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SUMMARY. - Because of the similarity between the equations of mo-
tion governing infinitesimal vibration due to a small perturbing force super-
imposed on an already existing state of finite stress and the equations of
linear anisotropic clasticity, methods of analysis used in one may be extended
to the second. In particular, in this paper, the technique of ray expansions
is considered.  Methods for caleulation of rays and amplitude coefficients
of the ray series are given. A scismie ray is described by a system of or-
dinary differential equations of first order which can be solved by standard
numerical techniques.  Another system of ordinary differential equations
is introduced to compute amplitude coefficients.

Riassunto. —- Per la similarita che sussiste (ra le equazioni del moto
che governano le vibrazioni infinitesime dovute ad una piceola perturba-
zione sovrapposta ad uno stato pre-esistente di sforzo finito ¢ le equazioni
della elastieita lineare anisotropa, metodi di analisi usati in un caso possono
essere estesi all’altro. In particolare, in questo lavoro, si considera la {eoria
dei raggi. Vengono dati metodi per il caleolo dei raggi e dei coceflicienti di
ampiczza. Un raggio sismico ¢ deseritto da un sistema di equazioni diffe-
renziali ordinarie del prim‘ordine che pud essere risolto con teeniche nu-
meriche standard. Un altro sistema di equazioni differenziali ¢ introdotto
per il caleolo delle ampiczze.

I. INTRODUCTION
In connection with a more detailed study of the seismic source

mechanism and the structure of the Bartl’s crust and upper mantle,
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great attention las been devoted to the consequences of the fact that
the Earth is in a state of pre-stress. This state is attributed to a num-
ber of causes, such as self-gravitation, rotation and tectonies (8:12).

We have recently derived a theory of small deformations super-
imposed upon large ones, suitable for the study of the seismological ef-
fects of the existence of such a pre-stress. The field equations are
obtained by postulating energy balances and imposing invariance under
rigid body motions (3). The equations of motion turn out to be formally
equivalent to those of linear infinitesimal anisotropic elasticity, al-
though the elasticity tensor, in our case, possesses only the major
symmetry. Because of this similarity, some methods of analysis used
in infinitesimal anisotropic elasticity may be extended to our theory
of pre-stressed media, In particular, in this paper, the technigue of
ray expansion will be considered.

The theory of ray series has been well developed for isotropic
media and has brought about a number of very valuable results ().
It was first applied to anisotropic media by Babich (2), who derived
differential equations for the wave fronts and the amplitude coef-
ficients of the ray series. Babich’s approach has been reformulated
by Cerveny (¢) who has obtained a system of equations which allows
numerical solutions by standard procedures.

From the viewpoint of applications in seismology the kinematic
description of elastic waves and the caleulation of the zeroth am-
plitudes of a ray series is of great importance. Some results in the
description of wave processes in special cases of anisotropic media
have been given by a number of authors (29).

2. KQUATIONS OF RAYS IN PRE-STRESSED MEDILA

In our analysis the motion will be referred to a reference con-
figuration and to a fixed set of rectangular cartesian axes. The bhody
in the reference configuration is assumed to he homogencous and the
coordinates of a material particle in the reference configuration are
Xy A 1,2,3 with respect to these axes. In the subsequent motion
of the body this particle has coordinates .y,

I AT =N ¥ (A\V_.“ {)

In order to distinguish between the umperturbed motions and the
perturbed ones, the terms “primary™ and “secondary™ state will be
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employed. In our intentions “primary” means “prior to the ocewr-
rence of an earthquake”. When referred to the primary configuration
the linearized equations of motion for a pre-stressed hyperelastic
medinm are (3):

(dijrr Wri)yy + 0 (F¥i— i) = o iy [1]

where w; are the components of the displacement vector field; F*;
and F; are the components of the body forces in the secondary and
primary state, respectively; o is the mass density. A superposed dot
denotes the material derivative, while partial derivatives will be de-
noted by a comma preceding a subscript.  The elasticity tensor diju
is given hy:

dijir = 11 0ie + Cijre [2]

where ¢;, is the pre-stress tensor. di possesses only the major sym-
metry:
(lij};l = (“~1.‘j [3]

which is intimately connected with the assumption that the considered
modium is hyperelastic (11).  Moreover, ¢ijx possesses the following
symmetry properties:
Cijet = Crrij = Cjirt = Cijtk [4]
We shall consider the case when the difference (F*; — F;) is
equivalent to a point impulsive force acting at the origin. The equa-
tion [1] is replaced by:

((li“-z 1(/.-1),j — 0 ﬁ,‘ = () [7)]
for t > 0 and x # 0, together with suitable initial conditions. The
solutions of the equations of motion [5] are sought. These solutions
are non-analytic along certain moving surfaces which are called wave-
fronts. A wave-front will be described by the following equation:

{ =8 (x) : (6]
then [5] can be solved by assuming a ray series solution of the form:

Wi, ) = 2 A" (x) B (t— 8 (x) [7]

w0
where the functions F,(u) satisfy the relation:

l””n+l (/—‘) el l”‘" (/-l)
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The ray series includes, as we have already pointed out, solutions
which are discontinuous at the wave-fronts. It follows from [8] that
the order of discontinunity of X,,, is one less than that of K, DBy
substituting [7] into [5] and writing &; for N,; we get:

Z (1”/.-1 :’11,-_1“" (.I,’{) I, (t —N (\)) + (1,')'“ 71.; [1,..',(") (.'I‘i) -+

"o 0 y J

+ (A (7)) diggo ha)y 5 | B2 (E— N (X)) + (Art (e3) dijir Iy hy)

Eus (t — N (X)) ; =0 3 A (1) B (t — N (x))

" )

The summation can be eliminated and the latter equation can be
cast into the form:

N (Am) — M (A=) 4 I (A=) =0 [9]

for n = 0,1,2. .., and AtY = Ac2 = 0, by the definition. The vector

operators L, M and N are given by:

NG (A = P g — A (10a]

M (AmYy =0 Vhydier A+ 0" (digrr by A0y, [10D)]

L, (A) = o U(dix Axt™),; [10¢]
where:

P == 0 Y (b hity 4 hi by eijn) [1T1a]

i — N, [11D]

The system [9] is the basic system of equations of ray theory for a
pre-stressed medium. It can be used, when certain initial conditions

are given, to determine N(x) and A© (x). The system is recurrent.
For n = 0, 9] reduces to:

(Fje —8j0) itr — 0

which represents a system of three algebraic equations for 4.,
A2, A0 The form of [12] leads us to consider the eigenvalue
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problem for the matrix ", This matrix is symmetric and positive
definite and its eigenvalues are then real and positive. They can be
determined finding the roots of the characteristic equation:

])Gt (P;k — H 8];.-) = () [13]

and will be denoted by Hu,m = 1,2,3. H, | h,x ) are homogeneous

functions of the second order in h.
If the three H.’s are distinet, the corresponding eigenvectors

@) can be determined from the equations:

(P}k — Hm 6}}.‘) gk('") =0

where no summation is intended over m.

We can say the svstem [12] has a non-zero solution only in the
wase when any of the eigenvalues of 'y is equal to one, i.e., if the
H,'s are distinet, {12] has a non-trivial solution only in the following
three cases: Hy =1 and H: %1, Hs #1; H: — 1 and H, # 1,
Hy #1; Hy -~ 1 and H, -4 1, Hs 1. The equations:

H, hxi=1 m=1,2 3, 1151

are non-linear partial differential equations for s xJ, which describes
hus, in a pre-stressed medium,

the propagation of a wave front. T
with dije and its derivatives continuous, three independent wave-
fronts can propagate. One of them corresponds to the so-called quasi-
compressional waves, the others to two quasi-shear waves. These
wave fronts are generally independent. In the degenerate case of
two identical eigenvalues, there will be only two independent wave
fronts. This result has been already obtained in an independent way
by Boschi (*). The three equations [15] can be solved by means of
the characteristies (7).

We have already pointed out that H.,'s are homogencous func-
tions of #i: thus Euler's theorem on homogeneous functions apply

to find:

. DHIH :
2 Hn hi l“]
b]l,'
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Equation [16] allows us to obtain the equations of the characteristics

in a easy way. We get:

(l.r,- . 1 Dilm 1.
AT R Y [Teal
b’i 1 bilm .
o= [1¢b
2 o

In the system [17] the expression for H, is complicated because H,
is solution of a cubic equation. Fortunately we do not need the analy-
tical expression for H,, we need only the analytical expression for
the partial derivatives of H,, which can be found from [13] by means

of the theorem on the implicit functions. Thus we obtain:

D:’II Dal'/,j,-k ],1) o mo 1,23 [18D]
where
Dy o= (M2 — 1) (Tag — 1) —— [y
Daz = (IMi— 1) (Faz — 1) -— 171y
Dag = ('ii— 1) (22 = 1) - [T-i»
Dig = Doy = Ty Pag — (Fag — 1) i [19]
Dis Da= TMalay — (e — 1) Tia
D2y Dae = U2 iy — (v — 1) oy

D tr (])j/.-)

We will give in the Appendix the explicit expression of each term Djy
as a function of the elasticity tensor and the pre-stress. From [11]

we deduce that:

hl, ”; =1 (ll.‘j}.—l + d 7!1 [2()21]
ohi b :
RINTS . o

A o Vidiesi i hs [20D]

b.l',-
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[18], [19] and [20], substituted in [17], give:

D

D
D [21Db]

= — dugsi bt hs

Equations [21] are the final system of ordinary differential equations
for the characteristics of [15]. [21] are also the equations for seismic
rays in a pre-stressed medium. In order to solve [15], we must know
six initial conditions for x; and h; at time { = 0, namely:

.'I'i(()) = Iy ['.).‘.Zil']
hi(0) = ki [22Dh]
rioand by must satisty the relation:

Ho by i) =1 m=1,2,3. [23]

The parameter along the ray is § = {1, and, for each ¢, h; and r; must
satisfy [21].

3. AMPLITUDES OF FIRST RAY TERM
Let us now investigate about the amplitude of A©@. Tor sake
of simplicity we assume that the three eigenvalues H. of the matrix

" are distinet.  A@ must be in the direction of one of the gom  thus
we may write, dropping the subscript m,
—

At = @) o [24]
where @© is the amplitude of A®@ that we now want to calculate.
Equation [9], for n = 1, gives:

N (o) —atam) = o

(ijer by by — 0 dix) ApH) — { oV hydprg Ay +

-} 0 lllijkl,j hy A g + 0 ! (l/j“ /H,j Ar@ -+ Q'l (IUM 7!; A ) pr § = 0
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If we now contract this equation with ¢, and replace A@ with p© g
we obtain:

2 diger g gr M @O, + @@ (dijkr gi g heg) = 0 [26]
were use has been made of the symmetry properties of dym. Now
we shall simplify this equation showing that the direction of ditferen-

tiation is along a ray whose equations are [17]. [f we consider the
two equations:

G (dijrr Iy by — 0 (SIA) gr — O

i, x)=1 (27
we see that both represent the same surface in k-space, thus we can
obtain two expressions for the normal to this surface at the point h:

hence, for some scalar quantity o:

= =2 411]“ i (/A 714( I'.).S]
oh; i

By contracting this equation with %A, the homogeneity of Hln ,x)
leads to:

== 411/“ g5 yr hily =0 [29]

The ray derivative can be written as:

d
=v - 30
dN ¥ [ I
where
W 7 - .
0oV — AN = llum i g5 gr [-‘H]

We have already identified S, the parameter along the ray, as f; v is
then the velocity along the ray. KEquation [24] now reads:

1 (p(o) (v -0 V\l =0 I";‘-)'l

dN ' 2 0

which can be directly integrated to give:

P () = ) (%) exp

[ . (\—, : ' [33]
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Thus we have obtained the time-dependence of the amplitude of the

—
first term in the ray expansion of u; (x,f). A similar procedure can
be worked out for higher order amplitwdes and, doing this, several
complications may occur in the caleulations. In most cases, indeed,
the first term is the only one we need to consider in detail since it is
the most relevant.

Equation [32] is often referred to as the transport equation and
qan be interpreted, in the linear theory of elasticity, in terms of con-
servation of energy.

First of all [30] tells us that [32] is equivalent to:

av | o (@@)yv [ =0 [34]

and hence:

o (@@)v . -ndXY 35
q

for any surface X with normal n. If Y is the surface of a ray tube

we conclude that [(o (p@)2 v - n) dX] is constant along an elementary
ay tube with cross section dX. Let us now consider a volume T,
in the primary state. This volume is T7 when the pre-stress is applied
and then, during the action of a perturbing force, the total strain
energy is:

du; N .
0 = A , . 2
WA+ v ar, [36]
Vs
where A1 are the deformation gradients and W = W(I,,I2I35) is the

strain energy function. From [36] we obtain:

AV dut dit .
() - Ty T llyl) 3—
A | N, ( [37]
Vo

The integrand of [37] can be expanded to give:

hERYN 1
O 4

(n) EAW

a DAI ia o b“'(;‘ ()Al A VARG

ai, [38]

Remembering that Ty in our case is the Jacobian of the transtormation
xrio=ri 1), we can utilize in [38] the well-known relations:
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fsq dV, =dVv

U4 = Wiy Aja [39]
A -
tiy = Tu Aja

to obtain:

...(..) = t 1.,° ux 44 A 4’1 . i ! Wi, dr 40
’ j tj + 3 kol 4 o oclia 0den ) ! | |
v

Finally we observe that the second term in the integrand is an alter-
native expression (12) for the tensor dix and hence the last equation
becomes:

= ’ (L) + digir wr,1) we,y AV [41]
iv

ou-AaV

R

is the kinetic energy, the total change in energy is:

I = ’ (g ey 4 diger Wi ey + o weit) dV [43]
v

Equation {1] and Gauss theorem transform [43] into the

E = ’ tiywe nydS 4+ ’ 0w (F% — F)Y AV + | digr gt ng dS
N i N [44]

Each term of [44] can be easily interpreted: the first integral is the
ate of working of the surface forces on N due to pre-stress; the second
term refers to the work of the difference (#*; — F;), which is the only
meaningful quantity in the theory because it is hard to imagine a
realistic method which could give the absolute value of F*; or F;
separately. The third term represents the rate of change of the in-
cremental energy flux.
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4. A PROPERTY OIF RAYS IN PRE-STRESSED MEDIA

We want to show that the rays, whose equations are [17], are
extremals of a certain line integral, i.e. that:

! ds
I = ’ 45
. [45]
is minimum when the path of integration is the ray [17] connecting
the two fixed points x, and x,. We denote by t(y)the tangent at the
point y of L. To calculate v( x,t ) we consider the ray along t(y );

equation [17a] gives the direction of the corresponding h(y); the cal-

culation of » x, t) follows then from [31]. If we write x = (x,y,2)
and if we consider x as the ray variable we have:

I-= ’ r{x, t) 1 (1 + y=2 4222 de [+6]

Euler's equations must be satistied for the integrand to be a minimum
along the path of integration. These equations can be combined and
written in an elegant form as:

d 1 - 1 de ¢ -
[ L 17
dN b 2 5t ) v [47]
where:
5 d - (=
R
St hls ol

is the normal derivative. We want to write down [47] in terms of h

and H instead of ¢ and t. Now hix,t/and ol x, t) are defined by
equations [15] and [17a], i.e.:
dH
2y .t = [48]
dh

H(h,x):l [49]
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and, for the homogeneity of Hix,h ), we get:

t-h] =1 [50]

Since these equations are wvalid for all x and for all unit vectors t,
the differentiation of equation [49] with §/3f gives:

87!} ey -
t, L =0 ol
! St [51]
and of equation [50]:
bi =vt—r*h [52]
3t

[51] and [52] can be used to write equation [47] in the form:

dh .
53]
ds
But, again from equation [50], we can get:
0 1 dh )
- ( ‘ J [54]
dr; T i
and, from [49],
H 2 ( hj )
dri ),, 2

Combining now [53] and [55] and remembering that ds = vdN we
obtain:

dh dH (56|

- D14
dN )
i.e. we obtain equation [17b], which is satistied only if L is a rayv. Thus
we have shown that I, the travel time between @, and ay, is minimum
only on a path whose equations arve [17].
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APPENDIX

We give here the explicit expressions for each of Dy, as a fune-
tion of the elasticity tensor. From [2] and [11] it follows that:

D —1 402 { (tyehshd)2 + tphghahehs (C2ras 4 Carss) 4 C2p20 Carss
— (C2gm hyl)? } —o?! { (2t + €220 + cajar) byl }

D=1+ o2 { (Egehsha)? + tpdhdichs (s + Carss) 4= €1t Caras Reshihehs +
— (Cxpm hjha)? } — { (2t + e+ eagse) byl }

Dag =1+ 02 { (tshihd)? + tpdighahehs (Ciris 4 Car2s) 4 Crpre Caros hyhidichs 4
- (erj hjha)- } —o0! { (2850 + e 4 ezp20) shy }

Dy — ()“2{ Teshalichs (€1yse €2rss — L0 Cirzs — €331 Cyras) } + o7 erge iyl
Dy =g - { Reghihichs (Cry2e Carss — Tyt Crras — €2yt ('lr:ls)} + o7 eygar hyhy

Doy =0 '{h‘j’llhrhs (Cry21 Crrss — g1 C2r35 — Cry1e (‘-_'r:u:)} + o7t eapa bl
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