
characterized by a zero z (v, fr, opt) and a pole p (v, fr, opt)
frequency, which fall near the lower and upper limits of  B,
respectively, when v is measured within the range of  the
lower limit        and the upper limit       . In a deeper analysis
based on the sensitivity functions method, and still designing
the quadrupole with the ratio x = h/L for optimal
measurement of  fr, opt, it is possible to verify the measurable
range of  v; the inaccuracy Dfr/fr (x, v, fr, opt) in the
measurement of  fr, opt, a function of  v, is below a prefixed
limit (10%) if  v is measured within the range (vlow, vup),
larger than                    by almost one order of  magnitude,
both the right and left sides (Figure 10,Tables 1, 2);

if  h = 0, i.e. the probe of  the electrode-electrode distance
L grazes a medium of  conductivity v and permittivity fr, then
the transfer impedance Z (L, v, fr) calculated in L is a function
of  v and fr such that its cut-off  frequency fT = fT (v, fr), a
function of  both v and fr, ranges from fT,min= 100 kHz to
fT,max= 1 MHz for materials belonging to a (v, fr)-domain,
which is almost superimposable with the corresponding one
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Permittivity
inaccuracy

(a)

xW, opt 1.083·10−4

fr, opt 6.703

vopt 3.52·10−5 S/m

fr, opt= 6.703
vopt= 3.52·10−5 S/m

Dfr/fr ≤ 0.1
Dv/v ≤ 0.1

(b)

xW, low ≈ 0

xW, up 0.475

xW, opt= 1.083·10−4 Dfr/fr ≤ 0.1
Dv/v ≤ 0.1

(c)

fr, low , vlow 1, 5.333·10−5 S/m

fr, up , vup 81, 3.14·10−3 S/m

Table 1. Wenner's configuration: (a) optimal point (xW, opt, fr, opt, vopt) of
permittivity inaccuracy; (b) range of  x where Dfr/fr ≤ 0.1 and Dv/v ≤ 0.1,
once selected optimally fr, opt and vopt; (c) domains of  f and v where
Dfr/fr ≤ 0.1 and Dv/v ≤ 0.1, once fixed optimally xW, opt.

Figure 10. On the hypothesis that D|Z|/|Z|= DUZ/UZ= 10−3, referring to both the inaccuracies Dv/v (v, fr) for the electrical conductivity v, and
Dfr/fr (v, fr) for the dielectric permittivity fr, as functions of  v and fr, and when the quadrupole probe is designed in the linear Wenner configuration
working in a fixed band B = 100 kHz, with an height/dimension ratio xW, concrete= 0.087 which is optimal for capacitive contact only with a non-saturated
concrete of  permittivity fr= 4: (a, b) as plots for the orthogonal projections over the (v, fr) plane that satisfy the conditions Dv/v (v, fr) ≤ 0.1 (a) and
Dfr/fr (v, fr) ≤ 0.1 (b). See also Tables 1 and 2.
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within which the inaccuracy Dfr/fr (L, v, fr) for fr is below
about 10% (Figure 11);

having fixed the frequency band, the probe in capacitive
contact usually performs optimal measurements over
surfaces of  lower conductivities compared to when the probe
is in galvanic contact, as the respective conductivities are
higher by almost one order of  magnitude (Tables 1, 3). 

5. Quadrupole configurations
The transfer impedance of  a quadrupolar array can be

evaluated for any arbitrary configuration. As a general rule,
it is assumed that subsurface electrical sounding becomes
scarcely effective at depths greater than the horizontal
distance between the electrodes [Grard and Tabbagh 1991,
Vannaroni et al. 2004]. This study considers two kinds of
probes, i.e. with linear Wenner and square configurations.
The linear Wenner arrangement consists of  four terminals
equally spaced from one another along a straight horizontal
line [Vannaroni et al. 2004]. Instead, the square configuration
is an array of  two parallel horizontal dipoles, with the four
electrodes positioned at the corners of  a square [Grard and
Tabbagh 1991].

If  the quadrupole probe (Figure 1) has a characteristic
geometrical dimension L, then the linear Wenner
configuration (Figure 2a) measures a capacitance in a
vacuum C0,W= 4rf0·L, while in the square arrangement
(Figure 2b) C0,S= a·C0,W, is greater by a factor a = 1/(2-2½)>1.

When the quadrupole is in galvanic contact, i.e. h = 0,
with a subjacent medium of  electrical conductivity v and
dielectric permittivity fr, the linear Wenner configuration
measures a resistance RN,W= 2f0/vC0,W and a parallel
capacitance CN,W= C0,W(fr+1)/2, while in the square
arrangement, RN,S= RN,W/a and CN,S= a·CN,W. So, at the
frequency f, the transfer impedance 1/ZN= 1/RN+ j2rf CN for
the linear Wenner configuration is defined by a modulus
|Z|N,W= 1/[(1/RN,W)2 + (2rf CN,W)]½ and a phase UN,W= arctg
(2rf·RN,W CN,W), while in the square arrangement, |Z|N,S=
Z|N,W/a, which is smaller by a factor of  1/a (Figure 9a), and
UN,S= UN,W , which is maintained invariant in the linear Wenner
or square configurations (Figure 9b). The cut-off  frequency is
also independent of  the configurations, i.e. fT = fT (v, fr).

Moreover, if  the probe grazes the medium and
considering that the sensitivity functions are defined as

normalized functions, then the sensitivities and       
relative to the conductivity v, and the functions
and           relative to the permittivity fr, for the transfer
impedance, both in modulus |Z| and in phase UZ, are
invariant in the linear Wenner or square configurations. Only
if  h = 0 are the inaccuracies Dv/v in the measurement of  v
and Dfr/fr for fr also independent of  the configurations, so
the probe is characterized by the same performances in the
frequency band B and in the measurable ranges of  v and fr

(Figure 9c).
Instead, when the quadrupole is in capacitive contact

with the subjacent medium, and so the ratio x = h/L
between its height h above ground and its electrode-
electrode distance L is not zero, i.e. 0< x ≤1, then the
quadrupole is characterized by a geometrical factor K(x)
[d(x)], decreasing (or increasing) the function of  x, which in
the square configuration slopes down (or up) more steeply
than in the linear Wenner arrangement, so assuming smaller
(or larger) values especially for 1/2 < x <1 (Figure 8a). As a
consequence, a probe with a fixed L that performs
measurements on a medium of  dielectric permittivity fr

could be designed with an optimal height/dimension ratio
xopt= hopt/L, which in the square configuration is smaller than
in the linear Wenner arrangement, because its factor d(x)
slopes up more steeply, increasing the ratio x, so reaching the
prefixed optimal value dopt(fr) ≈ 2/(15fr +17) with a smaller
xopt. In simpler terms, if  the probe is in capacitive contact
with the medium, to perform optimal measurements of  the
permittivity, the square configuration needs to be raised
above ground by less than in the linear Wenner arrangement,
if  their electrode-electrode distances are equal. Indeed, x
ranges from xW,low= 0.022 in the linear Wenner configuration,
and from xS,low=0.019 in the square arrangement.

Moreover, in the case of  capacitive contact, if  the
quadrupole with electrode-electrode distance L is designed
according to the optimal height/dimension ratio xopt= hopt/L
working in a frequency f, then the transfer impedance
Z (f, xopt), in units of  1/hopt, calculated in xopt, is defined by a
phase U (f, xopt), which does not depend on the square or
linear Wenner configurations (Figure 8d), and by a modulus
|Z|(f, xopt), in units of  1/hopt, which in the square
configuration is shifted down by a factor 1/a with respect
to the linear Wenner configuration (Figure 8c), remaining
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fr, concrete= 4.026
xW, concrete= 0.087

Sensitivity function approach Transfer function method

vlow 4.473·10−6 S/m 1.78·10−5 S/m

vup 3.058·10−4 S/m 7.12·10−5 S/m

(a)

xW, concrete= 0.087
Dfr/fr ≤ 0.1
Dv/v ≤ 0.1

fr, low , vlow 1, 1.769·10−6 S/m

fr, up , vup 84.458, 1.573·10−3 S/m

(b)

Table 2. Concretes: (a) comparing domains of  v, foreseen by Sensitivity approach and Transfer method, once selected fr, concrete and designed optimally
xW, concrete ; (b) domains of  f and v where Dfr/fr ≤ 0.1 and Dv/v ≤ 0.1, once designed optimally xW, concrete.
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almost unvaried in both configurations not only the shape
of  the modulus |Z|(f, xopt), but also the position of  its zero
z (xopt) and pole p (xopt) frequencies (Figure 8b).

Finally, the inaccuracies Dv/v (f, xopt) in the measurements
of  the conductivity v and Dfr/fr (f, xopt) for the permittivity
fr, calculated in xopt, do not depend on the two
configurations, so the optimal frequency fopt(xopt) that
minimizes the inaccuracy Dfr/fr (f, xopt) for fr, together with
the minimum and maximum values of  frequency fmin(xopt)
and fmax(xopt), respectively, which allow the inaccuracy Dfr/fr

(f, xopt) below a prefixed limit (10%), are invariant in both of
the configurations (Figure 8e). In simpler terms, if  the probe
is in capacitive contact with the medium, to perform an
optimal measurement of  permittivity considering different
height/dimension ratios, the design of  the two
configurations establishes (almost) invariant trends in
frequency, both for their transfer impedances and
measurement inaccuracies.

6. Conclusions
The present study has proposed a theoretical modeling

of  simultaneous and noninvasive measurements of  electrical
resistivity and dielectric permittivity using a quadrupole
probe on a subjacent medium [see also arXiv.org's ref.:
Settimi et al. 2009]. A mathematical-physical model has been
applied to the propagation of  errors in the measurement of
resistivity and permittivity based on the sensitivity functions
tool. The findings have also been compared to the results of
the classical method of  analysis in the frequency domain,
which is useful for determining the behaviour of  zero and
pole frequencies in the linear time invariant circuit of  the
quadrupole. This study has underlined that average values
of  electrical resistivity and dielectric permittivity can be used
to estimate the complex impedance over various terrains and
concretes, especially when they are characterized by low
levels of  water saturation or content [Knight and Nur 1987],
and are analyzed within a bandwidth ranging from only LFs
to MFs [Al-Qadi et al. 1995, Myounghak et al. 2007]. To meet
the design specifications that ensure satisfactory
performances of  the probe (inaccuracy of  no more than
10%), the forecasts provided by the theory of  error
propagation suggested by Vannaroni et al. [2004] that apply
the sensitivity functions approach, as explicitly developed in
the study, have been discussed in comparison to those
foreseen by the analysis in the frequency domain suggested
by Grard and Tabbagh [1991]. Here, this deepens the transfer
function method to analyze the zero and pole behavior (in
terms of  both band of  frequency f and measurable range of
resistivity t, or permittivity fr).

It is interesting to compare the results of  the present
study with others in the literature [Grard and Tabbagh 1991,
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h = 0
Dfr/fr ≤ 0.1
Dv/v ≤ 0.1

fr, low , vlow 1, 5.333·10−5 S/m

fr, up , vup 81, 3.14·10−3 S/m

Table 3. Galvanic contact: domains of  f and v where Dfr/fr ≤ 0.1 and
Dv/v ≤ 0.1, when h = 0.

(a) (b)

Figure 11. With reference to a quadrupole probe in galvanic contact, working in a fixed band B = 100 kHz, plots for the domains (v, fr) of  the
electrical conductivity v and the dielectric permittivity fr such that: (a) the transfer impedance is characterized by a modulus with a cut-off  frequency
fT = fT (v, fr) = v/(2rf0(fr+1)) in the interval fT ∈ [100 kHz, 1 MHz]; (b) both the inaccuracies Dv/v (v, fr) in the measurement of  the conductivity
v, and Dfr/fr (v, fr) of  the permittivity fr are below a prefixed limit of  10% [D|Z|/|Z|= DUZ/UZ = 10−3]. See also Tables 1 and 3.
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Vannaroni et al. 2004]. In agreement, the sensitivity functions
approach provides the following results: a) if  the quadrupole
probe is in galvanic contact with the subsurface, i.e. h = 0,
then the inaccuracies Dv/v in the measurement of
conductivity v and Dfr/fr for permittivity fr are minimized in
the frequency band B of  the quadrupole for all of  its
geometrical configurations and media; and b) even if  h ≠ 0,
the design of  the probe must be optimized with reference to
the minimum value of  the inaccuracy Dfr/fr for fr, which is
always higher than the corresponding minimum value of  the
inaccuracy Dv/v in the band B for all its configurations and
media.

More explicitly than in these previous studies [Grard and
Tabbagh 1991,Vannaroni et al. 2004], the transfer functions
method provides results such that to satisfy the operative
conditions of  linearity for the measurements: a) if  the
quadrupole has capacitive contact with the subjacent
medium, then the frequency f of  the probe should be
imposed as included between the zero zM and the pole pM of
the transfer impedance, and so its modulus is almost
constant within the frequency band. An optimization
equation is deduced for the probe that links the optimal ratio
x between its height above ground and its characteristic
geometrical dimension only to the dielectric permittivity fr

of  the medium; b) instead, if  the quadrupole is in galvanic
contact with the subjacent medium, then the working
frequency f of  the quadrupole should be imposed as lower
than the cut-off  frequency of  the transfer impedance, and so
its modulus is constant below the cut-off  frequency. It is
optimal to design the characteristic geometrical dimensions
of  the probe or to establish the measurable ranges of  the
conductivity v and permittivity fr of  the medium.

Unlike these previous studies [Grard and Tabbagh
1991, Vannaroni et al. 2004], the sensitivity functions
approach and the transfer functions method provide
results that allow an assessment of  the performance of  the
quadrupole probe in galvanic and capacitive contact: a) on
a selected surface (for example, a non-saturated concrete
with low conductivity v = 10−4 S/m and fr = 4), it is
usually possible to verify that the quadrupole in capacitive
contact performs optimal measurements over the band
[fmin(xopt)<z (xopt),  fmax(xopt)>p (xopt)], which is shifted to lower
and higher frequencies compared to when the probe is in
galvanic contact, as the respective band [fmin, fmax] is
narrower by almost one LF-MF decade in frequency,
particurarly increasing the value of  fr; b) having fixed the
frequency band, the quadrupole in capacitive contact
usually performs optimal measurements over surfaces of
lower conductivity compared to when the probe is in
galvanic contact, as the respective conductivities are higher
by almost one order of  magnitude.

On this basis, some constraints were established to
design a quadrupole probe for conducting measurements of

electrical resistivity and dielectric permittivity in a regime of
AC at LFs and MFs (10 kHz - 1 MHz). Measurements were
carried out using four electrodes laid on the surface to be
analyzed, and through measurement of  transfer impedance,
the resistivity and permittivity of  the material can be
extracted. Furthermore, by increasing the distance between
the electrodes, the electrical properties of  the sub-surface
structures can be investigated to greater depths. The main
advantage of  the quadrupole is that measurements of
electrical parameters can be conducted with a nondestructive
technique, thereby enabling characterization of  precious and
unique materials. Also, in appropriate arrangements,
measurements could be carried out with electrodes slightly
raised above the surface, allowing for completely
nondestructive analysis, although accompanied by a greater
error. The probe can perform measurements on materials
with high resistivity and permittivity in an immediate way,
without the need for later stages of  data post-analysis.
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Appendix A
We consider here the influence of  inaccuracies in

transfer impedance in modulus and phase on the
measurement of  electrical conductivity and dielectric
permittivity. The mathematical tool best suited to this
purpose applies the so-called sensitivity functions [Murray-
Smith 1987], which formalize the intuitive concept of
sensitivity as the ratio between the percentage error of
certain physical quantities (due to the variation of  some
parameters) and the percentage error of  the same
parameters.

The inaccuracies Dv/v in the measurement of  the
electrical conductivity v, and Dfr/fr for the dielectric
permittivity fr, can be expressed as linear combinations of
the inaccuracies D|Z|/|Z| and DUZ/UZ in the measurement
of  transfer impedance in modulus |Z| and in phase UZ,
respectively, as given in Equations (4.1) and (4.2) (Figure 3).
The pairs of  sensitivity functions                and                for
the transfer impedance, both in |Z| and UZ, relative to the
conductivity v and the permittivity fr (Figure 4), 

(A.1)

(A.2)

(A.3)

(A.4)

are, in turn, linear combinations of  the sensitivity function
pairs                and                for transfer impedance, in both
the resistance R and capacitance C parallel components,
relative to v and fr,

(A.5)

(A.6)

(A.7)

(A.8)
with the weight functions:

(A.9)

(A.10)

Considering Equations (A.1) to (A.4), if  the modulus
|Z| and the phase UZ of  the transfer impedance provide an
indirect measurement of  the electrical conductivity v and
dielectric permittivity fr, then the functions |Z|=|Z|(v, fr)
and UZ = UZ(v, fr) are invertible, i.e. v = v(|Z|, UZ) and fr =
fr (|Z|, UZ). Therefore, the theorem of  the derivative for the
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inverse function can be applied. Indeed, under the condition
v = const (or fr = const), both |Z| and UZ are invertible
functions of  fr (or v), i.e. they are strictly increasing or
decreasing monotonic functions of  fr (or v). 

Appendix B
By exact calculations, the transfer impedance Z (f, x, v,

fr) measured by the quadrupole probe, in units of  the
reciprocal height 1/h from the subjacent medium, consists
of  the resistance R (f, x, v, fr), in units of  1/h – see Equation
(3.10) –, which can be expressed as a transfer function
characterized by a pole in the origin frequency pR= 0, a zero
in higher frequencies zR (f, x, v, fr)>0, and a static gain KR (f,
x, v),

(B.1)
where:

(B.2)

(B.3)

as well as the parallel capacitance C (f, x, v, fr), in units of
1/h – see Equation (3.11) –, which can be expressed as a
transfer function characterized by a low frequency pole pC (f,
x, v, fr), a zero in higher frequencies zC (f, x, v, fr) > pC (f, x,
v, fr), and a static gain KC (x),

(B.4)

where the capacitance pole pC (f, x, v, fr) coincides with the
resistance pole zR (f, x, v, fr),

(B.5)

and:

(B.6)

(B.7)

For values of  the ratio x = h/L between the height h
above ground and the characteristic geometrical dimension
L, and of  the paired values of  electrical conductivity v and
dielectric permittivity fr that satisfy the condition (Figure 5),

(B.8)

it can be demonstrated that the modulus |Z|(f, x, v, fr) can
be approximately expressed as a transfer function with a pole
in the origin frequency, a low frequency zero zM (f, x, v, fr), a
pole in higher frequencies pM (f, x, v, fr) > zM (f, x, v, fr), and
a static gain KM (x) (Figure 8c),

(B.9)

where the zero of  the modulus zM (f, x, v, fr) coincides with
the capacitance pole pC (f, x, v, fr) and the pole of  the
modulus pM (f, x, v, fr) with the capacitance zero zC (f, x, v, fr)
(Figure 8b),

(B.10)

(B.11)
and 

(B.12)

Equation (B.8) establishes limits on the range for the
design specification x of  the quadrupole and the measurable
range (v, fr) of  the media.

To satisfy the operative conditions of  linearity for the
measurements, the quadrupole probe, which is characterized
by the height/ dimensions ratio x = h/L, should measure the
conductivity v and the permittivity fr of  the subjacent
medium when its working frequency f falls within the band
included between the zero zM (f, x, v, fr) and the pole pM (f, x,
v, fr) of  the transfer impedance, as reported in Equation
(4.3).

Moreover, the quadrupole probe specified by x = h/L
should measure fr, as its geometrical factor d(x) is close to
Equation (4.4), a necessary condition for Z (f, x, v, fr) to show
an almost constant modulus within the band (Equation 4.3),
the modulus in the zero (Equation B.10) coinciding with the
corresponding one in the pole (Equation B.11),

(B.13)
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so that the pole (Equation B.11) is almost four-fold greater
that the zero (Equation B.10),

(B.14)

Equation (4.4) can be interpreted as the optimization
equation of  the quadrupole, so the sizing for the
height/dimension ratio x of  the probe depends only on the
permittivity fr of  the medium; instead, Equations (4.3) and
(B.14) show that the probe can work optimally only in a small
band of  frequencies.
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