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Summary. — The effect of the friction has been studied on the one 
dimensional motion of a viscous fluid. This friction is usually schematized in 
various semiempirical formulae. In t-liis work the different scliematizations 
of the friction were not studied separately but it was shown tha t a solution 
exists for the fluid motion. The results give information on the damping of 
the fluid motion in the case of the seiches. 

R iassunto . — Gli effetti dell 'at tr i to nel moto di un fluido non possono 
essere t rascurat i nello studio di molti fenomeni geofisici. Le origini di tali 
a t t r i t i sono riconducibili a vari effetti fisici che normalmente vengono sche-
matizzati in diverse formule semiempiriche. Sulla base di una schematizza-
zione del moto di un fluido lungo una sola dimensione si è determinata la 
soluzione dell 'equazione del moto, considerando le varie forme di a t t r i to 
agenti contemporaneamente . I r isultati danno informazione sullo smorza-
mento del moto del fluido e sul peso relativo dei vari at tr i t i . 

T h e e f fec t of t h e f r i c t i on in t h e m o t i o n of a fluid, e.g. t h e sea, 
c a n n o t b e neg lec ted in m a n y geophys ica l p h e n o m e n a . I t s or igin can 
be r e l a t ed to va r i ous phys i ca l effects , so one usua l ly p re fe r s t o schema-
t ize i t in d i f f e r en t s emiempi r i ca l f o r m u l a e . I n a p rev ious w o r k (6) 
s o m e of t h e possibi l i t ies of s c h e m a t i z a t i o n fo r t h e one d imens iona l 
m o t i o n of a fluid h a v e b e e n s t u d i e d . P a r t i c u l a r i t y of t h i s work has 
b e e n t h a t t h e s e effects were n o t s t u d i e d s e p a r a t e l y b u t i t was shown 
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t ha t a solution exists if one considers also a different type of scliema-
tization. 

In formulae the ell'ect was related to the non-linear differential 
equation: 

~i>2tt u — <j i>2
xx [u • li (x)] = v t>-xx u — £ Z u\u\a + f (t, x) [1 ] 

a = o a 

where the symbol u denotes the velocity of the fluid at x = const, 
section of the channel, the surface of which is h(x) t he coefficient v 
is characteristic of the v \ u type friction while y a is the one related 
to y u u \u\ a friction, / is the symbol of an external force, in our case it 
could be the wind. In [1] the boundary condition are those of an open 
and semi-closed basin. We have also considered, on the basis of com-
mon sense, t h a t the roughness of the bot tom may be considered as a 
origin of a friction the which is not possible to be seen through the 
usual numerical studies t ha t utilize computers. So we have preferred 
to t reat a flat bot tom case which allows an analytical t r ea tment of 
the formulae. In this way we have supposed tha t the surface of the 
section x=x0 has the value: 

h (,T0) = h (x0) + d siny.r0 [2] 

with two small values of <5 and y. One can intuit ively say t h a t this 
roughness increases the turbulence and then it renormalizes the above 
mentioned coefficient. 

The purpose of this work is to pu t into a comparison these effects. 
We use analytical methods which in some cases are richer with infor-
mation than the purely ones. Therefore we limit ourselves to a flat 
schematization h0 of the Adriatic Sea. The method used, because of 
the smallness of the v, d coefficients, can be the first order pertur-
bation of the free motion. Obviously this method gives some information 
for not a long period of t ime. We will discuss the results in the 
conclusion. 

1 . - T H E P R O B L E M A N D ITS E L E M E N T A R Y S O L U T I O N S 

In order to simulate at our best the Adriatic Sea, despite our flat 
hypothesis li(x) = h0, we use the Defant ' s boundary conditions. I t 
implies t ha t for the first and third seiches the channel is closed 
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at Venice and is opened a t Otranto. For the second seiche, a t the con-
t rary , the channel lias to be considered closed both at Venice and a t 
Otranto. We then consider two main cases: the effect of the friction 
on the free motion of the water and the effect of a strong wind on a 
quiet sea. As for the wind, we have assumed, in this case, also an 
"ad hoc" shape for semplifying calculation. We suppose t h a t the wind 
star ts suddenly a t t = 0 and the force is more relevant a t Otranto 
t h a n in the nor thern pa r t of the basin: 

( 0 ' < 0 , r 
1 {x> I) = 1 0 sin HL ( > 0 > - = i 

Having considered these schematization, we s ta r t by discussing 
the first case. 

1 . 1 . - M O T I O N A N D F R I C T I O N O F T U B S E I C H E S 

W e repeat here the equation 

1 a 
S2« u — g ~i2xx[h (x)-u] = v S« h xx u •—S X ^t u\u\ [1] 

u a
 "a 

If we impose tha t the basin is closed a t Venice and opened a t 
Otranto, the surélévation is zero, we obtain: 

U (0, t) = 3* 11 (X, t)x-L = u (L, t) = 0 

for the odd order seiches. I n the second seiche case we have: 

u (0, t) = u (L, t) = 0 

We then proceed by supposing, as described in the first paragraph, 
t h a t S, v and y_a are small parameters , of order e. We then develop 
our equation in power of this e parameter . For t he solution, we have: 

U = Uo + £ Ml + £2M2 + • • • 

For e = 0 we have for the odd order seiches: 

S2» Uo — gho Wxx Uo = 0; Mo(0, t) = DxUo(L, t) 

which solution is also for the second seiche case: 

Uo = A sin x cos \n (J~ n = 1 , 2 , 3 [2] 
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We now schematize the frictions as an effect t h a t starts at <=0 
in order to make clearer the difference between the frictions and the 
free motion. For u = ua + eui, we have to t ake into account the pro-
perties of 11 „: 

D2ttUi — (jlioV-xx ui = F(u0)\ ui(x, 0) = ~bxiii(x, 0) = 0 

where 

F (Me) = g D2xx (u0 (5 sin y x) + v S< ua —• 2 « Z { u° ' I u° l" } 
o "" 

In the following we put a = 1. The case a = 0, which is also 
among the most interesting ones, can be easily deduced from calcula-
tion. We deal now with the well known inhomogeneous wave problem. 
We will follow the Courant-Hilbert 's classical scheme (4). We develop 
at the first 

F (uo) = Ax sin fix • /*(<) 

Then we make easier our problem by remarking tha t we can say 

u = £,Tk(t) sin/9 FT» 

where the unknown Tk(t) are determined by 

} a2,, Tk(t) + g ho /V Tk(t) = fk(t) 

j TA-(0) = a t Tk(0) = o 

We then know tha t 
t 

sin | g h018k (t — s) fk(s) ds Tk(t) = -
ßk | g ho 

and it implies tha t 

u = £fc sinßkX • Tk(t) 

1 . 2 . - E F F E C T OF T H E F R I C T I O N W H E N T H E W I N D M O V E S T H E W A T E R 

We study the case of a semiopen channel in rest at t 0, when 
suddenly the wind produces an external force: 

(0 t < 0 
f (x.t) = { r . x 
' v ' ' ) 0 sin — t > 0 

also in this case we will s tar t bv leaving aside the friction. 
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Tlie motion equation is given by 

32ÍÍWO — gho t>2xx u0 = $ s i n — 8 (t) 
A 

the solution of which is 

0 t < 0 
Uo ( X , t ) = { , . X . t ^ n v ' ' 11 $ sin — sin — í > 0 

I A t 

Because of the remarkable similarity with the previous case, we 
will use also in this case the above described method to solve the equa-
tion at first order in e. 

T H E A N A L Y T I C A L R E S U L T S 

For the first seiche we have 

F(uo) = j g ô y + y j 

— y 
i \ 2 

A 
cos 

c o s 

t 
cos — 

t 

Y + J Ì * + 
vA x , t 
— sin — Sin h 

A 2 r A r 

A2 { 2x ) . 21 cos tir ZoA . x t 
7,1 — { cos —r 1 > sin — —— -j sin — cos — 

r ( A ) r |cos t¡r\ r A t 

One may remark tha t the first term is related to the roughness 
of the bottom. I t is proportional to <5 and it contains the y coefficient. 
The second part is related to the laminar friction in the a = 0 and 
a — 1 cases and provides the last two terms. We remark here tha t in 
this case the a = 0 part of the friction is proportional to the laminar 
friction, we will then not discuss it any more. We now describe F(u0) 
as S/t-l/t sin (fikX + (fk) • fk(t) from which it follows: 

Ai = 4" 9 à ( y + T ßi = y + 
71 

; «pi = 
, t 
fi = cos 

t 

A 2 = — — gò\y — ß* = y <p* = T ; A =cos T 
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vA 
A2r 

p 3 = 9?3 = 0 f3 = sin 

A. = — Xi 
A* 

A s = Xi 
A2 

A - X 

ft = 0 

n 
<P* = 77 

n 
<Ps = T 

/4 - sin 
2í eos t/x 
x |cos t¡x\ 

. 2 í eos t/r 
h = 8111 7 l ^ b i l M 

yl0 = Zo 9?« = 0 f» = sin 

Then 

M = A sin — sin — + Ss-JU sin (fax + <p*) T¡,- (í) 
X T 

where 

1\ 

Ti 

gho 
i \2 1 ( t gho y + X 

cos — 
( T 

gho 
( i \2 1 ( t 

— gho [ y - X 
< cos — 
( V 

cos 

V (y + y j í j 

V gho [y — j j < 

T t X- . t 
J 3 = t eos — + —- sin — 

" T •> r 

This last result is proportional to the effect of Xo. The function 
7',, and T5 are more complicated to describe in order to elementary 
functions. We must introduce the Sk time intervals: 

S0 0 < i < Si 
71 t 3 
— C — < — 71 

So 
3 t 5 

71 ^ — ^ — 71 
5 t 7 

S2 — JI < — ^ — TI etc. 
2 x 2 

Then in the 7f t h interval we have 

T 
T 4 = 

, , 1 . 2 1 t 21 
l)fc i — sin cos LE TI 1 2 x x x 

2< . 2 « 
- + sin 2 k n 

X X 
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For the second seiche, we can easily calculate the result by putt ing 
A r 

A -> — and r -*• — in the Tk(t) expressions. 

In the ease of a wind, in analogy with the free motion, the result is: 

F (Mo) =6 [y + y j cos (y + y j x sin ~ + 

, &x ( 1 \2 I 1 \ . t 0v . x t 
- d - r [ y - T ) C O S v ~ i ) X S M V W S M X 0 0 8 ~x + 

. 21 sin tlx 2x . 21 sin tlx sin — r— — — cos —i— sin 
x x |sin </R| T 2 A x |sin tjx\ 

from which we obtain: 

. _ T / 1 \2 . 1 t 
Ai=gò& — \y + — j ; ßv = y + y ; gpi = — ; fx = s in — 

= g d O J (y — J j ; ßt = y — y ; <p2 = ; /» = sin 

0 1 Í 
vl3 = r— r ; ß3 = -T- ; 933 = 0 ; f3 = cos — 

A- A T 

n r . 3t . . 2t sill tlx 
A i = - 0 2

X l x ; & = 0 ; * = - ;.,4 = sin - ^ J -

2 , . 2t sin t/r 
' ^ = T = 2 ; / 5 = S m 7 IsinW 

and the Tj.-(i) functions are 

2'i (i) = Jgho (r + y ) + 7 

sin V<7 Äo [y + y ) t + 

sin — + 
T 

2 *Jg ho [y — j 

gho ( r + j J -
i 

T2 

Vgho (y + T ) ~ 

sin 2 Vi/Äo 
1 \ 1 
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T2 0) = T1 (t) J J = > 

T3 (I) = — t sin — 

2', (0 = ; 
i 1 . 2< 

— sin b r 2 r t + T d — ( — ! ) " ) 71 (— 1)* 

r2 I 1 . 2t t 2t 
T . W = t ¥ s i n 7 c o s - 7c + - (l — ( — 1 ) * w (— 1)* 

We note here a difference between the effect of the roughness of 
the bottom (which gives results limited when t increases) and the two 
other cases, where the velocity increases in norm as t oo. In our 
opinion this effect is due to the main effect of the roughness: it gives 
many small movement but it doesn't decrease the kinetic energy. So 
we are encouraged to try and see the effect of a laminar friction vAu 
on this perturbation of the velocity. This friction should decrease the 
kinetic energy but not the amplitude of the effect, because the wave-
length of the perturbation is 1/y which is very large comparated with A. 
We study therefore the part of U\ which is proportional to <5, Ui to which 
we apply the rA operator. We obtain: 

m = A g 

cos — 
t 

r + j I cos \y + y I ® 

cos [y + y-) Vi7 t 
+ 

i \2 cos cos s \l() ho 

g-ho [ y - j J 
l 

T * 

thence 

Ui 
cc 

•• ft cos y x (Jh (t) + c sin ~ sin y x <P2 (t) 
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, A <7 Ô V 
= . - y3 

Vir/to ß Vif /to /t 

. , r~r- . sin 2 V? /to t sm3 Vi/ «o y t , , —, h 

/ 
H — cos 2 Vir /to y < + ghy3 x ' 

A g ôvy3 \ t 

t2 

*Jg /t o y 

•4 (Vi/ /to Y ) 3 R 

sin Vi/ /to í ? 

02 = — " /—-1- i z ~ cos Jq h0 y t — — : r sin Jg ha yt i 
c \l g ho (2^0/toy 2ghay2 A ) 

We remark tha t we have obtained velocities which decrease with 
time. Their numerical importance will be discussed in the following 
par t . We would like to add tha t one could intuitively assume tha t this 
linear first par t of a negative exponential, at least for the laminar 
friction term and perhaps for the others as well. 

3 . - N U M E R I C A L E V A L U A T I O N A N D F I N A L D I S C U S S I O N 

In order to evaluate numerically the relative weight of these 
results we have assumed 

L = 106 m v = 1.4 10"2 m2 s~l; y = 10~2 n r 1 

ho = 3 • 102 m A = 10-! m s"1 

g = 10 m s-2 Xi = 6 • 10"6 n r 1 

Zo = 10-5 8-i «5 = i m 

We then have 
Ad t 1 

M l = -2h7V + ; i \2 

X 

— cos ^y + J 1\ ( t 
X I cos — + 

cos Vir /to [y + y 1 t 

T3 

A ó 
2ho 

1 \2 

y — 

i 
'x2 

cos y + 

1 \ ( t ,—— I 1 \ ) v A T ( t t 
X { COS — COS Vi/ /to ly + y I t - COS y + 7. 

. t ) . X A21 , ( 1 . 2í t 21 
— sin — sin 7i — ; — (— l)fc - sin cos 

T ) I 4 ( 2 T T r 

, , 2 X A2 X { 4 t ( 2 t 
— hn } cos - y Xi — j — — + (— 1)* j — + 

+ 

• 2 t 
+ sin 2 Ten 

X 
Xo - , 

t t . X 
— cos — sin — 
X X A 
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the smaller scale motions which are strongly related to the bottom 
irregularities. 

Pig. 2 - The position a t Venice of the free surface f during 
t = T = 3h20m . I0 is the position corresponding to the velocity 

v0, | 1 ( to vt and f to v. 

The preceding statement is stressed by the fact that at the second 
order, the bottom roughness gives an internal friction the value of 
which can be larger than the corresponding first order quantity. The 
part of the friction which is proportional to v, the laminar part, gives 
a very small contribution to the general form of the friction, because 
the coupling constant is very small. I t has to remarked, however, that 
its analytical form is very closed to the part proportional to 7.0. This 
analytical similarity could give origin a bit of confusion in the interplay 
of these quantities, in any case we consider here the values usually 
assumed on an experimental field. We can also say that the term 
proportional to X0, usually called linear bottom friction, describes also 
the effect of the friction on the boundary layer. On these same ground, 
moreover, we can say that in the term proportional to 1\ the higher 
velocities give the more remarkable effect. If, however, one has not a 
flat bottom, one could expect that this kind of friction will give diffe-
rent effect for different depth h0. We expect this phenomenon to be 
important for a study of the real Adriatic Sea which is now in progress. 
We can also say that all the frictions by us dealt have a linear effect, 
because we have analyzed the first order of the perturbation expansion 
of the real friction. If we assume on physical field that these effects 

0 . 5 

O 
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are exponential, this hypothesis has some experimental evidence and 
we could also say that these terms are proportional to 

„, , „ „ , v At Ad ZiA^r, XoAr, — , — 

and at the second order, to 

A g 6 v y3 

g h0 
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