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SuMMARY. — The reaction to perturbations at the bottom of a stably
stratified layer characterized by small periodical variations of the thermal
stability parameter and capped by a, less stable, semi-infinite layer has heen
studied. When resonance conditions for internal zero order waves (represent-
ed by solutions obtained neglecting the small periodical variations of the
stability parameter itsclf) trapped in the lower layer are satisfied, secondary
waves, generated by the interaction of zero order waves and the small varia-
tions af the stability parameter, turn out to be resonant too. Some infor-
mation can then be obtained on the localization along the vertical of con-
vective breaking (and turbulent patches) in the lower layer, taking into
account the superposition of zero order and secondary waves. These results
seem to be relevant for the comprehension of the dynamices of the atmosphe-
ric inversions as well as of the oceanic thermocline.

Rr1assunTo. — Viene studiata la reazione, a perturbazioni applicate
al fondo, di uno strato di fluido stratificato, caratterizzato da una piccola
variazione periodiea del parametro di stratificazione lungo la direzione verti-
cale, sovrastato da uno strato seminfinito di fluido stratificato pitt debolmente.
Viene messo in evidenza il fatto che, quando le condizioni di risonanza
per le onde interne di ordine zero (rappresentate dalle soluzioni ottenute
trascurando le piceole variazioni periodiche del parametro di stabilitd) in-
trappolate nello strato inferiore sono soddisfatte, le onde secondarie generate
dalla interazione delle onde di ordine zero e le variazioni periodiche del para-
metro di stabilitd, risultano essere anch’esse risonanti. Da questa analisi
teorica e possibile ottenere informazioni sulla localizzazione (lungo la verti-
cale) delle instabilita convettive (strati turbolenti) nello strato pit basso.
Questo risultato sembra essere rilevante per la comprensione della dinamica
delle inversioni atmosferiche e della termoclina oceanica.
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1 — INTRODUCTION

The reaction of a non rotating stratified atmosphere to external
perturbations is most commonly analyzed assuming the constancy of
the stratification parameter along the vertical direction. Layered
models are, as well, considered, the stratification parameter being
constant in each layer. The effect of vertical variations of the strati-
fication parameter on a length scale much larger than the vertical
wave-number of the perturbations is also studied making use of the
W.K.B.J. approach.

Experimental data show however how the thermal stability para-
meter pattern is characterized by variations on many length scales
along the vertical direction in the atmosphere as well as in the ocean,
particularly in those zones characterized by strong mean thermal
stratification (athmospheric inversion layers and oceanic thermocli-
nes) (13).

As said above, such small variations of the stability parameters
are usually ignored in the analysis of the reaction of a stratified atmo-
sphere to external perturbations. It can be shown, however, that the
role played by such small variations can become relevant, at least in
some particular cases. The case analyzed in the present paper is con-
nected with the dynamies of perturbed stable layers capped by a, less
stable, semi-infinite atmosphere and, in particular, with the dynamics
of wave trapped in the lower, more stable, layer and resonant to some
external forcing at the bottom. An analogous problem was treated in
a previous paper (11); in that paper however the effect ofsmall variations
of the stability parameters in the lower layer, which is considered here,
was not taken into account. The pattern of the thermal stratification
parameters in the stable layers could be properly represented by a
constant positive value plus a random funection; this case has been
analyzed theoretically by different author (21:5); and some results have
been obtained suggesting the important role played by such random
variations in the propagations of internal waves. As said before, we
are interested in a quite different phenomenon and the assumptions
that will be made are suggested by the particular problem considered
here.

Orlanski () has widely investigated the dynamics and the breaking
of resonant trapped internal waves in layers characterized by a con-
stant thermal stratification and has suggested that convective insta-
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bility is the most probable mechanism of breaking in this case. Our
analysis is fundamentally an extension of Orlanski’s analysis except
for some generalizations that seem to suggest certain important features
in the localization of breaking zones for resonant phenomena in layers
characterized by small variations of the stability parameters along the
vertical direction.

THE THEORETICAL APPROACH

The intrinsic difficulties of the analysis have suggested the use of a
simplified two-dimensional model for an inviseid Boussinesq fluid.
The whole fluid is considered at rest and the Brunt-Vaisala distribution
along the vertical (see figure 1) is given by:

N2 = N2 (1+esin pz) for 0<z<h

. [1]
N2 = N3 for 2 > &

R T T T e P

Fig. 1 - Sketeh of the theoretical Brunt-Vaisili frequency distribution (the
vertical scale of the oscillations of the lower layer is enlarged).
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It has to be noticed that N2 actually shows (as stated in the previous
paragraph) variations on many different length scales along the vertical
direction and that the form assumed for it in 0 < z < k means that
we take into account a single length-scale only.

The following assumptions are also made:

No>N,

e <1 (2]
27

h = mn i
Y

The first of assumptions [2] has been made in order to have the
possibility of studying waves trapped in the lower layer.

The second condition assures also the absence of gravitationally
unstable zones in the lower layer, while the third condition has been
introduced to avoid further mathematical complications in the theory,
without any loss of generality of the results.

A perturbation in the vertical velocity is also applied at z = 0
in the form

W/z=0 = W, exp i (kx — wi)

where & is the horizontal wave-number of the perturbation and o
its frequency.

Let us consider now the linearized Boussinesq equations in a stra-
tified inviscid fluid (the model being two-dimensional and the fluid
at rest):

op

o o

_ w op

Qo 2% )

%(2) [3]
—_ = —w e

ou RI)
w T =

where (u, w, p) are the perturbations in horizontal velocity, vertical
velocity, density and pressure.

0o is the average density of the whole fAuid.

0o is the average value of the density in a horizontal plane.
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Equations [3] can be combined into a single differential equation
for the vertical velocity; if we assume the following form for w (z, 2, t):

W (Z, 2,t) = w (2) exp ¢ (kx — wi)
equations [3] reduce to

d A
d(zz 4 k2l— — 11} w(@) O [4]

where N2 = — _L = is the squared B. V. frequency.
Qo

By the insertion of the expression of N2 assumed for the lower
layer into equation [4], we obtain

{ a | N N2
dz2 w

gsmyz| wz) =0 [5]

Equation [5] is a typical Mathieu-Hill equation that has been
widely studied (MecLachlan) particularly for time dependent pro-
blem. We prefer however to study it in terms of perturbative ana-

lysis to obtain a better insight of the physiecs. To simplify the analysis
V 2

. . N
without any loss of generality of the results, we assume 7?’4 > 1.
=

We further introduce the non-dimensional vertical coordinate

2" — yz. Equation [5] then reads:
1 kN . .
(1;'2 + 'wo_)j’; (I + & sin z): w(@) = [6]

As stated above, we assume the following form w(2'): we(2) 4+
wiR')e + ...

Zero order and first order equations in ¢ can then be written in
the following forms:

7 o(z’) =0 [7]

W (2) = —— Do(2) sin 2’ [8]
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It can be shown that the perturbation analysis produces useful
results as long as the following relation is satisfied (19).

£ < (pho) — 8 (y[ho)? (9]

where 1, = kN
w
In the semi-infinite layer (¢ > &) both zero and first order equa-
tions will have the same form of equation [7] with N, replaced by N..
The following boundary conditions are then applied:

Wo =— Wo
~ atz =0 10
W, =0 s (10}
- dw, L, da
the continuity of w., %, 01, o atz = n

dz

In the range Ni<w<N, the zero order solution will have the form
, Ao, LA
Wo(2') = wWo cOs — - 2" 4+ woT sin — 2 [111
Y

in the lower layer and

wo(2') = A1 exp — ;/ (" — n2x) [12]

in the upper layer where:

A, is an arbitrary constant that can be evaluated by the use of boun-
dary conditions [10]

po= k1 —
and T is a term defined by boundary conditions at z = &

Ao . A y!
2 sin 7> 027 — cos — n2x

T = A 4 [13]
Lo cos ~ n2x + sin =2 n2n
w Y

Let us now consider the solution of the first order equation in the
lower layer.
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The solution of the homogeneous part will be analogous to the
zero order solution and given by:

A2 cos o 2" 4+ B2 sin o 2’ (14]
4 14

and the full solution will be given by the expression:

2o e,
wy = A, cos — & F Basin = 2"+

+ a?

— W, $in (— + 1\ 2 — — w, T cos (— +1)2

1
— wo T cos | — [15]
2 \y

where 4. and B: are arbitrary constants, and

Jo
where « = —.
The first order solution in the layer above will have the form:
As exp — — (&' —n2m)

where As is again an arbitrary constant.

Constants A2, B> and As can be determined by applying boundary
conditions [10]; we obtain

Ao =— — T (at+ —a~)

()“’- — T) cos n27 + (1 Ty fo T) Sin w2z
© SR S [14]

1
By = (ar —a-) -—— wo .
Z , Ao R Lo )LO .
sin -- n2x 4 — cos — n2r
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Let us indicate the fraction contained in the expression of B:
by the simbol 8; the full first order solution then reads:

1 .
w1 (') = — — woT(a+—a~) cosa 2’ — — woS (a+—a-) sin a 2’ +

‘— W, 8in (a+1)2" — — woTcos(a—1)z’

+

1
+ a- ‘7 woT cos (a — 1)z’ 1o sin (a—1) 2’ [18]

Comparison of expressions [17] and [13] would introduce some
simplification for term §; the results of such comparison are however
quite obvious and we prefer to pass directely to the analysis of the
results given by zero order and first order solution.

By inspection of expression [16] it is easily seen that infinite values

for terms containing (a+ — a-) and a- can be predicted for ¢ = —;

this case corresponds to the well known “parametric resonance’ (3).
Expression [9], together with the assumption that s«1 in the lower
layer, implies that

— _ a<l [19]
Y

and the “parametric resonance’ is so avoided in our analysis.

If parametric resonance case is neglected, further inspection of
expression [18] shows how the amplitudes of oscillations of wavenum-
bers a, (¢ + 1) and (@ — 1), due to the presence of term T in their
expression, (term § for sin « 2’ is more complicated but its role can be
neglected for the moment) strongly depend on the amplitude of the
component sin (a 2’) of the zero order solution.

Let us consider expression [13]; it is easily seen that the argument
of the trigonometric functions contained there can be properly written
in the form

where lois the wave lenght of the zero order solution. This quantity does
not actually depend on y. Let us now consider the case in which T
becomes very large (two obvious cases can be studied in a very simple
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1o A
form for ‘L_L<<1 or —>1); the amplitude of term T (which corresponds
s

to the resonance of zero order (solution w,T sin az’)) implies that also
the amplitude of first order solutions and, in particular, cos (a-+1)
and cos (@ — 1), becomes large. DMore precisely, expression [13] can in
fact be written in the following form

22

h
th — 27 — -
loo to )»o

“ ﬁ+tn£2:z
Iz lo

and the following conditions must be satisfied to obtain infinite value
of T

o= —ptn lh = — utn (2z n

On the contrary for

Ao = p tn Ao b = utn | 27n —\
]
the eorresponding value of T is zero.

From the first condition it is easily seen that » must be large to
satisfy resonance conditions.

This is a fundamental request for the validity of our approach, in
good accord with assumption [19], that assures the validity of the per-
turbative approach. It can then be deduced, in the limits of pertur-
bative approach, that a small oscillation along the vertical direction
of N2 in a stable layer capped by a less stable semi infinite layer and
perturbed from below will give rise, in its trapping range (N¥N;<< w<<No),
to first order waves and, in particular, that, if resonance conditions for
zero order waves are satisfied, resonant zero order waves will force the
growth of first order waves. Some of this last waves will have vertical
wavenumbers (1, + v) and (A.—y) respectively. The final result must
then be represented by a superposition of the whole wave field.

3 — NUMERICAL TEST

To verify the validity of the analytical results given in the previous
paragraph, a numerical test has been developed. IEquation [6] has been
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i
Fig. 2 — Tourier analysis of the numerical integration of equation [6]
with ¢ = 0
'
+ /
Atr A, AT
TFig. 3 - TFourier analysis of the results of

(6] with &

o

numerical integration of equation
10-L,
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numerically integrated and Fourier analysis of the numerical solution
has then been performed in conditions far from parametric resonance.
Our numerical integration algorithm could not contain, unfortunately,
boundary conditions but only initial value conditions.

Many experiments have however been carried on for different
values of the initial conditions and the results have always shown the
same features in good accord with our predictions. A typical result is
represented in figure 2 and 3. In particular figure 2, represents a typical
Fourier analysis of equation [6] without the sinusoidal perturbation,
while figure 3 represents the Fourier analysis with the perturbing term
(of the order of 10-1), the other parameters being kept fixed.

By inspection of figures 2 and 3 it is easily seen that the results
of the numerical integration are quite satisfyving from our point of
view and can be considered as a partial confirm of owr perturbative
approach.

4+ — THE PHYSICAL INTERPRETATION

A more physical interpretation of the results obtained, can be
achieved by some analysis suggesting the evolution in time of a system
analogous to that considered above.

In a series of recent papers (827) Orlanski has analyzed the evo-
lution in time of resonant waves and has shown that density (as well
as velocity) fluctuations connected with trapped resonant waves grow
linearly in time, in the first stage of growth. He has considered a two
dimensional model for an inviscid Boussinesq fluid at rest with a con-
stant stratification N, and with a periodical sinusoidal forcing at the
upper surface and a rigid lid at the bottom. Ciclic boundary conditions
were applied along the horizontal direction w(0) = w(D).

The results of such approach, based on perturbative analysis and
Laplace transform method, can be expressed by the following final
relation:

where Z, is the stream function value at the top and t is the time.
Moreover, Orlanski has shown, both theoretically and experimentally,
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that profiles of wave fields are quite similar to those predicted by linear
theory at times at which gravitational instability of resonant trapped
waves starts (?). Expression [13], whose behaviour is representative of
resonance condition for zero order waves, is strictly connected with
the shape of zero order waves themselves as they are predicted by
linear theory. The results obtained by Orlanski seem then to assure
the validity of our theoretical approach, strictly connected with the
behaviour of the term 7. The results suggested, in the limits of the
coarseness of the model, are that secondary waves (first order waves
in our approach) can be generated by trapped resonant internal waves
and that, as a consequence, the global wave field must be considered
as the superposition of primary and secondary waves. This fact in-
troduces some new elements in the analysis of localized convective
breaking of resonant trapped waves in atmospheric inversions layers
and marine thermoclines (11.8).

Orlanski has, in fact, quite well explained in terms of gravitatio-
nal instability of resonant trapped gravity waves, in a layer charac-
terized by a constant N the generation of step-like structures in the
stratification parameter. For a single wave, the criterion for the exis-
tence of convective instability can be written in the following form:

u > = [21]
k

where % is the horizontal wave field velocity and w/k is the horizontal
phase speed.

By our previous analysis it seems possible to suggest that, in a
layer characterized by a small vertically varying structure of the sta-
bility parameter, secondary waves (with the same horizontal wave
speed w/k) are generated and then that local constructive superposition
of zero and first order waves will generally give rise to localized (along
the vertical) turbulence generation. The horizontal velocity of the
total wavefield, at levels where positive superposition will take place,
will be given by the expression (%o + & w:) and, being the horizontal
phase speed of both zero and first order waves the same, the condition
for gravitational breaking will be most probably reached there. From
previous analysis it could also be inferred that some of the character-
istics of experimental results obtained in laboratory (*7) could be
explained in terms of the mechanism considered here assuming that
our stationary stratification could be interpreted as the eftect of low
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frequency, high vertical wave-number waves. An experimental test
is however in planning for the proper test of the theory.

5 — CONCLUSIONS

Our results seem fundamentally to suggest that the perturbation
of a stable layer, characterized by small amplitude variations of the
stability parameter along the vertical and capped by a less stable layer,
will lead to a spreading of energy into different vertical wavenumbers
determined by the zero order wave-number and the one of the statio-
nary perturbation. This mechanism is particularly effective in the case
of resonance of the zero configuration and seems to introduce some
significant information on the localization (along the vertical) of tur-
bulent patches due to convective instability. If the superposition of
more than one scale of variations of the stability parameter along the
vertical is considered, the spreading of the energy can be predicted
for other vertical wavenumbers due to the linearity of our approach.

Some obvious difficulties suggest however that the more general
case has to be considered from a more sophisticated point of view as
non — linear interaction between secondary waves could lead to an
energy cascade not predictable by our theory.

Fmally, while detailed comparisons have been made with Orlan-
slid’s work our results seem to be in good accord also with those ob-
tained for a quite similar problem for the ocean by Phillips (12).
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