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SUMMARY. — T h e r e a c t i o n to p e r t u r b a t i o n s a t t h e b o t t o m of a s t a b l y 
s t r a t i f i e d l aye r cha rac t e r i z ed b y sma l l pe r iod ica l v a r i a t i o n s of t h e t h e r m a l 
s t a b i l i t y p a r a m e t e r a n d c a p p e d b y a , less s t ab le , semi- in f in i t e l aye r h a s been 
s t u d i e d . W h e n r e s o n a n c e cond i t ions for i n t e r n a l zero o r d e r w a v e s ( r ep resen t -
ed b y so lu t ions o b t a i n e d neg lec t ing t h e s m a l l pe r iod ica l v a r i a t i o n s of t h e 
s t a b i l i t y p a r a m e t e r i t se l f ) t r a p p e d in t h e lower l a y e r a r e sa t i s f i ed , s e c o n d a r y 
w a v e s , g e n e r a t e d b y t h e i n t e r a c t i o n of zero o rde r w a v e s a n d t h e s m a l l v a r i a -
t i ons af t h e s t a b i l i t y p a r a m e t e r , t u r n o u t to be r e s o n a n t t o o . S o m e in fo r -
m a t i o n can t h e n be o b t a i n e d on t h e loca l iza t ion a long t h e ve r t i ca l of con-
v e c t i v e b r e a k i n g (and t u r b u l e n t p a t c h e s ) in t h e lower l aye r , t a k i n g i n t o 
a c c o u n t t h e s u p e r p o s i t i o n of zero o rde r a n d s e c o n d a r y w a v e s . T h e s e r e s u l t s 
seem t o b e r e l e v a n t for t h e c o m p r e h e n s i o n of t h e d y n a m i c s of t h e a t m o s p h e -
ric inve r s ions as well as of t h e oceanic t h e r m o c l i n e . 

RIASSUNTO. — Viene s t u d i a t a la r eaz ione , a p e r t u r b a z i o n i a p p l i c a t e 
al f o n d o , d i uno s t r a t o d i fluido s t r a t i f i c a t o , c a r a t t e r i z z a t o d a u n a p i cco l a 
v a r i a z i o n e p e r i o d i c a del p a r a m e t r o di s t r a t i f i caz ione lungo la d i rez ione ve r t i -
cale , s o v r a s t a t o da u n o s t r a t o seminf in i to d i fluido s t r a t i f i c a t o p i ù d e b o l m e n t e . 
V iene messo in e v i d e n z a il f a t t o che , q u a n d o le condiz ion i di r i s o n a n z a 
p e r le o n d e i n t e r n e d i o rd ine zero ( r a p p r e s e n t a t e da l le so luz ioni o t t e n u t e 
t r a s c u r a n d o le piccole va r i az ion i p e r i o d i c h e del p a r a m e t r o d i s t ab i l i t à ) in-
t r a p p o l a t e nello s t r a t o in fe r io re sono s o d d i s f a t t e , le o n d e s e c o n d a r i e g e n e r a t e 
da l la i n t e r a z i o n e del le o n d e d i o rd ine zero e le va r i az ion i pe r iod iche del p a r a -
m e t r o d i s t a b i l i t à , r i s u l t a n o essere a n c h ' e s s e r i sonan t i . D a q u e s t a ana l i s i 
t eo r i ca è poss ibi le o t t e n e r e i n f o r m a z i o n i sul la local izzazione ( lungo la ve r t i -
cale) del le i n s t a b i l i t à c o n v e t t i v e ( s t r a t i t u r b o l e n t i ) nello s t r a t o p i ù b a s s o . 
Q u e s t o r i s u l t a t o s e m b r a essere r i l e v a n t e p e r la c o m p r e n s i o n e del la d i n a m i c a 
del le invers ion i a t m o s f e r i c h e e del la t e r m o c l i n a oceanica . 

(*) I s t i t u t o di F i s i ca d e l l ' U n i v e r s i t à d i U r b i n o . 
(**) D i p a r t i m e n t o d i M a t e m a t i c a d e l l ' U n i v e r s i t à di A n c o n a . 
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1 - I N T R O D U C T I O N 

The reaction of a non rotating stratified atmosphere to external 
perturbations is most commonly analyzed assuming the constancy of 
the stratification parameter along the vertical direction. Layered 
models are, as well, considered, the stratification parameter being 
constant in each layer. The effect of vertical variations of the strati-
fication parameter on a length scale much larger than the vertical 
wave-number of the perturbations is also studied making use of the 
W.K.B.J , approach. 

Experimental data show however how the thermal stability para-
meter pat tern is characterized by variations on many length scales 
along the vertical direction in the atmosphere as well as in the ocean, 
particularly in those zones characterized by strong mean thermal 
stratification (athmospheric. inversion layers and oceanic thermocli-
lies) (13). 

As said above, such small variations of the stability parameters 
are usually ignored in the analysis of the reaction of a stratified atmo-
sphere to external perturbations. I t can be shown, however, tha t the 
role played by such small variations can become relevant, at least in 
some particular cases. The case analyzed in the present paper is con-
nected with the dynamics of perturbed stable layers capped by a, less 
stable, semi-infinite atmosphere and, in particular, with the dynamics 
of wave trapped in the lower, more stable, layer and resonant to some 
external forcing at the bottom. An analogous problem was treated in 
a previous paper (u) ; in tha t paper however the effect of small variations 
of the stability parameters in the lower layer, which is considered here, 
was not taken into account. The pat tern of the thermal stratification 
parameters in the stable layers could be properly represented by a 
constant positive value plus a random function; this case has been 
analyzed theoretically by different author (2'1>5); and some results have 
been obtained suggesting the important role played by such random 
variations in the propagations of internal waves. As said before, we 
are interested in a quite different phenomenon and the assumptions 
tha t will be made are suggested by the particular problem considered 
here. 

Orlanski (') has widely investigated the dynamics and the breaking 
of resonant trapped internal waves in layers characterized by a con-
stant thermal stratification and has suggested tha t convective insta-
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bility is the most probable mechanism of breaking in this case. Our 
analysis is fundamentally an extension of Orlanski's analysis except 
for some generalizations tha t seem to suggest certain important features 
in the localization of breaking zones for resonant phenomena in layers 
characterized by small variations of the stability parameters along the 
vertical direction. 

T H E THEORETICAL APPROACH 

The intrinsic difficulties of the analysis have suggested the use of a 
simplified two-dimensional model for an inviscid Boussinesq fluid. 
The whole fluid is considered at rest and the Brunt-Vaisala distribution 
along the vertical (see figure 1) is given by: 

N°- = Nf, ( l + e sin yz) for ()<z<h 
N2 = N\ for z > h [1] 

F i g . 1 - S k e t c h of t h e t h e o r e t i c a l B r u n t - V a i s â l â f r e q u e n c y d i s t r i b u t i o n ( t h e 
ve r t i ca l scale of t h e osc i l la t ions of t h e lower l aye r is en l a rged ) . 

I 
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I t lias to be noticed tha t N2 actually shows (as stated in the previous 
paragraph) variations on many different length scales along the vertical 
direction and tha t the form assumed for it in 0 < z < li means tha t 
we take into account a single length-scale only. 

The following assumptions are also made: 

N0>N1 

e « 1 [2] 
, 2jt h = n — 

v 

The first of assumptions [2] has been made in order to have the 
possibility of studying waves trapped in the lower layer. 

The second condition assures also the absence of gravitationally 
unstable zones in the lower layer, while the third condition has been 
introduced to avoid further mathematical complications in the theory, 
without any loss of generality of the results. 

A perturbation in the vertical velocity is also applied at z = 0 
in the form 

W/z=o = IFo exp i (kx — vA) 

where k is the horizontal wave-number of the perturbation and &> 
its frequency. 

Let us consider now the linearized Boussinesq equations in a stra-
tified inviscid fluid (the model being two-dimensional and the fluid 
at rest): 

— Q9 

M ^ 
Sz 

where (u, w, q) are the perturbations in horizontal velocity, vertical 
velocity, density and pressure. 

n„ is the average density of the whole fluid. 

go is the average value of the density in a horizontal plane. 

t>2> 
Q° l>r ~dX 
_ Sw ( ) ] ) 
Qo 

i z 

d; — 1,0 — 

iu Div + = 0 
7)X + 3z 
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Equations [3] can be combined into a single differential equation 
for the vertical velocity; if we assume the following form for w (x, z, t): 

w (x, z, t) = w (z) exp i (lex — a>t) 

equations [3] reduce to 

d 
dz2 + k2 — - - 1 tfc(ar) 0 [4] 

where N2 = — S—— is the squared B. V. frequency. 
g o dz 

By the insertion of the expression of N2 assumed for the lower 
layer into equation [4], we obtain 

i a 
dz2 + k2 No2 No 2 

w 
s sin y z w(z) = 0 [5] 

Equation [5] is a typical Mathieu-Hill equation tha t has been 
widely studied (McLachlan) particularly for t ime dependent pro-
blem. We prefer however to study it in terms of perturbative ana-
lysis to obtain a better insight of the physics. To simplify the analysis 

No2 

without any loss of generality of the results, we assume —— > 1. 
to2 

We further introduce the non-dimensional vertical coordinate 
z' ~ yz. Equation [5] then reads: 

d k2N0
2 . , I a , 

T ^ i + — ¡ ~ r 1 + £ s i n * w ( z ) = dz 2 w2?2 ) [6] 

As stated above, we assume the following form w(z'): w0(z') + 
wi(z')e + ... 

Zero order and first order equations in e can then be written in 
the following forms: 

d k2N0
2 . 

—- + ? Wo(z ) = 0 
( dz'2 y2co2 ) v ' 

[7] 

d , k2N0
2

 A . » A . ,, . , — H wAz ) = ——— w0(z ) sin z dz'2 y2co2 i u y2w2 [ 8 ] 

I. W . * * * W 
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I t can be shown that the perturbation analysis produces useful 
results as long as the following relation is satisfied (10). 

e « (ylLY - 8 (y/h)* [9] 

kNo 
where A0 = 

a> 

In the semi-infinite layer (z > h) both zero and first order equa-
tions will have the same form of equation [7] with No replaced by Ni. 

The following boundary conditions are then applied: 

Wo = IVo ) 

A, = o | a t 2 = ° [10] 

,, , . ., „ - dtt'o A dwi the continuity of iva, —:— , Wi, — at z = ft dz d z 

In the range N i < w < N 0 , the zero order solution will have the form 

Ao A w0(z') = iv0 cos —— z' -f w0T sin —- z' [111 
y y 

in the lower layer and 

Wo(z') = Ai e x p — - - (z' — n2n) [12] 
y 

in the upper layer where: 

Ai is an arbitrary constant tha t can be evaluated by the use of boun-
dary conditions [10] 

H = k( 1 — 

and T is a term delined by boundary conditions at z = li 

Ao . Ao Ao „ — sm — n2n —• cos — n2n 
T = I I [13] 

A o Ao Ao ^ 
— cos — «2 + sm — n2n 
[X y y 

Let us now consider the solution of the first order equation in the 
lower layer. 
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The solution of the homogeneous part will be analogous to the 
zero order solution and given by: 

A Ao , , T, . A.0 , A 2 cos — z B 2 sin — z 
y r 

[ i i ] 

and the full solution will be given by the expression: 

Ao , A0 
Wi = A2 cos — z' + B* sin z' + 

+ ^ ~ wo sin f — + l ) z ' — - - wo T cos (— + l ] z' 

1 rr —- Wo T cos — 
2 \ y 

[ 1 5 ] 

where A2 and £2 are arbitrary constants, and 

. Ac where a = — . 
Y 

The first order solution in the layer above will have the form: 

A3 exp — --- (z' —n2n) 

where A3 is again an arbitrary constant. 
Constants A 2, B> and A3 can be determined by applying boundary 

conditions [10]; we obtain 

Ao_ = T («+ — « - ) 

( L - t ) cos n2n + ( l + — X° 21) sin n2n 
„ . . 1 V j \ 2 p. J B2 = {a+ —a-) — Wo : 7— —f • [1<] 

A Ao Ao /.o sin — v2ti + — cos — n2ji 
y i" r 
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Let us indicate the fraction contained in the expression of B2 

by the simbol S; the full first order solution then reads: 

Wi (z') = — - i- iVoT(a +—a~) cosa z' — ivDS (a+—a-) sin a z' + 

~- w0 sin ( a + l ) z ' —- M70Tcos(a—1 )z' + 

+ a - ~ iVoT cos (a — 1 )z' i - w0 sin (a—1) z' 
Z A 

[18] 

Comparison of expressions [17] and [13] would introduce some 
simplification for term S\ the results of such comparison are however 
quite obvious and we prefer to pass directely to the analysis of the 
results given by zero order and first order solution. 

By inspection of expression [16] it is easily seen t h a t infinite values 

for terms containing (a + — a~) and a~ can be predicted for a = —-; 

this case corresponds to the well known "parametric resonance" (3). 
Expression [9], together with the assumption tha t £ < 1 in the lower 
layer, implies t ha t 

— - a « l [19] 
y 

and the "•parametric resonance" is so avoided in our analysis. 
If parametric resonance case is neglected, fu r ther inspection of 

expression [18] shows how the amplitudes of oscillations of wavenum-
bers a, (a + 1) and (a — 1), due to the presence of term T in their 
expression, (term S for sin x z' is more complicated but its role can be 
neglected for the moment) strongly depend on the amplitude of the 
component sin (a z') of the zero order solution. 

Let us consider expression [13]; it is easily seen tha t the argument 
of the trigonometric functions contained there can be properly wri t ten 
in the form 

where Z0is the wave lenght of the zero order solution. This quant i ty does 
not actually depend on y. Let us now consider the case in which T 
becomes very large (two obvious cases can be studied in a very simple 
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i A 
form for — < l o r — > 1 ) ; the amplitude of term T (which corresponds 

/ t ft 

to the resonance of zero order (solution w0T sin az')) implies tha t also 
the amplitude of first order solutions and, in particular, cos (a + 1) 
and cos (a — 1), becomes large. More precisely, expression [13] can in 
fact be written in the following form 

h „ LL 
t n - 2 n - f 

A o t o A o 

¡jlX0 ll 
— + t n — 2n 
f j , lo 

and the following conditions must be satisfied to obtain infinite value 
of T 

Xo 
X0 = — fx t n X0li = — / ¿ t n \ 2jt n 

On the contrary for 

Xo = / t t n X0 h = / / t n \ 2,7in — j 

the corresponding value of T is zero. 
From the first condition it is easily seen tha t n must be large to 

satisfy resonance conditions. 
This is a fundamental request for the validity of our approach, in 

good accord with assumption [19], tha t assures the validity of the per-
turbative approach. I t can then be deduced, in the limits of pertur-
bative approach, tha t a small oscillation along the vertical direction 
of N2 in a stable layer capped by a less stable semi infinite layer and 
perturbed from below will give rise, in its trapping range (N[< OJ< No), 
to first order waves and, in particular, that , if resonance conditions for 
zero order waves are satisfied, resonant zero order waves will force the 
growth of first order waves. Some of this last waves mi l have vertical 
wavenumbers (?.a + y) and (X0—y) respectively. The final result must 
then be represented by a superposition of the whole wave field. 

3 - N U M E R I C A L T E S T 

To verify the validity of the analytical results given in the previous 
paragraph, a numerical test has been developed. Equation [6] has been 
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•4. 

Fig. 2 - Four i e r analysis of t he numer ica l in tegra t ion of equa t ion [6] 
wi th E = 0 

X +7 X X '7 0 0 0 
ÌX 

Fig. 3 - Four ie r analysis of the resu l t s of numer ica l in tegra t ion of e q u a t i o n 
[6] with e ^ 10 ». 
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numerically integrated and Fourier analysis of the numerical solution 
has then been performed in conditions far from parametric resonance. 
Our numerical integration algorithm could not contain, unfortunately, 
boundary conditions but only initial value conditions. 

Many experiments have however been carried 011 for different 
values of the initial conditions and the results have always shown the 
same features in good accord with our predictions. A typical result is 
represented in figure 2 and 3. In particular figure 2, represents a typical 
Fourier analysis of equation [6] without the sinusoidal perturbation, 
while figure 3 represents the Fourier analysis with the perturbing term 
(of the order of 10-1), the other parameters being kept fixed. 

By inspection of figures 2 and 3 it is easily seen that the results 
of the numerical integration are quite satisfying from our point of 
view and can be considered as a partial confirm of our perturbative 
approach. 

4 - T H E P H Y S I C A L I N T E R P R E T A T I O N 

A more physical interpretation of the results obtained, can be 
achieved by some analysis suggesting the evolution in time of a system 
analogous to that considered above. 

In a series of recent papers (8^7) Orlanski has analyzed the evo-
lution in time of resonant waves and has shown tha t density (as well 
as velocity) fluctuations connected with trapped resonant waves grow-
linearly in time, in the first stage of growth. He has considered a two 
dimensional model for an inviscid Boussinesq fluid at rest with a con-
stant stratification N a and with a periodical sinusoidal forcing at the 
upper surface and a rigid lid at the bottom. Ciclic boundary conditions 
were applied along the horizontal direction w(0) = w(D). 

The results of such approach, based 011 perturbative analysis and 
Laplace transform method, can be expressed by the following final 
relation: 

where 7.0 is the stream function value at the top and t is the time. 
Moreover, Orlanski has shown, both theoretically and experimentally, 
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t ha t profiles of wave fields are quite similar to those predicted by linear 
theory at times at which gravitational instability of resonant t rapped 
waves starts (9). Expression [13], whose behaviour is representative of 
resonance condition for zero order waves, is strictly connected with 
the shape of zero order waves themselves as they are predicted by 
linear theory. The results obtained by Orlanski seem then to assure 
the validity of our theoretical approach, strictly connected with the 
behaviour of the term T. The results suggested, in the limits of the 
coarseness of the model, are tha t secondary waves (first order waves 
in our approach) can be generated by trapped resonant internal waves 
and that , as a consequence, the global wave field must be considered 
as the superposition of primary and secondary waves. Tliis fact in-
troduces some new elements in the analysis of localized convective 
breaking of resonant trapped waves in atmospheric inversions layers 
and marine thermoclines (n '8). 

Orlanski has, in fact, quite well explained in terms of gravitatio-
nal instability of resonant trapped gravity waves, in a layer charac-
terized by a constant N the generation of step-like structures in the 
stratification parameter. For a single wave, the criterion for the exis-
tence of convective instability can be written in the following form: 

« > - f [21] 
ic 

where u is the horizontal wave field velocity and co/lc is the horizontal 
phase speed. 

By our previous analysis it seems possible to suggest tha t , in a 
layer characterized by a small vertically varying structure of the sta-
bility parameter, secondary waves (with the same horizontal wave 
speed (ojk) are generated and then tha t local constructive superposition 
of zero and first order waves will generally give rise to localized (along 
the vertical) turbulence generation. The horizontal velocity of the 
total wavefield, at levels where positive superposition will take place, 
will be given by the expression (u0 + e wi) and, being the horizontal 
phase speed of both zero and first order waves the same, the condition 
for gravitational breaking will be most probably reached there. From 
previous analysis it could also be inferred tha t some of the character-
istics of experimental results obtained in laboratory (4'7) could be 
explained in terms of the mechanism considered here assuming t ha t 
our stationary stratification could be interpreted as the effect of low 
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frequency, high vertical wave-number waves. An experimental test 
is however in planning for the proper test of the theory. 

5 - C O N C L U S I O N S 

Our results seem fundamentally to suggest tha t the perturbation 
of a stable layer, characterized by small amplitude variations of the 
stability parameter along the vertical and capped by a less stable layer, 
will lead to a spreading of energy into different vertical wavenumbers 
determined by the zero order wave-number and the one of the statio-
nary perturbation. This mechanism is particularly effective in the case 
of resonance of the zero configuration and seems to introduce some 
significant information on the localization (along the vertical) of tur-
bulent patches due to convective instability. If the superposition of 
more than one scale of variations of the stability parameter along the 
vertical is considered, the spreading of the energy can be predicted 
for other vertical wavenumbers due to the linearity of our approach. 

Some obvious difficulties suggest however that the more general 
case has to be considered from a more sophisticated point of view as 
non - linear interaction between secondary waves could lead to an 
energy cascade not predictable by our theory. 

Fmally, while detailed comparisons have been made with Orlan-
sld's work our results seem to be in good accord also with those ob-
tained for a quite similar problem for the ocean by Phillips (12). 
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