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SUMMARY. — I n s t e a d y s t a t e c o n d i t i o n , non - l i nea r l a m i n a r flow of 
f luid i n t o an eccen t r i ca l ly p l aced well is cons ide red . I t s in f luence on t l ic 
d i s c h a r g e a n d t h e d e p e n d e n c e on r e l a t e d p h y s i c a l q u a n t i t i e s is i n v e s t i g a t e d . 
I t is o b s e r v e d t h a t a s t h e well a p p r o a c h e s t o w a r d s t h e c o n t o u r of i n t a k e , t h e 
d i s c h a r g e increases , w h i c h is an obv ious r e su l t c o n s i s t e n t w i t h t h a t o b t a i n e d 
b y P o l u b a r i n o v a - K o c h i n a in case of l a m i n a r flow. As a p a r t i c u l a r case , 
r e su l t for concen t r i c wel l h a s also been d e d u c e d . 

RIASSUNTO. — Viene p reso in cons ide raz ione u n flusso d i fluido l ami -
n a r e non - l i nea r e — in cond iz ion i di s t a t o s t a z i o n a r i o — d e n t r o un pozzo 
d i s p o s t o e c c e n t r i c a m e n t e . Si è i n o l t r e s t u d i a t a sia la s u a i n f l u e n z a sul g e t t o 
che la d i p e n d e n z a da l le r e l a t i v e q u a n t i t à fisiche. È s t a t o o s s e r v a t o che , c o m e 
ci si a v v i c i n a a l c o n t o r n o dello sbocco , il flusso a u m e n t a , il clie è u n r i s u l t a t o 
ovv io , in acco rdo con q u a n t o o t t e n u t o da i r i c e r c a t o r i P o l u b a r i n o v a e K o c h i n a , 
nel caso di u n flusso l a m i n a r e . Il r i s u l t a t o r e l a t i v o a d u n pozzo c o n c e n t r i c o 
n o n ò q u i n d i che u n caso p a r t i c o l a r e del p r o b l e m a a f f r o n t a t o in q u e s t a n o t a . 

1 . - INTRODUCTION 

The intricacy in the nature of porous media does not always justify 
the natural flow of fluid through it to be purely laminar. However, 
it appears more justifiable to consider the liow through porous media 
to be either non-linear laminar or turbulent (J). Consequently Jain 
and Upadhyay (2), Elenbaas and Katz (3), Engelund (4) obtained specific 
solutions of some non-linear laminar and turbulent flow problems. 

In the present paper, we consider the non-linear laminar steady 
state flow of fluid into an eccentrically places well fully penetrating 
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the porous aquifer. I t is found tha t the flow pattern is characterised 
by two different zones, in which discharge exhibits opposite character 
as regards its dependence on grain size of the medium, viscosity of the 
fluid and radius of the well. Further , it is observed tha t as the well 
approaches the contour of intake, the discharge increases abruptly as 
compared to tha t into a concentrically placed well, which is obvious 
from physical considerations. 

The results for a concentric well have been deduced and compared 
with those obtained by Upadhyay (5). 

2 . - E Q U A T I O N S OF F L U I D F L O W I N P O R O U S M E D I U M 

The Darcy's law governing the laminar flow of fluid in porous 
media is 

Ah 
where v, k and —— denote the seepage velocity, seepage coefficient 

d o 

and hydraulic gradient respectively; flow being in the opposite direction 
of increasing h. 

In case of an eccentrically placed circular well fullly penetrating 
the cylindrical s tratum (radius R) of uni t thickness, the pressure p at 
any point with complex coordinate z is obtained in the form (6) 

Q/j. , R {z—zi) 
V = o 7 ~ l o 8 ' F T + 0 2 ] 2nk0 (it2—zz i) 

where Q, k0 and ¡i represent flow rate, permeability of the medium 
and viscosity of the fluid respectively; zi denotes the centre of well 
and zi is the corresponding inverse point. The constant G is to be 
determined by boundary conditions. 

Besides relations [1] and [2], the law for non-linear laminar flow is(°) 

~ = av + bv2, [ 3 ] 

where a and b are constants. According to Engelund (4) 
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2000 a 
a = ; , 

ggd2 

» = ^ 
gd 

M i 

M . 

q and d being density of the fluid and grain size of the medium. 

3 . - F O R M U L A T I O N O F T H E P R O B L E M 

In steady state condition, we consider the flow of fluid into an 
uncased circular cylindrical well of radius rw eccentrically established 
at a distance Ri from the centre of the contour of intake. I t is assumed 
tha t the well is completely penetrating the porous aquifer of thickness 
T. The aquifer is considered to be homogeneous and isotropic bounded 
by horizontal impervious layers. The pressure at the contour of well 
and at the contour of intake are prescribed as 'p w and pc respectively. 
Let r be the radial distance measured from the axis of intake. 

As the effect of non-linear laminar or turbulent flow is observed 
to be appreciable event if such flow is restricted to a comparatively 
narrow zone (4), we consider the flow to be non-linear laminar within 
a narrow cylindrical zone of radius rt surrounding the well and laminar 
beyond this zone. Let the pressure at the transition boundary is pt 
[Fig. 1]. 

Kg. l 

In the present situation, we have 

(«,) = (»,) = Ri 
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Therefore, expression for pressure distribution in the laminar zone 
(of. [2]) takes the form 

Qf* , R (r—Ri) . _ rK1 
P = L O G - Í M - T + C [ 5 ] 

The problem is to examine the influence of non-linear laminar 
flow 011 discharge of fluid and its dependence on the related physical 
quantities. 

4 . - S O L U T I O N 

As in the vicinity of well the lines of equal pressure are closed to 
circles, therefore, we assume the contour of well as one of the isobars 
close to the circle of radius rw (c). Along the boundary of transition, 
which is close to the contour of well, pressure pt may be obtained from 
[5] by using the boundary conditions 

p = pc at r = R, 

p = pt at r = Ri + rh (rt « Ri < R). [6] 

Hence 

^Z4 i R r> m 
~2nlcaT l 0 g R^R^ [ 7 ] 

Since p = qgli, pressure distribution in the non-linear laminar 
zone is obtainable from [3] as 

— ~ = av + bv* [8] 
gg dr 

In general, discharge Q from any cylindrical surface of radius A 
and height T is 

Q = 2 n I Tv. [9] 

Consequently, in this situation 

r = R1 + A, rw < A < r,, [ 1 0 ] 
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i t follows from [8], [9] and [10] tha t 

f t Ri-\-rt 
Q / - « J (£ bQ1 , , 

Pu Ri+r, 
[11] 

i.e. pt = p„ Q9 
aQ 

lo 
2J IT \ - R I + R 

Ri+rt\ , bQ2 

•in2T2 \i?i+r,„ Ri+rt 
[12] 

At the boundary of transition from laminar to non-linear laminar 
flow, the relation between critical Reynold's number f c = 0.07 and 
critical velocity vc is given by (") 

Q t « [ 1 3 ] 

dli 
where — as given by [1] and [3] yield the same value. Accordingly 

Vc m i b
 \ — = a vc (1 + — Vc), 

l{> a 

or, —- = 1.07 a. 
k 

Since k = — , it follows tha t 
i" 

JL 
ko 

= 1.07 agg [14] 

Using [14] in [7] and then comparing with [12], we get 

Pc—p„ 
~qìt 

aQ_ 
2tzT 

log 

+ 

Bi+n 
Ri+rw 

bQ2 

4n2T2 \Ri+r 

— 1.07 log 
Rr, 

R2—Ri2 

1 

Ri+rt 
[15] 

Combining equations [4]i [4], and [13] with [15], we obtain 

gd3 {pc—pw) 
H 2 r w 

8000 rt log 

+ 0.07 r, 

Ri+r, 
Ri+r„ 

— 1.07 lop 
Rrt 

R2-R,2 Í + 

(» ' i—r ,c) 

(Ri+r,c) (Ri+rt) 
[ 1 0 ] 
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If we assume purely laminar flow in the entire flow regio n then 
the flow rate Qu,m may be obtained from [5] by using the corresponding 
boundary conditions at the well and the counter of intake. Hence 

Q lam — 
2 nkT 

Q9 

iPo — Pw) 

lOR 
R2—R i2 

R rw 

[17] 

Therefore, from [13] and [17], we obtain the ratio 

Q = 8 5 6 0 ^ 
Q' rw [ q(P {pc — p,„) 

Introducing dimensionless quanti ty X and ratio Y such tha t 

gd3 (pc—pw) 
X = 

ju2rw 

Q 
Qlan 

[19] i 

[19], 

and combining [18] with [16], we obtain an implicit relation 

1.07 X 
XY 

Z 
i I B i , A " r 
l o g t + liEooz 

•log ( f + 1 ) + 

— 1.07 log 
X Y 

8560 Z + 

1.07 Z + 0.07 
XY 

XY 
8560 Z [20] 

8560 Z (Ri \ / Ri I I 
r,o + j1 rw 8560 Z 

where Z = log 
R2 — Ri 

R r,0 

I t may be inferred from [19]i tha t the value of X which is possible 
from physical considerations is X > 0 , hence equation [20] becomes 

g 
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1.07 Z = Y 0 1 ra 8560 Z 

— 1.07 log X Y 

8560 Z 

l o g g + l ] + 

+ 

1.07 Z + 
0.07 X Y 

8560 Z 

X Y 

8560 Z 
— 1 

Ih 
rw 

+ XY 
8560 Z 

[21] 

5 . - P A R T I C U L A R C A S E 

If Ei = 0 that is, when the well is established concentrically with 
respect to the contour of intake, equation [21] reduces to 

1.07 log 
R 

= Y 0.07 
X Y 

8560 log 
R + 

X Y 

— 0.07 log I Q _ n ( R 8560 log -
\ rw 

1.07 log 0.07 [22] 

which corresponds to the non-linear laminar flow of fluid into a fully 
penetrating concentric well discussed by Upadhyay (5). 

6 . - D I S C U S S I O N 

From [19]i, it is evident tha t X depends on the density of the fluid, 
grain size of the medium, ju'essure difference of the system, viscosity 
of the fluid and well radius. Since d and ¡i occur in higher powers in 
expression for X, they highly affect the discharge. Moreover, from 
physical considerations it is obvious tha t X and Y are both positive. 
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Now, to get tlie definite idea of the result [21], we take 

— = 3 • 103 tha t is the radius of contour of intake is 3000 times 
rw 

the radius of the well. Considering — = 102, the numerical values 
" r w 

of Y are obtained corresponding to different values of X > 0 and 
have been graphically plotted in the form of curve - I [Fig. 2]. 

I t is seen from curva-I tha t as X increases, initially Y increases 
till it attains a maximum value 2.16 corresponding to X = 1.2 691 -107, 
afterwards it descresases asymptotically. Thus in the former region 
O <X <1.2691 • 107, the discharge increases as X increases, tha t is, 
when the density of the fluid, grain size of the medium and pressure 
difference of the system increases, viscosity of the fluid and the well 
radius decreases. In the later region X >1.2691 • 107 the influence of 
non-linear laminar flow is reversed. 

Thus, it may be concluded tha t in case of non-linear laminar flow, 
the flow pat tern is characterised by two different zones in which, 
discharge exhibits opposite character. 
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7 . - COMPARISION 

To examine as to how the position of the well affects the dischagre 

into it, we consider the cases — = 0 and — = 10. These cases 
T w Tw 

have been graphically respresented by dotted curve and curve-II 
respectively in Fig. 2. Hence, it is inferred that as the well approaches 
the contour of intake the discharge increases abruptly as compared to 
that into a well concentrically established with respect to the contour 
of intake. From physical consideration, the result is quite obvious and 
consistent with that obtained by Poluberinova-Kochina (6) in case of 
laminar flow. 
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