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ABSTRACT

We present two self-consistent implementations of  a short-term earthquake
probability (STEP) model that produces daily seismicity forecasts for the
area of  the Italian national seismic network. Both implementations
combine a time-varying and a time-invariant contribution, for which we
assume that the instrumental Italian earthquake catalog provides the best
information. For the time-invariant contribution, the catalog is declustered
using the clustering technique of  the STEP model; the smoothed seismicity
model is generated from the declustered catalog. The time-varying
contribution is what distinguishes the two implementations: 1) for one
implementation (STEP-LG), the original model parameterization and
estimation is used; 2) for the other (STEP-NG), the mean abundance method
is used to estimate aftershock productivity. In the STEP-NG
implementation, earthquakes with magnitude up to ML = 6.2 are expected
to be less productive compared to the STEP-LG implementation, whereas
larger earthquakes are expected to be more productive. We have
retrospectively tested the performance of  these two implementations and
applied likelihood tests to evaluate their consistencies with observed
earthquakes. Both of  these implementations were consistent with the
observed earthquake data in space: STEP-NG performed better than STEP-
LG in terms of  forecast rates. More generally, we found that testing
earthquake forecasts issued at regular intervals does not test the full power
of  clustering models, and future experiments should allow for more frequent
forecasts starting at the times of  triggering events.

Introduction
Constructing effective real-time, short-term earthquake

forecasts remains one of  the most challenging problems for
seismologists. To provide useful information, a model must
capture earthquake physics with a complex physical and/or
statistical understanding of  spatial and temporal clustering.
The difficulties are compounded as these clustering processes
operate on different scales in the space, time and magnitude
domains. Currently, only statistical forecast model

frameworks such as epidemic type aftershock sequence
(ETAS) models and short-term earthquake probability
(STEP) models are used for automated, near-real-time
applications [e.g., Console et al. 2003, Gerstenberger et al.
2005, Helmstetter et al. 2006, Marzocchi and Lombardi 2008].
Both of  these frameworks can adapt to ongoing earthquake
sequences by re-estimating model parameter values and
automatically generating forecasts that account for the most
recent seismicity. Physics-based models that combine
calculations of  stress changes with a rate-and-state friction
model to determine seismicity rates [e.g., Hainzl et al. 2009,
Cocco et al. 2010] are not yet applicable in near real-time.
These models require additional seismological, geological,
and tectonic information that is often not immediately
available. There are indications from retrospective testing
experiments that these models can perform as well as the
statistical models only when uncertainties of  the physical
model are included stochastically [Woessner et al. 2009].

Motivated by (1) the upcoming prospective daily
seismicity forecast experiment to be performed at the ETH
Zurich Testing Center as part of  the Collaboratory Study for
Earthquake Predictability (CSEP) initiative, (2) recent results
from retrospective comparative testing experiments
[Woessner et al. 2009], and (3) methodological improvements
in estimating triggering effects of  earthquakes [Christophersen
and Smith 2008, Christophersen and Gerstenberger 2010], we
have developed two implementations of  the STEP model for
the Italian testing region. Additionally, we suggest that with
some regionalization, these two implementations can be
tested within other CSEP testing regions. Moreover,
dependent on the forthcoming results of  the prospective tests
of  these implementations, time-varying hazard estimates can
be generated for Italy, similar to those already publicly
available in real-time for the state of  California, USA
(http://earthquake.usgs.gov/eqcenter/step/).
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When building an earthquake forecast based on a STEP
model, a time-invariant contribution is computed from
previous seismicity and, if  desired, other information. The
time-varying contribution is based on estimating parameter
values from the analysis of  previous seismicity. The two
contributions are estimated independently; therefore, to
build a self-consistent model, the same underlying
assumptions are made. Our implementations combine a
time-invariant contribution based on a simple smoothed
seismicity approach [Zechar and Jordan 2010b] with two
slightly different time-varying contributions (Figure 1);
these different paths are what distinguish the two
implementations. Each time-varying contribution is itself  a
combination of  three elements: (1) a generic element based
on the average statistical behavior of  Italian aftershock
sequences; (2) an element based on the temporal behavior
of  the particular aftershock sequence in progress; and (3) a
spatially variable element where the aftershock behavior is
mapped in space. One time-varying contribution closely
follows the methodology of  Reasenberg and Jones [1989,
1990, 1994], using parameter values estimated by Lolli and
Gasperini [2003] and Gasperini and Lolli [2006]. The other
time-varying contribution uses a new generic element based
on Christophersen and Gerstenberger [2010]. We describe
the latter model in detail and discuss its capabilities and
limitations. Each of  these contributions is then combined
with the time-invariant contribution, forming the STEP-LG
(Lolli-Gasperini) and the STEP-NG (new generic) model.
When combining the contributions, the final forecast rate at
each point is taken to be the greater of  the time-invariant
and time-varying contributions.

In the following sections, we describe the data used, the
time-invariant contribution, and the two distinct time-
varying contributions. We report the performance of  the
two implementations in a retrospective daily forecast

experiment of  906 days starting on January 1, 2007. The
performance of  each implementation is analyzed with the
CSEP likelihood(L)-Test [Schorlemmer et al. 2007], a
modified number(N)-Test, and a normalized L-Test and a
space(S)-Test [Werner et al. 2009, Zechar et al. 2010]. As
these tests were developed for evaluating long-term forecasts,
we have adjusted them to the needs of  daily forecasts. We
discuss the test results, state our expectations for prospective
testing, comment on how the experiment set-up influences
the model performance, and outline possible improvements
to the current model implementations.

Data
We used seismic catalog data provided by the CSEP EU

Testing Center (http://www.cseptesting.org/regions/italy)
for the time period from January 1, 1981, to December 31,
2002 (CSI 1.1 catalog) [Castello et al. 2007]. We used the
Italian seismic bulletin (Bollettino Sismico Italiano; http://
bollettinosismico.rm.ingv.it/) for the period from 2002 to
March 31, 2009, by adding the data into the periods that were
not available from the CSEP Testing Center in Zurich. From
April 1, 2009, to June 25, 2009, we used data from the Italian
Seismic Instrumental and parametric Data-basE (ISIDe;
http://iside.rm.ingv.it), knowing that this data had not been
reviewed entirely.

The catalog originally contained 75,520 earthquakes in
the magnitude range 0.1 ≤ ML ≤ 5.9 with depths less than 30
km. The catalog included 436 events with ML ≥ 3.95, 406 of
which were located in the collection area of  the CSEP-Italy
testing region. The ML ≥ 3.95 seismicity is shown in Figure
2A, together with the cumulative number of  events versus
time (Figure 2B). To minimize possible edge effects,
earthquakes in the catalog that fell outside the collection area
were included when estimating the time-invariant parameter
values. Figure 2A shows 279 events in the learning period for
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Figure 1. STEP model hierarchy. The model implementations (STEP-NG/STEP-LG) are composed of  model contributions (time-invariant/time-varying),
which consist of  model elements. The elements of  the time-varying contribution were weighted using an AICc criterion [Gerstenberger et al. 2005]. The
generic element can be based on the mean abundance model by Christophersen and Smith [2008] or the model by Reasenberg and Jones [1989] (RJ-
model). For the latter, we used parameters determined by Lolli and Gasperini [2003] and Gasperini and Lolli [2006].
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the time-invariant parameters, and 31 in the target period of
January 1, 2007, to December 31, 2007. There were 37 events
in the target period for the retrospective daily experiment
from January 1, 2007, to June 25, 2009.

Model description
In building our implementations, we strove to use self-

consistent assumptions and data that were well suited for
estimating the parameter values for each model contribution.
Nevertheless, our implementations are not completely free
of  subjective choices, as the parameters were not estimated in
one single, simultaneous procedure.

We modified several aspects of  the STEP model
compared to the version implemented for California, USA
[Gerstenberger et al. 2005]: (1) We regionalized the model
by using the Italian testing region defined for the 1-day
model class by the testing center [Schorlemmer et al. 2010,
this issue]. (2) We computed the time-invariant model
contribution using different assumptions than Gerstenberger
et al. [2005]: rather than using the seismicity rates of  the
national Italian seismic hazard map [Meletti et al. 2008], we
independently estimated the time-invariant contributions
using a smoothed seismicity approach. (3) We implemented
two distinct time-varying contributions: (a) one based on the
work of  Reasenberg and Jones [1994], with parameter values
estimated by Lolli and Gasperini [2003] and Gasperini and

Lolli [2006], essentially following the procedure used by
Gerstenberger et al. [2005]; (b) another based on the mean
abundance model of  Christophersen and Smith [2008] and
Christophersen and Gerstenberger [2010], to estimate
aftershock productivity.

Time-invariant contribution
For the generation of  the time-invariant contribution,

we estimated seismic background rates using a smoothed
seismicity approach, assuming that the background seismicity
rates vary in space and time [Marzocchi and Lombardi 2008].
The smoothed seismicity approach was adopted from Zechar
and Jordan [2010b] using a smoothing kernel with an isotropic
two dimensional Gaussian function governed by a single
length scale parameter. By smoothing the recent seismic
activity, we assumed to better approximate the current state
of  background seismicity, as opposed to using long-term rates
derived in the national seismic hazard map that rely on
seismic source zonation [Meletti et al. 2008]. In this sense,
each contribution was based only on the earthquake
catalog; smoothing the seismicity rates and the resulting
implementations are built on self-consistent assumptions.

To compute the time-invariant contribution, we first
declustered the catalog containing events in the period
January 1, 1981, to December 31, 2007. For comparison, we
applied several different clustering approaches and show the
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Figure 2. (A) Seismicity map for events in the STEP-declustered catalog (light gray squares) and entire catalog (dark gray squares) for the period 1984 to
2006. Events in target period for the smoothed seismicity map (green squares: January 1, 2007, to December 31, 2007) and target period of  retrospective
testing (red squares: January 1, 2007, to June 25, 2009). The inner polygon represents the testing area, the outer polygon, the collection area, for the
prospective CSEP testing experiments. (B) Cumulative number of  events versus time for the entire catalog (black line) and for the STEP-declustered catalog
(gray line). Only events with ML ≥ 3.95 are plotted.
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inherent variability (Figure 3). We generated four declustered
catalogs using: (1) a windowing approach based on Gardner
and Knopoff  [1974]; (2) the clustering approach by
Reasenberg [1985], with the originally proposed parameters
for California, USA; (3) the model-independent approach of
Marsan and Lengliné [2008]; and (4) the windowing approach
as used in the time-varying STEP contribution. In approach
4, any earthquake that followed another within a certain
space-time range was considered to be an aftershock of  the
first event. The time window was 30 days, and it was extended
by another 30 days if  another aftershock occurred. The spatial
window was a circular area, centered on the potential main
shock with radius r (m):

(1)

where m is the local magnitude ML of  the potential main
shock, and r (m) is measured in km. This relation is based on
Wells and Coppersmith [1994], and involves a minimum 5
km radius to select events taking into consideration location

uncertainties; this implies that for ML ≤ 5.3 the search radius
is constant and thus the smaller the magnitude is, the more
likely are potential background earthquakes to be included in
a cluster.

We emphasize that the choice of  the declustering
procedure did affect the time-invariant contribution in terms
of  total forecast rate and the resulting spatial forecast. For
consistency of  the two contributions, the implementations
presented here were based on the STEP windowing approach
(approach 4). The cumulative numbers of  earthquakes for the
entire catalog and for each declustered catalog as a function
of  time are shown in Figure 3A, B, respectively; for the testing
area, as indicated in Figure 1, this is shown in Figure 3C, D.
Data from the entire catalog were used to compute the time-
invariant model. The total number of  events varied between
117 and 304 for the entire catalog, and 89 and 259 for the
testing area (Table 1). This implies a daily seismicity rate for
the entire area of  between 0.0134 and 0.0338, and for the
testing area, 0.010 and 0.0296. For the selected STEP-
declustered catalog, 296 events with ML ≥ 3.95 remained,
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Figure 3. Cumulative number of  earthquakes versus time of  the entire observed data (gray) and resulting from four (de-)clustering approaches applied to the
catalog from January 1, 1981, to December 31, 2007: for the entire study region (see Figure 2) with (A) ML ≥ 2.45 and (B) ML ≥ 3.95; for the testing region with
(C) ML ≥ 2.45 and (D) ML ≥ 3.95. The dashed gray lines in (A) and (B) indicate the period of  2003 to 2005 for which the magnitude determinations appeared
to be different, although not affecting magnitudes ML ≥ 3.95. Dash-dotted black lines in (B) denote the period TO when the time-invariant model contribution
was optimized. Dash-dotted red lines in (D) denote the period of  retrospective testing TF. Note the smaller slope in this period compared to previous periods.
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which indicated a total daily rate of  0.0338; in the testing area,
a yearly/daily rate of  10.5/0.0288 events was expected.

The overall seismicity rate for the period 2003 to 2005
was higher than in the other periods; however, the magnitude
range ML ≥ 3.95 was only slightly affected compared to the
range of  smaller magnitude events. In Figure 3, a change in
the slope can also be seen around March 29, 2003. On this day,
the magnitude ML = 5.4 Jabuka island event occurred in the
central Adriatic sea, off  the coast of  Croatia; this was one of
the strongest events ever recorded within the Adriatic
microplate [Herak et al. 2005].

In Figure 3D, the vertical lines depict the period of  the
retrospective daily forecast tests ( January 1, 2007, to June 25,
2009). The slope of  the observed number of  earthquakes in
the cumulative number plot for the observed data was
slightly less steep than in the periods before the 1997 Umbria-
Marche earthquake and in other periods without large
aftershock sequence contributions. This might be due to the

natural temporal fluctuation of  seismicity, or it might be due
to changes in policies regarding magnitude determination.
This is important to remember when interpreting the results
of  the retrospective testing experiment described in the
following sections.

The STEP-declustered catalog served as the input to the
smoothing algorithm of  Zechar and Jordan [2010b]. Similar
approaches have been used for national seismic hazard maps
in the USA and New Zealand [Frankel et al. 2002, Stirling et
al. 2002]. In contrast to the adaptive kernel estimation
method by Stock and Smith [2002a, 2002b], in which the
kernel width varied in space, here the standard deviation v of
the Gaussian kernel was uniform over the domain of
interest. The novelty of  the method with respect to past
implementations, such as Frankel et al. [2002], is that the
kernel width was optimized by performing a set of
retrospective tests with different smoothing length scales and
by measuring the performance of  each test in terms of  the
area skill score (ASS) misfit statistic [Zechar and Jordan 2008,
Zechar and Jordan 2010a]. In other words, the kernel width
that gave the best performance in terms of  the ASS misfit
statistic | was chosen as the optimal one.

To determine the optimal kernel width, we used data
from the declustered catalog over the period from January 1,
1984, to December 31, 2006, as the learning period, and the
period from January 1, 2007, to December 31, 2007, as the
target period. For magnitude ML ≥ 3.95, the learning period
contained 296 events, and the target period, 19 events. The
kernel width v was varied between 5 km and 200 km, and
|(v) was calculated (Table 2). The optimization procedure
suggested an optimal smoothing length scale of  30 km. The
seismicity rates of  the smoothed time-invariant model for
the testing region are shown in Figure 4.

Time-varying contribution
The STEP model includes a spatial extension of  the

simple aftershock model of  Reasenberg and Jones [1989,
1990, 1994]:

(2)
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Table 1. Total number of  events, yearly rates (M ≥ 3.95) and daily rates (M ≥ 3.95) after declustering for the collection/testing area of  the INGV catalog
in the period 1984-2007.

Table 2. Model parameters and standard deviations for STEP-LG and
STEP-NG. All other models were used as retrospective comparisons. Mc

correction, adjustment factor for data quality based on Woessner and
Wiemer [2005]. Nmin,SS , minimum number to estimate parameter values for
the sequence specific and spatially variable time-varying model elements.

Total in the area
catalog spans
N (M ≥ 3.95)

Yearly rate
NObs(M ≥ 3.95)

/ [year]

Daily rate
NObs(M ≥ 3.95)

/ [day]
Reference

296/ 252 12.333/ 10.500 0.0338/ 0.0288 STEP windowing

304/ 259 12.667/ 10.792 0.0347/ 0.0296 Reasenberg [1985]

250/ 210 10.417/ 8.750 0.0285/ 0.0240 Gardner and Knopoff  [1974]

117/ 89 4.875/ 3.708 0.0134/ 0.010 Marsan and Lengliné [2008]

Parameter STEP-LG STEP-NG

a-value −1.84 ±0.12 −1.84 ±0.12

b-value 0.98 ±0.03 0.98 ±0.03

c-value 0.09 ±0.27 0.09 ±0.27

p-value 0.92 ±0.06 0.92 ±0.06

a-value 1.31 ±0.21

M1 5.39 ±0.11

IOU 5.468

Mc correction 0.2 0.2

Nmin,SS 100 100

( , ) ( )
10t M t c

( )

p

a b M Mm th

= +m
+ -l



where m (t, M) is the rate of  aftershocks with magnitudes
greater than the magnitude threshold Mth and occurring at
time t, Mm denotes the main shock magnitude. The constants
a´ and b were derived from the Gutenberg-Richter
relationship [Gutenberg and Richter 1944], and p and c
resulted from the Omori-Utsu law [Utsu 1961, Ogata 1983].
As aftershock sequences progress, the model parameter
values were re-estimated.

We applied the corrected Akaike information criterion
(AICc) to construct the best-fitting model from the three
elements in the time-varying contribution (generic, sequence
specific, spatially varying; see Figure 1). The AICc is a
likelihood-based metric designed for model selection
[Kenneth et al. 2002]. The calculation took into account the
number of  free parameters and the number of  observed
data; to be preferred in the final scoring, a model with more
free parameters must fit the data better than models with
fewer parameters. Rather than selecting only a single model
element, we used AICc weighting, where a relative weight
for each model was based on its AICc score, and the final
model was a weighted sum of  the three element
contributions; details of  the STEP model are described in
Gerstenberger et al. [2004]. One essential component is the
spatial smoothing of  the aftershock productivity parameter
a´, which defines the total rate of  aftershocks in a sequence.
We applied a smoothing of  1/r2, with r as the distance from
the point of  interest to the point source in the generic model,
or the empirically parameterized fault in the sequence-
specific and the spatially variable model. Thus, for the
generic model, the rates were smoothed radially outwards,
while they were smoothed away from the fault in the other
model elements. For the CSEP Italy implementation, where
the model generates daily forecasts of  earthquakes with
magnitude ML ≥ 3.95, we assumed that only ML ≥ 3 events can
trigger events of  interest. In the current model, with the
generic parameters for the Italian catalog, there is a 4%
chance that an earthquake of  ML = 3 will trigger an event
with ML ≥ 3.95 (for ML = 2.5 and ML = 2; the corresponding
probabilities are 1% and 0.1%, respectively). Leaving the
smaller events out, we probably underestimated the rate of
occurrence; however, this covers the intrinsic uncertainty of
the model forecasting ability well.

We implemented two variations of  the time-varying
contribution: STEP-LG and STEP-NG. The two
implementations differed only in the description of  the average
aftershock productivity in the generic model element (Figure
1); all other features were in common. For each sequence
analyzed, we estimated the magnitude of  completeness, Mc ,
using the maximum curvature approach without
bootstrapping [Woessner and Wiemer 2005]. We added a
correction factor to each estimate of  M = 0.2 units, because the
maximum curvature approach tended to yield unreasonably
low Mc values. If  at least 100 events with magnitudes larger
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Figure 4. Log10 (daily rate of ML ≥ 3.95) for the time-invariant model, derived
from the smoothed seismicity approach of  Zechar and Jordan [2010b]. The
optimum smoothing kernel width was 30 km (Table 3), derived from the STEP-
declustered catalog for the period of January 1, 1984, to December 31, 2006, as
learning, and the period of January 1, 2007, to December 31, 2007, as forecasting.

Table 3. Kernel estimates for increasing kernel widths (v, standard deviation).
The lowest value of  | indicates the best solution.

Kernel width v [km] Area skill score misfit, |

5 0.21252891

10 0.17705183

20 0.10374542

25 0.07435822

30 0.04899255

50 0.07346651

75 0.10409969

100 0.12572704

200 0.21312013
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than Mc were available for an ongoing sequence, the sequence-
specific estimates of  Gutenberg-Richter and Omori-Utsu
parameter values were computed using maximum likelihood
estimators [Bender 1983, Ogata 1983].

STEP-LG model: Reasenberg-Jones model with parameters
by Lolli-Gasperini

Equation 2 introduced the generic model element for
the STEP model [Gerstenberger et al. 2005], for which the
productivity parameter k in the Omori-Utsu law is replaced,
to describe an average productivity that increases with
mainshock magnitude. Lolli and Gasperini [2003] used
combined earthquake catalog data from 1960 to 1996 to
estimate the values of  these model parameters. They applied
the clustering algorithm by Reasenberg [1985], as well as a
window method, to define aftershocks. They estimated
parameter values from about 40 aftershock sequences.
Finally, the parameter a´ was determined by equating the
numerator of  Equation 2 to k and solving for a´:

(3)

The median values were: a´= 1.84 ± 0.12, p = 0.92 ± 0.06, c
= 0.09 ± 0.27, and b = 0.98 ± 0.03 (Table 2).

STEP-NG model: new generic model
The STEP-LG implementation assumed that aftershock

productivity increases with main shock magnitude and
depends on the b-value of  the frequency-magnitude
distribution. Christophersen and Gerstenberger [2010]
derived an alternative description for the average productivity
as a function of  main shock magnitude based on mean
abundance, Nma(m), the mean number of  aftershocks for a
main shock with magnitude m. Estimating mean abundance
values has its own challenges and here we briefly describe
how we determined our mean abundance for Italy.

To estimate the mean abundance parameter values, we
used data covering the time period of  January 1981 to
December 2002, as covered by the CSI 1.1 catalog [Castello
et al. 2007]. Near the beginning of  this period, the seismic
network changed significantly. As a result, the detection
threshold decreased from around ML = 4.0 to ML = 3.0 and
below by the middle of  1984. Therefore, we analyzed the
complete catalog with a threshold magnitude Mth = 4, and
also considered the period 1984.5 to 2002 with threshold
magnitude Mth = 3.

We clustered the earthquakes according to the STEP
windowing approach, as outlined above, with an upper time
limit of  30 days. Once the earthquake clusters were defined,
the largest earthquake in a cluster was considered to be the
main shock. If  two or more earthquakes within one cluster
had the same magnitude, the earliest of  these was taken to
be the main shock. To determine mean abundance, the

number of  main shocks in each 0.1 magnitude bin was
counted; the total number of  aftershocks within a chosen
time period was counted; and the number of  aftershocks per
main shock magnitude bin was divided by the observed
number of  main shocks. To address issues of  completeness,
we started counting aftershocks 0.1 days (2 hours and 24
minutes) after the main shock, to avoid missing smaller
aftershocks that might be hidden in the coda of  the main
shock.

It has been shown that, in general, mean abundance
grows exponentially with main shock magnitude Mm:

(4)

where a is the growth exponent, and M1(Mth) is the
magnitude, which on average has one aftershock above the
threshold magnitude Mth [Christophersen and Smith 2008].

Figure 5A shows the results from the mean abundance
analysis for two sub-sets of  the catalog for the period 1981 to
2002: The gray rectangles are the mean abundance in the
time period from 1984.5 with Mth = 3.0. Each data point was
scaled by 0.1 to match a threshold magnitude of  4.0 for the
lower target magnitude of  the daily CSEP testing class. This
scaling corresponded to a magnitude unit difference with a b-
value of  b = 1.0. The black triangles are data for the complete
time period, with Mth = 4.0. We report the best-fitting a and
M1 values and their respective 95% confidence intervals for
the two periods: in the first case (Mth ≥ 4.0), a = 1.31 ± 0.21
and M1(Mth = 4.0) = 5.39 ± 0.1; in the second case, we
obtained a = 0.87 ± 0.12 and M1 (Mth = 4.0) = 5.63 ± 0.13.
Due to the fixed search radius of  5 km for all earthquakes
below magnitude ML = 5.3, background events could well
have been included, biasing the data towards higher
abundance. Therefore, although the dataset with magnitude
cut-off  Mth =4.0 had fewer sequences and more scatter than
the events with magnitudes in the range 3-4, we took the
parameter value estimates based on the ML ≥ 4.0 set because
the data were less likely to be affected by possible
background events.

Mean abundance can be related to the Omori-Utsu k-
value [Utsu, 1961, Ogata 1983] by integrating over the time
interval used to estimate mean abundance Nma:

(5)

Here, S and T are the start and end times of  the period
analyzed, respectively. We call IOU (S,T) the Omori-Utsu
integral, with:

(6)
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For the Lolli-Gasperini parameter values p = 0.92 and
c = 0.09, for the mean abundance time interval of  0.1 to 30
days, we obtained IOU = 5.486. Figure 5B shows the mean
abundance estimates of  k obtained by dividing Nma by IOU.
The individual main shock data were computed by dividing
the number of  aftershocks in the time interval of  0.1 to 30
days by IOU. The data for the 1997 Colfiorito and the 2009
L'Aquila earthquakes are highlighted by blue and red stars,
respectively. If  only one aftershock was observed, the k-value
was 0.20. If  no aftershocks were observed, the main shock
was not shown in Figure 5B. As a consequence, the squares
fall above the model line, which also includes the main
shocks without aftershocks in the time and magnitude
interval analyzed. The final parameter values of  the STEP-
NG implementation are listed in Table 2.

Figure 5B indicates that the 1997 Colfiorito sequence
was particularly productive, while the 2009 L'Aquila
sequence fell in between the predictions of  the two models.
In the magnitude range 5.3 to 5.8, the data were scattered
around both models, and both models agreed within the
scatter of  the data. Due to the difference in slope (0.98 for
the RJ-model, and 1.31 for the mean abundance model), the
models deviated for smaller and larger main-shock
magnitudes. For a magnitude ML = 3 event, the k-value for
the RJ-model was about one order of  magnitude larger than
the k-value for the mean abundance model. Because these
earthquakes are used for forecasting, and because there are
many more of  these than larger earthquakes, the STEP-LG
implementation will predict an overall higher rate of
seismicity than the STEP-NG implementation. The
productivity of  the main shocks based on Gasperini and Lolli
[2006] was higher for events with magnitudes up to ML ≤ 6.2.

For larger events, the mean abundance model yielded higher
productivity estimates.

Retrospective testing
We performed retrospective daily tests for both models

for the period January 1, 2007, to June 25, 2009 (906 days).
We forecast 24-hour seismicity rates for the Italian testing
region in the magnitude range 4 ≤ ML ≤ 8, with the last bin
including rates up to ML = 9. The first forecast estimated
seismicity rates from midnight on January 1, 2007, to
midnight on January 2, 2007, the second forecast covered
the following 24 hours, and so on. We measured the
performance of  the models with the modified N-Test
[Zechar et al. 2010], the CSEP L-Test [Schorlemmer et al.
2007], a normalized L-Test [Werner et al. 2009] and an S-Test
[Zechar et al. 2010]. With retrospective testing, we hoped to
identify weaknesses in the forecasts and gain some insight as
to what we should expect from prospective forecast
experiments. We considered various tests because each
analyzed different features of  the forecast.

N-Test and modified N-Test
The two-sided N-Test of  Schorlemmer et al. [2007]

contains a subtle flaw: in some cases, the test rejects
forecasts with low rates when there are zero earthquakes
observed, although such a forecast should be considered
consistent. Therefore, we followed the suggestion by Zechar
et al. [2010] and applied the modified N-Test, summarized
by the metrics:

(7)

(8)
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Figure 5. Mean abundance analysis. (A) Mean abundance Nma as a function of  magnitude for the period of  1981 to 2002 with threshold magnitude Mth = 4
(black triangles) and the period 1984.5 to 2002 with threshold magnitude Mth = 3 (gray squares). The solid black line and the gray dashed line show the fit of
the mean abundance model for to the data, respectively. (B) The k-value for threshold magnitude Mth = 4 as a function of  magnitude. The gray dashed line
and solid black line show model predictions based on Gasperini and Lolli [2006] and the mean abundance model, respectively. Gray squares show productivity
of  sequences available, those with zero events in the magnitude range are not shown. Blue and red stars: 1997 Colfiorito and 2009 L'Aquila sequences.

1 ( 1 ) , andF N N1 Obs F= ;d - -

( )F N NObs F2 = ;d



149

Here, F (x|n) is the right-continuous Poisson cumulative
distribution function with expectation n evaluated at x. Using this
approach, we can answer two questions separately: (1) What is
the probability of observing at least NObs earthquakes (d1); and (2)
What is the probability of observing NObs at most earthquakes (d2).

The forecast rate distribution for all CSEP rate forecasts
was assumed to be Poisson, in which case it was appropriate
to perform a two-sided hypothesis test to determine whether
the forecast rate was too high or too low. When the
probabilities were written as in Equations 7 and 8, we instead
used a one-sided test with a scaled critical value. For example,
a critical value of  0.025 corresponds to a hypothesis test for
which we have 95% confidence.

The flaw in the original N-Test was critically important
for daily forecasts, where the number of  observed events on
any given day was often zero. For our implementation, the
daily rate forecast of  the time-invariant contribution was
N_F = 0.0288 (Table 1) for the entire testing region. On most
testing days, there will be no magnitude ML ≥ 3.95 event
(NObs = 0). For these days, we obtained d1 = 1 and d2 = 0.9716,
indicating that the forecast was consistent with the observation.
Applying the original approach of  a two-sided N-Test, this
forecast would be very close to rejection starting at d = 0.975.

Consistency tests in space: L-Test, normalized L-Test, and
S-Test

We considered three different tests to analyze the
consistency of  the retrospective forecasts with the data in the
spatial and magnitude distribution. We applied the CSEP L-
Test (c- score) and a normalized L-Test (cnorm). The c-statistic
suggested by Schorlemmer et al. [2007] measures the
consistency of  a forecast space-rate-magnitude distribution
with the observations. The c-score is dependent on the
number of  observed events ( NObs). Therefore, a forecast that
is consistent in terms of  the spatial and magnitude
distribution with the observed earthquakes might be rejected
by the L-Test simply because it does a poor job at forecasting
the overall rate of  seismicity. To account for this scenario, we
also applied the normalized L-Test suggested by Werner et
al. [2009], which normalizes the test results by the number of
observed target earthquakes. Low values of  c indicate that a
space-rate-magnitude forecast is not consistent with the
observed distribution, whereas low values of  cnorm indicate
that a forecast is not consistent in terms of  the space-
magnitude distribution. The S-Test (g-score) isolates the
spatial component of  the forecast and compares this with the
spatial distribution of  target earthquakes [Zechar et al. 2010];
low values of  g indicate a forecast spatial distribution is
inconsistent with the observation.

Results
To provide a first overview, Figure 6 shows for both

models the cumulative numbers of  the forecast earthquakes,

the time-invariant model contribution, and the cumulative
numbers of  observed earthquakes versus time. The time-
invariant contribution (dash-dotted line) has a steeper slope
as compared to the observed data (light gray line). As
indicated in the data section, the rate of  observed seismicity
was lower for the testing period as compared to similar
periods, not including prominent aftershock sequences (see
Figure 3D). The reason for this might be natural rate
fluctuations, the result of  optimizing the model only for a
one-year period, or the change in network policies to
determine magnitudes. We consider the last possibility least
likely, as most of  the events occur in the testing area after the
known change in network policies in April 2005.

There were 751 earthquakes with ML ≥ 3 that
contributed to forecast rates during the retrospective daily
testing period ( January 1, 2007, to June 25, 2009). All of  the
triggering events fell into the magnitude range 3 ≤ ML ≤ 6.2,
with the largest earthquake being the April 6, 2009, ML =5.8
L'Aquila earthquake. The STEP-LG implementation
forecasts higher rates of  seismicity than STEP-NG, indicated
by the steeper slope in Figure 5A. 

The forecast rates of  STEP-NG match the total
observed number of  earthquakes better in the cumulative
test than for STEP-LG. Figure 7 shows the 906 daily and
cumulative results of  the N-Test scores d1(t) and d2(t). Daily
N-Test scores d1(t) (Figure 7, red triangles) were rejected with
at least 95% confidence when at least two events occurred
and there was no contribution from ongoing earthquake
sequences. No daily forecast was ever rejected for
underpredicting. Considering the cumulative tests, we find
that STEP-NG was rejected on 30.1% of  the test days, and
STEP-LG was rejected on 48.6%. The models were rejected
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due to the constant rate increase caused by the time-invariant
contribution of  the model. The N-Test result was strongly
influenced by each event occurring. As soon as a large
sequence occurs, such as the L'Aquila sequence (Figure 6)
that started on test day 826, the forecasts performed well
overall in the N-Test.

To test the overall consistency of  each implementation
with the daily observations, we applied the L-Test
[Schorlemmer et al. 2007] daily and cumulatively. Both
models were never rejected in the cumulative tests (Figure 8,
red line) and only on a few days in the day-by-day tests (Figure
8, black triangles). For example, the log-likelihood score LL to
observe NObs = 0 events for the first days forecast of  model
STEP-NG NF = 0.0302 is LL = –0.031. Using NSim = 10000
simulations for the L-Test, we obtained a score on the first
test day of  c (t =1) = 0.036. The quantile score improves over
time as there are more and more events occurring in the
regions where events are expected.

The influence of  the forecast number of  events on the
original CSEP L-Test is illustrated well for these models, as
the spatial distribution of  rates was exactly the same (Figure
8, red boxes). On test day t = 831, for example, STEP-LG
forecast 0.0431 target earthquakes, and STEP-NG forecast
0.0326 target earthquakes; NObs = 0 events were observed.
This led to a small difference in the c-scores, of  0.334 and
0.313, respectively.

The normalized L-Test removes the dependency on the
forecast number of  events with a factor expressing the ratio
of  the observed and forecasted events:                [Werner et
al. 2009], while keeping the space and magnitude
information. The S-Test isolated the spatial distribution by
summing the entire rates. For both of  these tests, there is no
difference between our two implementations, as they were

using the same b-value for distributing in the frequency
magnitude domain. We only show the results of  STEP-NG
in Figure 9, as through the normalization the differences of
the two implementations were removed.

The tests were developed and applied retrospectively for
long-term forecasts (5 years), for which the number of
observed events is typically non-zero. However, in daily
experiments, the number of  observed events is often equal to
zero, and thus the normalization was not applicable. We
therefore applied the S-Tests and normalized L-Tests only on
the forecast days on which at least one earthquake occurred.
The daily test results displayed as the quantile scores (Figure
9, gray triangles) show that the models were consistent in
the space-magnitude domain as the cnorm-scores are larger
than 0.025 (Figure 9a), the effective significance level for the
test. Similarly, the g-scores of  the S-Test were larger than
0.025 for every day of  the experiment, implying that the
model is consistent with the spatial distribution of  the
seismicity observed (Figure 9a).

Discussion and conclusion
We have present two implementations of  the STEP-

model, STEP-LG and STEP-NG, which can generate daily
forecasts of  seismicity calibrated on Italian seismicity. Both
implementations have the same spatial distribution of  the
seismicity rates, but they vary in terms of  the total forecast
rate. For the generic element of  the time-varying
contribution, STEP-LG incorporates rate estimates based on
the Reasenberg-Jones model [Reasenberg and Jones 1989]
with parameters from Gasperini and Lolli [2006], while
STEP-NG defines rates based on the mean abundance model
[Christophersen and Gerstenberger 2010] (Figure 1).

We emphasize that the two implementations described
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Figure 7. Retrospective N-Test results for daily and cumulative consistency. Daily and cumulative d1(t)-scores (red) of  observing at least NObs events were
generally not rejected at the aeff significance level (gray bar). Note that cumulative d2(t)-scores (gray line) for observing at most NObs events were rejected
in about 48.6% of  the test days for model STEP-LG, and in about 30.1% for model STEP-NG.
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here are different from the implementation of  the STEP model
submitted to the CSEP Testing Center at the Southern California
Earthquake Center and the model that is implemented at US
Geology Survey (http://earthquake.usgs.gov/eqcenter/step).
Our guiding principle was to generate a self-consistent model
for both contributions: time-invariant and time-varying. We
used a time-invariant contribution based on the smoothed
seismicity approach following Zechar and Jordan [2010b],
using only instrumental seismicity. This is a change in
philosophy from the approach of  Gerstenberger et al. [2005]:
we assumed that the seismicity of  the last 25 years was a well
defined proxy for background seismicity varying on the scales
of  tenths of  years, better than a long-term hazard map with all

its assumptions [Meletti et al. 2008]. We have also explored a
new generic model element based on the mean abundance
model (STEP-NG). This implementation forecast fewer events
following small to moderate earthquakes (ML ≤ 6.2) than the
STEP-LG implementation, and it forecast more following
larger events.

Although the stationary rate estimates do influence the
performance of  our implementations (see Table 1), a detailed
comparison of  different smoothed seismicity approaches is
beyond the scope of  this study. We used the window
approach to cluster events and to estimate the time-invariant
contribution based on this result, because this is consistent
with the approach used to compute the time-varying
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A) S-Test B) Normalized L-Test

Figure 9. Retrospective (A) S-Test and (B) normalized L-Test results of  STEP-NG for daily forecasts. The models were never rejected at the 0.05 significance
level (for quantile scores g and cnorm equal or less than the effective significance level 0.025, indicated by the gray bar), implying spatial consistency
throughout the testing period. The test results for STEP-LG were the same as for STEP-NG.

Figure 8. Retrospective L-Test results for daily (triangles) and cumulative (red lines) tests for (A) STEP-LG and(B) STEP-NG. The models were not rejected at
the 0.05 significance level, indicated by the gray bar (effective value of  0.025). The spatial consistency improved with time, as indicated by increasing cumulative c-
scores. Slight differences in the daily tests were observed, due to the difference in the number of  forecasted events; examples are seen highlighted in red rectangles.



contribution; nevertheless we recognize the intrinsic
uncertainty in such an estimate. 

The issue of  deciding the best way to estimate the
stationary component for a time-varying daily forecast
model is probably best approached by prospectively testing
long-term time-invariant forecasts, as was followed in the 5-
year CSEP experiments. We have chosen an approach that is
simple, although probably imperfect. The novelty of  this
method with respect to a past implementation [Frankel et al.
2002] was optimization of  the kernel width by performing a
set of  retrospective tests with different smoothing length
scales. The kernel width that gave the best performance in
terms of  the ASS misfit statistic [Zechar and Jordan 2008] was
chosen as the optimal one (Table 2). The choice of  the kernel
width was objective; the choice of  the data was subjective.

For both of  the STEP-LG and STEP-NG implementations,
the triggering main shock magnitude was set to ML = 3.0, as
the probability of  a foreshock to trigger an earthquake of  one
magnitude larger increases by up to 4%, and might be smaller
by a factor of  one hundred, depending on which model is
used [Michael and Field 2009]. The parameters for both
implementations were based on the analysis of  earthquake
sequences with main shocks in the range 4.0 ≤ ML ≤ 7.0
(Figure 5A, B). Thus, the extrapolation for k(Mm) ≤ 4.0
contained uncertainty that was not well constrained. The
parameter value estimates for each implementation also
contained uncertainties due to the methods used to
determine the completeness and declustering of  the original
catalog. Gasperini and Lolli [2006] applied the Reasenberg
[1985] approach, while we used the STEP clustering
approach. A sensitivity study of  the influence of  these
uncertainties on the forecast results, as well as a thorough
uncertainty study on the parameter value estimation, has yet
to be performed.

We chose the parameter value estimates based on the
period from 1981 to 2002, considering only sequences above
ML ≥ 4 (Figure 5) because the results of  the clustering process
of  the sequences in the magnitude range 3 ≤ ML ≤ 4 might be
biased; there are probably many sequences that should be
associated with the background seismicity, thus increasing
the productivity parameter k, although it should be smaller.

From the magnitude dependent k-value (Figure 5B), we
expected the STEP-LG model to provide in general higher
seismicity rates than the STEP-NG model. Small magnitude
contributions are more frequent and thus have a stronger
influence for long periods on the daily forecast than larger
magnitude events. In the case where a large main shock
occurs, its influence on the large event prevails for some time,
as can be seen in the retrospective testing results (Figure 6).

We retrospectively tested the implementations for a
period of  906 test days, starting on January 1, 2007, in
accordance with the procedures that are used in the one-day-
testing class. We applied multiple testing procedures, as used

in the CSEP test centers, and also test statistics that can be
included in the testing center software [Werner et al. 2009,
Zechar et al. 2010]. The modified N-Test results showed that
overall, the rate forecasts of  STEP-NG were superior to those
of  STEP-LG (Figures 6, 7). Both of  the models were spatially
consistent with the observed data; forecasts were not rejected
in the S-Tests (Figure 9). The models were also consistent
with the data when considering the space-magnitude
distributions for the normalized and non-normalized L-Test.
(Figure 8).

The 2009 L'Aquila sequence illustrated the influence of
a moderate earthquake on the performance of  the models.
The largest shock occurred on test day 827, which was clearly
seen in Figures 6 and 7, with the burst of  ML ≥ 3.95 events.
Both of  the models showed increased rates due to the
foreshock activity that started about 7 days before (test day
820) with a sequence of  ML ≥ 3.95 events, but both
underestimated the occurrence of  successive earthquakes for
this sequence (Figure 6). The low forecast rates were due to
the definition of  the retrospective testing class, restricting the
models to update only every 24 hours.

The L'Aquila event occurred on April 6, 2009, at 1.32
a.m. (GMT). The forecast based on the seismicity to test day
826 did not include this information, only the information
of  the foreshocks. The forecast for day 827 did include rates
due to the largest shock, but it only forecast the rates from
midnight on April 6, 2009, to midnight on April 7, 2009. The
models in essence missed the chance to forecast seismicity
in the period of  April 6, 2009, 1.32 a.m. (GMT) to 0.00 a.m.
on April 7, 2009, which is actually the period where most of
the events should occur according to the Omori-Utsu law.
For testing forecasts, it is thus important at what time an
event occurs. In other words, the forecasts are sensitive to
when the forecast period starts [Helmstetter et al. 2006]. For
the existing implementations, a best case scenario is a strong
event occurring shortly before midnight of  any day; a worst
case scenario is the occurrence of  a strong event shortly after
midnight. Updating forecasts more frequently or after each
earthquake that is considered to trigger further events would
reveal the actual capabilities of  short-term forecast models.
However, testing these forecasts becomes more complicated
as the duration of  the forecasts and the updating periods
would become variable.

Both implementations provided short-term rate
forecasts that can serve as the basis for time-varying hazard
information. To provide up-to date information on the
probability of  exceeding a specific ground motion measure,
a full hazard computation is required [Gerstenberger et al.
2005]. We suggest that for best performance this type of
short-term forecast should be updated more frequently, and
ideally immediately after an earthquake has been detected
by the monitoring system. If  communicated to decision-
makers, the media, and the public in the appropriate

BUILDING SELF-CONSISTENT STEP MODELS

152



153

language, information on seismicity rates and seismic
hazards can promote a better understanding of  the time-
varying earthquake hazard before and during a strong
earthquake sequence.
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