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SUMMARY. — On t h e bas i s of a l r e a d y k n o w n t h e o r e t i c a l r e s u l t s con-
c e r n i n g t h e u s e of t h e geoe lec t r ica l s o u n d i n g m e t h o d w i t h t h e a p p a r a t u s 
i m m e r s e d in w a t e r , in t h e p r e s e n t p a p e r we i n d i v i d u a t e t h e k e r n e l f u n c t i o n 
of t h e p a r t i c u l a r g e o m e t r y of t h e p r o b l e m . T h e s t u d y of t h e p r o p e r t i e s of 
t h e k e r n e l f u n c t i o n a l lows a b e t t e r u n d e r s t a n d i n g of t h e poss ib i l i t i es of 
a p p l i c a t i o n of t h e n e w m e t h o d . T h e t h e o r e t i c a l r e s u l t s t h a t w e de sc r i be 
m u s t b e r e g a r d e d , a m o n g o t h e r t h i n g s , as t h e bas i s fo r t h e d e r i v a t i o n of a 
d i r ec t q u a n t i t a t i v e i n t e r p r e t a t i o n m e t h o d . 

RIASSUNTO. —• Sul la b a s e d i r i s u l t a t i t eor ic i g ià n o t i c i r ca l 'uso del 
m e t o d o del s o n d a g g i o geoe l e t t r i co con il d i spos i t ivo e l e t t r od i co i m m e r s o in 
a c q u a , nel p r e s e n t e l a v o r o v i ene i n d i v i d u a t a la f u n z i o n e nuc leo de l l a p a r t i -
co la re g e o m e t r i a del p r o b l e m a . L o s t u d i o del le p r o p r i e t à de l la f u n z i o n e nu-
cleo p e r m e t t e u n a migl iore c o m p r e n s i o n e del le poss ib i l i t à di app l i caz ione del 
n u o v o m e t o d o . I r i s u l t a t i t eo r i c i che d e s c r i v i a m o d e b b o n o in t ende r s i , t r a 
l ' a l t r o , c o m e la b a s e p e r r i c a v a r e u n m e t o d o d i r e t t o di i n t e r p r e t a z i o n e q u a n -
t i t a t i v a . 

(*) P a p e r r e a d a t t h e 3rd Mee t ing of t h e « Assoc iaz ione Geof is ica I t a -
l i ana » — R o m e , Apr i i 18-20, 1974. 

(**) Osse rva to r io di Geofis ica e F i s i ca Cosmica - U n i v e r s i t y of B a r i , 
I t a l y . 

(***) I s t i t u t o di Geodes ia e Geofisica - U n i v e r s i t y of B a r i , I t a l y . 
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1 . - I N T R O D U C T I O N 

Since many years ago it has been theoretically and experimentally 
demonstrated by some russian geophysicists (4'5) the possibility of car-
rying out resistivity soundings on the sea or lakes with the electrode 
array immersed in water with the aim of giving useful contributions to 
the solution of geological-structural, geological-technical and petroleum 
prospecting problems. The reason why such technique has been 
preferred to the usual one with the apparatus 011 the free surface is 
tha t very often with the latter technique the presence of relatively 
thin layers at or near the bot tom of the water can be hardly localized 
or even masked by the water layer. 

Terekhin (') derives the general expression of the apparent resi-
stivity for the Schlumberger and dipole axial arrays with the apparatus 
at the bottom of the water layer. On the basis of such theory a cata-
logue of master curves has been prepared for two and three-layer 
models which is actually hardly available. 

T11 the present work we will show how it is possible, in accordance 
with the analogous problem for normal soundings, to derive a kernel 
function which has the following three important properties: 

a) it is mathematically simple and easily handled, so allowing 
to derive all the electrical properties of a multilayer section in a faster 
manner than the apparent resistivity function; 

b) it is possible to make an immediate comparison with the 
kernel function for the apparatus at the air-water boundary with the 
aim of showing the differences between the two functions with parti-
cular at tention to the resolving power; 

c) a complete study of all the properties of the new kernel fun-
ction does constitute the basis to the derivation of a direct quanti tat ive 
interpretation method that will be the argument for a next paper. 

2 . - G E N E R A L EXPRESSION OF T H E S C H L U M B E R G E R APPARENT RESISTI -

VITY W I T H T H E APPARATUS AT T H E BOTTOM 

Let us consider an homogeneous horizontally «-stratified section 
whose upper layer is the water layer (see fig. 1). The i- th layer (i = 1, 
2, . . . . , n—1, n) is identified by its thickness hi and resistivity «¡. 
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The point current source. A of s t rength + 1 is placed in the water 
layer in general a t a depth z0 si hi f rom the surface. 

Assuming a cylindrical system of coordinates (r, 9, z) with the 
origin at the point A and the ¿-axis vertically downward, the potential 
TJt at a point M of the i-th layer, d is tant K f rom . I , can be thought 
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Fig. I - Dcpic t ion of a gcoelcctr ical m-layered sect ion. 

of as a sum of a normal potent ial V = IoJItiR which would be measur-
ed in a conducting space with resistivity glt plus a disturbing poten-
tial U' i, caused by the boundaries, which, owing to the axial symmetry 
of the problem with respect to the «-axis, is a solution of the following 
explicit form of the Laplace equation 

+ [2.1] 
Dr- r c)>• ~dz2 L 
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The most general solution of eq. [2.1] is given by 

U'i = I ! Kiß)r*> + | J„ ( J r )dA [2.2] 
4 71 I t ) 

where J0(Xr) is the Bessel function of first kind and zero order; 

X the dummy variable of integration 
Ki(X) and X*W unknown functions to be determined by applying 

the boundary conditions. 

Therefore the total potential Ut is 

TJi = V+U\ = 
m 

CO 

i - + I + Xi(A)e^J J0(Ar)dA [2.3] 

The boundary conditions to be satisfied are given by 

1 J)C/i 
Pi ^z 

= 0 [2.4] 
z = — z0 

i.e. the normal component of the current density vanishes at the air-
water discontinuity; 

Ut = Ui+l [2.5] 

i.e. the potential must be continuous at each boundary; 

1 3 Ut 1 5 Ui+1 

Ql ~i>z Qi+l t)Z 
[2.6] 

which establishes the continuity at each boundary of the normal 
component of the current density; 

U n \ z = + 0 0 = 0 [2.7] 

which represents the vanishing of the potential at infinity. 

Since we are interested to the potential TJi measured with the 
emitting and receiving electrodes placed horizontally at the bottom 
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of the water layer, applying the boundary conditions [2.4] to [2.7] it 
is obtained (4) 

Ui = ^ I j 1 + e-uhi + 2 J L I ( A ) + K,(X) 

+ e -2Àh j 
[2.8] 

J„(Xr) AX 

being Ki(X) the well-known Stefanesco's kernel function appearing 
of the potential when the apparatus is at the free in the expression of the 

surface, given by (2) 

Vl = 2n 

CO 

j j 1 + 2 K i ( X ) J Jo(Xr)dX [2.9] 

Eq. [2.8] is more general than eq. [2.9]; in fact putt ing hi = 0 in 
eq. [2.8], eq. [2.9] is easily obtained. 

The expression of the electric field E\, that is measured with the 
Schlumberger array AMNB at the bottom, can be obtained by differ-
entiating the right-hand member of eq. [2.8] with respect to r, and 
multiplying the derivative by a factor 2, required to take account that 
there are two point sources of current, distant 2r, which produce con-
tributions to the potential gradient equal to each other both in magni-
tude and in direction. The result is given by 

E L = " I R I I 1 + e~u i h + 2 K l W + K l W 
,2>Jh + 

[2.10] 

+ e-™h J1 (Xr) X dX 

being Ji(Xr) the Bessel function of first kind and first order. 

As is well-known, the apparent resistivity is defined in such a way 
that it equals always the true resistivity in the case of an homogeneous 
semispace. When conducting normal superficial Schlumberger soundings 
on a layered earth, the apparent resistivity is defined as 

?a = ( 71 r* ) y [2.11] 

where n r2 is the so-called geometrical factor of the array. 
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If the same criterion is assumed for defining the apparent resistivity 
in the case of Schlumberger soundings at the bottom of the water 
layer, a geometrical factor must be introduced which takes account 
not only of the electrode arrangement but also of the depth from the 
surface of the array. I n such a way it would result a remarkable and 
useless complication in establishing the working mathematical expres-
sion of the apparent resistivity. In practice it is most convenient to 
adopt the same geometrical factor n r2 and introduce the following 
definition of the apparent resistivity o„ measured at the bottom 

Qa — \ n r 
( H t 

[2.12] 

Put t ing eq. [2.10] into eq. [2.12] we obtain 
00 

= f - r * I I 1 + e~2Xhi + 2Ki (A) + Ki (A) ? 2 ?. lh + 

[2.13] 

+ JI (AR) A CLX 

Put t ing 

T„(X) = j i + e - v . \ + 2 K i (A) + K l ,2 + e-2 [2.14] 

eq. [2.13] reduces simply to 
CO 

Qa = r- j Tn(X) Ji (Xr) X dA [2.15] 
0 

The function T„(X) will be called the kernel of the resistivity inte-
gral for soundings with the apparatus at the bottom of the water layer. 

Before starting in the following section the study of the properties 
of the kernel T„(X), we recall, after Terekhin (4), tha t the resistivity 
function Oa given by eq. [2.13] has the following asymptotical values 

lim ga = g l f 2 [2.16] 
(r/Ai) —> 0 Q1 + £?2 

lim Qa = Qn 
( r / /u) - > + co 

[2.17] 



A THEORETICAL STUDY OF TIIE KERNEL FUNCTION" ETC. 3 0 1 

3 . - T H E A S Y M P T O T I C A L V A L U E S O F T H E K E R N E L F U N C T I O N T„. 

In general we may pu t (*) 
CO 

= 2 J q, e~Wh [ 3 . 1 ] 
l 

where 

qt are the so-called coefficients of emission: 
h is the maximum common divisor among the thicknesses of all the 

layers. 

Substi tuting eq. [3.1] into eq. [2.14] and put t ing hi = sh we get 

Tn (A) = j 1 + + 2 q, + 

+ Si q> + s , q> e"2 (* + •)**) 
i i ) 

From eq. [3.2] it can be easily derived tha t 

and 

[3.2] 

LIM Tn (A) + E I 1 + 2 S , q, } = EN [ 3 . 3 ] 
(l/A/i.) -> + OO I 1 

LIM ^ ) = | L + 5 L L J ^ L . [ 3 . 4 ] 
(1 ¡Xh) -> 0 A ( ) 0 1 + 0 2 

Therefore the kernel Tn(X) has the same asymptotical values as 
the apparent resistivity q„ (see eqs. [2.16] and [2.17]) when plotted as a 
function of 1/2, which has the physical dimension of a length. 

4 . - C A L C U L A T I O N OF T H E K E R N E L F U N C T I O N T„ F O R AN _ZVT-LAYERED 

S E C T I O N 

Let us consider now eq. [2.9] which, as previously mentioned, 
represents the potential when the apparatus is placed on the free 
surface. 
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Koefoed (3) introduced the kernel function 

T , (A) = EI { 1 + 2 E l (A) } [4.1] 

and showed that this function satisfies the following recurrent expression 

Tn-l(X) + Vx 
Tn(X) = 

where 

1 + T „ - I (A) VI/GR 

1 — e ~2Xhl 
Vi Q i 1 + 

[4.2] 

[4.3] 

In eq. [4.2] Tn-i(A) is the kernel function reduced to the lower 
boundary plane, i.e. corresponding to a stratigrapliic situation in which 
the first layer is completely suppressed and the measurements are car-
ried out on the new free surface. 

From eq. [4.1] we get 

K , ( A ) = 
TuW 

¿Pi 
[4.4] 

Pu t t ing eq. [4.4] into eq. [2.14] we have 

TnW = Tn(X) 2 + e 2 X ] h + + Q i d"2A7ij _ e2Xlh 

From eq. [4.3] i t is obtained 

, - 2 = Q}__ Vi 

and 

, V J h = 

Q1 + Vi 

Pi + Vi 

01 Vi 

With eqs. [4.6] and [4.7], eq. [4.5] becomes 

pi Vi- Tn (A) — Vl 

[4.5] 

[4.6] 

[4.7] 

[4.8] 

This last expression is an useful and quite simple formula which 
relates the kernel T„(A), when the apparatus is at the bottom of the 
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water layer, to the kernel Tn[X) when the apparatus is 011 the free sur-
face of the same layered model. 

If the kernel T„(X) is known for an assigned layered moded, eq. 
[4.8] allows to construct easily the corresponding kernel Tn(X). But , 
in general, T„(X) is neither tabulated nor graphically reported; then it 
is necessary to construct each time this last function by using the 
recurrent eq. [4.2] before applying eq. [4.8]. 

5 . APPROXIMATION OF T„ FOR SMALLEST AND LARGEST VALUES OF ljX 

After Ivoefoed (2_3) it can be derived tha t the kernel T„(X) can be 
approximated for smallest values of 1/1 by the function T2(A), tha t is 
to say, by the kernel corresponding with the first two layers. In other 
words the kernel T„(X) whatever be the number of the layers is asymp-
totically fitted in its left-hand portion by a two-layer kernel. 

I n fact eq. [4.1] can be rewritten in the following form 

( 1 + Zi(A)/[l + Iii(X)] ) 
(A) = * 1 1 — K i (A)/[l + Ki (A)] i [ 5" 1 ] 

The function Ki(X)ll+Ki(X) is asymptotical for smallest values 
of 1/A to the function (2) 

1/1 (A) = i L I ^ [5.2] 
Q 2 + Q1 

Put t ing eq. [5.2] into eq. [5.1] we have 

~ 01 * + f S = T2(X) [5.3] 1 — y 1 (/) 

With eq. [5.3], eq. [4.8] becomes 

fn(A) ^ f 1 * , !T2(A) — Vx 
pi- - Vi~ = T2 (A) [5.4] 

Eq. [5.4] shows tha t also the kernel Tn(X), whatever be the num-
ber of the layers, is asymptotically fitted in the left-hand portion by 
a two-layer kernel T2(A). 

From eq. [4.3] we have tha t for largest values of 1/A, in comparison 
with the thickness hi of the water layer, the function vi becomes in-
creasingly small so tha t it can be neglected in eq. [4.8]: it follows that 

Tn(X) m T„(X) [5.5] 
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Eq. [5.5] shows that the kernel T„(X), when the apparatus is at 
the bottom of the water layer, will not differ from the value of the 
kernel T„(X), which would be obtained when the same apparatus is at 
the free surface, for largest values of IJX. 

These important properties of the kernel T„ will be essential for 
the process of the direct interpretation of resistivity soundings with 
the apparatus at the bottom. 

0 . - THEORETICAL COMPARISON BETWEEN THE BOTTOM AND F R E E 

SURFACE METHODS 

A) The two-layer case. 

In fig. 2 a set of two-layer curves are shown for TZ(X)LGI against 
1/Xhi with varying values of the ratio qz/qi. These curves can be 
compared with those of fig. 3 representing the function Tí(X)¡qi against 
1/Xhi for the same ratios qz/qi. 

The following differences can be noticed: 

a) the curves of Tz/qi are all of ascending type. This is a nor-
mal consequence of the asymptotical behaviour studied in section 3; 

b) the same curves have no common asymptote; 

c) when qí¡qi -> 0 the Tz¡qi curves become flatter and flatter 
so tha t a distinction in the trend of two contiguous curves becomes 
more and more imperceptible; 

(I) when ftz/fji -> + oo the curves approach in the trend the 
corresponding of fig. 3. In other words this new technique does not 
add any new information to those obtained with the array on the 
free surface; 

e) for intermediate values of qz/qi (in the case of fig. 2, for 
0.5 ^ 02/01 ^ 10) the new curves clearly show a wider width between 
the left and right extreme values. In this case the new technique 
presents a greater resolving power. 



Fig. 2 - A set of two- layer curves for tl ie w a t e r - b o t t o m kernel func t ion T2(?.) for va r ious 
res is t iv i ty con t ras t s . 

20 
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B) Tlie three-layer case. 

Now we compare the theoretical curves of T3/qi and T3/01, both 
as funct ion of 1/A/ii, for the four foundamenta l three-layer sections: 

I) JT-type, or m a x i m u m type (Qi<Q2>Q3); 

I I ) -ff- type, or min imum type (qi>Q2<qs)', 

I I I ) A - t y p e , or double ascending type (q i <Cq 2 3) ; 

IV) Q _ type , or double descending t ype (Qi>Q2>Qa). 

Case I) 

The following layering parameters have been choosen for the 
resistivities: 

0 2 / 0 1 = 1 . 0 ; galgi — 0.2. 

The values of the rat io 7t2/7h are: 0.1; 0.2; 0.3; 0.5; 0.7; 1; 2; 3; 5; 
10; 15; 25. 

In the upper p a r t of fig. 4 there is a set of curves T3/q 1 and in the 
lower Talgi. The presence of the max imum is remarkably more 
pronounced in the former set of curves than in the la t ter . 

Case I I ) 

I n fig. 5 the curves of T3/qi and T3/qi are reported for the ratios: 

02/0I=O.65; £>3/01=100. 

and with the same values of 3 / 1 as in the case I). 
I n this case the new curves have no min imum and are of double 

ascending type . This is a consequence of the always ascending trend 
of the two-layer curves. 

Case I I I ) 

Fig. 6 shows the same two funct ions for 

£2/01=1.5; £3/{H = 100. 
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• .1 1 

Fig. 4 - Compar ison be tween the f ree sur face and w a t e r - b o t t o m kernel func t ions in t h e case of 
l f - t y p e three- layer section. P a r a m e t r i c values for each cu rve are t he va lues of t h e ra t io 



Tig. 5 - Compar ison be tween t h e f ree sur face and w a t e r - b o t t o m kernel f u n c t i o n s in t h e case of 
an H - t y p c three- layer section. P a r a m e t r i c values for each curve a re t h e va lues of t h e ra t io h j h v 



Fig. 6 - Compar ison be tween t h e f ree surface and w a t e r - b o t t o m kernel f unc t i ons in t l ie case of 
an J . - t y p e th ree- layer sect ion. P a r a m e t r i c values for each curve are t h e va lues of t he ra t io h j h ^ . 
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The double ascending trend in the new curves is preserved and 
more pronounced. 

Case IV) 

Finally in fig. 7 the two sets of curves are shown for the ratios 

£2/01=0.65; ? 3 /0I=O.2. 

The double descending characteristic is now lost and the new 
curves present a well marked maximum. 

By analysing and comparing all the sets of curves the following 
conclusions can be drawn: 

a) The new curves are of only two different types as concerns 
their general shape: 

— with a maximum which includes the old K and Q-types 

— of double ascending type which includes the old E and 
^1-types. 

This fact does not consti tute a restriction bu t it is a normal con-
sequence of the asymptotical behaviour. 

b) A greater resolving power is clearly evidenced in all the new 
curves, especially for the l i t t lest values of the ratio fta/fti where the 
curves of T3/01 strongly crowd together. The left-hand portion of 
these new curves shows still more markedly such impor tant and useful 
property. 

c) I n the case of the curves with a maximum, corresponding 
to K and Q- type curves for Ts/qi, the suppression principle is com-
pletely overcome. In fact a sight on the T3/QI curves when LI^HI becomes 
increasingly smaller show tha t these curves can be confused with two-
layer curves. This is not the case for the curves of T3/01, since, as Ave 
have previously pointed out, the two-layer curves are always of 
ascending type and therefore there will never be any ambiguity. 

d) In the case of double ascending curves, corresponding to H 
and A-type curves for T3/gi, the suppression principle is less markedly 
overcome than case c). Also in this case the T-tjoi curves for smallest 
values of 7i2/7ii can be confused with two-layer curves. The TS/QI 
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curves for 7t2//i,i < 0.3 show a visible hump in the extreme left-hand 
portion which becomes increasingly pronounced as Ji2/hi -> 0, so that 
also in this case there will never be any ambiguity. 

7. - CONCLUDING REMARKS 

From the above analysis that has been for simplicity restricted 
to two and three-layer sections, but tha t can be easily expanded to 
more layers, the following conclusions seem to be of greatest interest: 

a) as concerns the study of the properties of the kernel function, 
its t reatment is mathematically simple so allowing to construct the 
model curve for any desired «-layered section without the use of ele-
ctronic computers as is the case of the apparent resistivity curves. 

b) Regarding the features of the water bottom method, it shows, 
when adopted in opportune situations, many advantages as concerns 
the resolving power and improvements are gained in eliminating the 
ambiguities imposed by the principle of suppression. 
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