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SUMMARY. — On the basis of already known theoretical results con-
cerning the use of the geoelectrical sounding method with the apparatus
immersed in water, in the present paper we individuate the kernel function
of the particular geometry of the problem. The study of the properties of
the kernel funection allows a better understanding of the possibilities of
application of the new method. The theoretical results that we describe
must be regarded, among other things, as the basis for the derivation of a
direet quantitative interpretation method.

RiassuxTo. — Sulla base di risultati teorici gid noti circa I'uso del
metodo del sondaggio geoelettrico con il dispositivo elettrodico immerso in
acqua, nel presente lavoro viene individuata la funzione nucleo della parti-
colare geometria del problema. Lo studio delle proprieta della funzione nu-
cleo permette una migliore comprensione delle possibilita di applicazione del
nuovo metodo. I risultati teoriei che deseriviamo debbono intendersi, tra
I"altro, come la base per ricavare un metodo diretto di interpretazione quan-
titativa.
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1. — INTRODUCTION

Since many years ago it has been theoretically and experimentally
demonstrated by some russian geophysicists (+3) the possibility of car-
rying out resistivity soundings on the sea or lakes with the electrode
array immersed in water with the aim of giving useful contributions to
the solution of geological-structural, geological-technical and petroleum
prospecting problems. The reason why such technique has been
preferred to the usual one with the apparatus on the free surface is
that very often with the latter technique the presence of relatively
thin layers at or near the bottom of the water can be hardly localized
or even masked by the water layer.

Terekhin (}) derives the general expression of the apparent resi-
»tivity for the Schlumberger and dipole axial arrays with the apparatus
at the bottom of the water layer. On the basis of such theory a cata-
logue of master curves has been prepared for two and three-layer
models which is actually hardly available.

Tn the present work we will show how it is possible, in accordance
with the analogous problem for normal soundings, to derive a kernel
function which has the following three important properties:

a) it is mathematically simple and easily handled, so allowing
to derive all the electrical properties of a multilayer section in a faster
manner than the apparent resistivity function;

b) it is possible to make an immediate comparison with the
kernel function for the apparatus at the air-water boundary with the
aim of showing the differences between the two functions with parti-
cular attention to the resolving power;

¢) a complete study of all the properties of the new kernel fun-
ction does constitute the basis to the derivation of a direct quantitative
interpretation method that will be the argument for a next paper.

2. — GENERAL EXPRESSION OF THE SCHLUMBERGER APPARENT RESISTI-
VITY WITII TIHE APPARATUS AT TIIE BOTTOM

Let us consider an homogeneous horizontally n-stratified section
whose upper layer is the water layer (see fig. 1). Thei-th layer (¢ =1,
2, ...., n—1, n) is identified by its thickness h; and resistivity n..
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The point current source A of strength +1I is placed in the water
layer in general at a depth 2, < & from the surface.

Assuming a cylindrical system of coordinates (r, &, 2) with the
origin at the point 4 and the z—axis vertically downward, the potential
U at a point M of the i—th layer, distant R from .1, can be thought

air
T water
zo
1 Q o,
\\
A+l *
2 b,
3 h, 05
|
n  h,=00

Fig. 1 — Depiction of a geoclectrical n-layered section.

of as a sum of a normal potential V' = In,/4xR which would be measur-
ed in a conducting space with resistivity o,, plus a disturbing poten-
tial U’;, caused by the boundaries, which, owing to the axial symmetry
of the problem with respect to the z—axis, is a solution of the following
explicit form of the Laplace equation

or- rooor 022
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The most general solution of eq. [2.1] is given by
I —
e =20 | VR 4 e’ { T [2.2]

where Jo(Ar) is the Bessel function of first kind and zero order;

A the dummy variable of integration
Ki%) and 74(2) unknown functions to be determined by applying
the boundary conditions.

Therefore the total potential U is

Uy = V4U, = i ‘i- + / §I_L’,-(/1)e-}'z + xi(z)eIZ$Jn(za-)(1a [2.3]

The boundary conditions to be satisfied are given by

1

= 0 2.4
01 o2 [ ]

R = — 2

i.e. the normal component of the current density vanishes at the air-
water discontinuity;

Ui = Ui [2.5]

i.e. the potential must be continuous at each boundary;

1 U 1 Wiy
p1 o2 P41 2

which establishes the continuity at each boundary of the normal
component of the current density;

which represents the vanishing of the potential at infinity.

Since we are interested to the potential U measured with the
emitting and receiving electrodes placed horizontally at the bottom



A THEORETICAL STUD OF T E KERNEL FUNCTION ETC. 299

of the water layer, applying the boundary conditions [2.4] to [2.7] it
is obtained (%)

IQ]_

U, = 4n

/ ;1 + e 2y 9k, (2) + Ki(d)
‘ (2.8]

+ 2y | g (ar)dd

being Ki(A) the well-known Stefanesco’s kernel function appearing
in the expression of the potential when the apparatus is at the free
surface, given by (?)

ow

/ 11+ 2K.(2) |} Ju(n)an [2.9]

U, =
! 2n

Eq. [2.8] is more general than eq. {2.9]; in fact putting »; = 0 in
eq. [2.8], eq. [2.9] is easily obtained.

The expression of the electric field £:, that is measured with the
Schlumberger array AMNB at the bottom, can be obtained by differ-
entiating the right-hand member of eq. [2.8] with respect to », and
multiplying the derivative by a factor 2, required to take account that
there are two point sources of current, distant 2, which produce con-
tributions to the potential gradient equal to each other both in magni-
tude and in direction. The result is given by

B = éi / ;1 + Pl o) + Ka(d) | -Ph -
[2.10]

e | gy () 2 an

being J1(Ar) the Bessel function of first kind and first order.

As is well-known, the apparent resistivity is defined in such a way
that it equals always the true resistivity in the case of an homogeneous
semispace. When conducting normal superficial Schlumberger soundings
on a layered earth, the apparent resistivity is defined as

2% =m0 ) - [2.11]

where 7 72 is the so-called geometrical factor of the array.
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If the same criterion is assumed for defining the apparentresistivity
in the case of Schlumberger soundings at the bottom of the water
layer, a geometrical factor must be introduced which takes account
not only of the electrode arrangement but also of the depth from the
surface of the array. In such a way it would result a remarkable and
useless complication in establishing the working mathematical expres-
sion of the apparent resistivity. In practice it is most convenient to
adopt the same geometrical factor z 12 and introduce the following
definition of the apparent resistivity o. measured at the bottom

Qa — (n 72 ) T [2.12]

Putting eq. [2.10] into eq. [2.12] we obtain

= % e / I Lo 2 4 oK, (1) + Ki(A) |2
[2.13]
+ ’ J1 () 2 dA
Putting
To(d) = i1 + e 4 oK, (1) + K 220k 4 g2 ’ [2.14]
eq. [2.13] reduces simply to
o =1 [ Ta(d) Jr(h)2a [2.15]

The function 7.(1) will be called the kernel of the resistivity inte-
gral for soundings with the apparatus at the bottom of the water layer.
Before starting in the following seetion the study of the properties
of the kernel T,(1), we recall, after Terekhin (4), that the resistivity
function o, given by eq. [2.13] has the following asymptotical values

lim g, =-2'% [2.16]
(rlhg) —> 0 01 + 02
lim Qa = Qn [2.17]

(rihy) —> + »
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3. — THE ASYMPTOTICAL VALUES OF THE KERNEL FUNCTION T,.

In general we may put (})

; qi e‘Zj;,h [3.1]

i
.—-Mg

where

q; are the so-called coefficients of emission:
h is the maximum common divisor among the thicknesses of all the
layers.

Substituting eq. [3.1] into eq. [2.14] and putting 1 = sh we get

T"(;L) =ﬁ. 1 _|_e LD + 2 2;1 qj e jrae _|_

2

[3.2]
LN g e Ui 4 %, g o2 lrs) 2l
1 1 )
From eq. [3.2] it can be easily derived that
lim Tal(l 1 9 — on .
(1/Ah) = + oo () + e 1+ Zl‘quk 0 (3.3]
and
i T g1 ( 01 02
lim Ta(d) === 1 4 o= —= - 3.4]
(1/20) >0 2 | Y= o 0o [

Therefore the kernel T'»(A) has the same asymptotical values as
the apparent resistivity pa (see eqs. [2.16] and [2.17]) when plotted as a
function of 1/4, which has the physical dimension of a length.

4, — CALCULATION OF THE KERNEL FUNCTION 7, FOR AN N-LAYERED
SECTION

Let us consider now eq. [2.9] which, as previously mentioned,
represents the potential when the apparatus is placed on the free
surface.
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Koefoed (?) introduced the kernel function

Tad) =01 {1 +2K:(2) } [4.1]

and showed that this function satisfies the following recurrent expression

Tar(A) 4+ 21
@) 1 + Taa(d)vi/or- [+.2]
where
1 — 6—2;'7"1 [4 3]
v .
1 01 14

In eq. [4.2] Ta-1(A) is the kernel function reduced to the lower
boundary plane, i.e. corresponding to a stratigraphic situation in which
the first layer is completely suppressed and the measurements are car-
ried out on the new free surface.

From eq. [4.1] we get

Ta(2
Ay = — *) [+.4]
201
Putting eq. [+.4] into eq. [2.14] we have
T, -
T = 1) iy 4 g2 o { Lo, 2”‘1—e23h1’ [4.5]
From eq. [4.3] it is obtained
,~22h, Q1 N1 [4.6]
01 + N1
and
»2Ahy 01 + M [4.7]
01— V1
With eqs. [4.6] and [4.7], eq. [4.5] becomes
Tw (2) — 1.8
o gy | Tn ) = [4.8]

This last expression is an useful and quite simple formula which
relates the kernel 7'»(1), when the apparatus is at the bottom of the
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water layer, to the kernel 7'.(1) when the apparatus is on the free sur-
face of the same layered model.

If the kernel T.(4) is known for an assigned layered moded, eq.
[4.8] allows to construct easily the corresponding kernel T.(1). But,
in general, T',(A) is neither tabulated nor graphically reported; then it
is necessary to construct each time this last function by using the
recurrent eq. [4.2] before applying eq. [4.8].

5. APPROXIMATION OF 7', FOR SMALLEST AND LARGEST VALUES OF 1/

After Ivoefoed (2-2) it can be derived that the kernel 7'.(2) can be
approximated for smallest values of 1/4 by the function 7’:(1), that is
to say, by the kernel corresponding with the first two layers. In other
words the kernel 7',(4) whatever be the number of the layers is asymp-
totically fitted in its left-hand portion by a two-layer kernel.

In fact eq. [4.1] can be rewritten in the following form

1 + KEi(A)[1 + K1 (A)]
1 — K (A1 + Ki(A)]

The function K;(1)/1+4Ki(d) is asymptotical for smallest values
of 1/A to the function (2)

) = o [5.1]

nd) = g:gi ¢ 2y [5.2]

Putting eq. [56.2] into eq. [5.1] we have

1+ y1(d)

With eq. [5.3], eq. [4.8] becomes
Tn (A) ~ ,,Ql_ ) I[T:z(l) — 1| = T2 (A) [5.4]
01° ~ 11°

Eq. [5.4] shows that also the kernel 7.(A), whatever be the num-
ber of the layers, is asymptotically fitted in the left-hand portion by
a two-layer kernel T'2(A).

From eq. [4+.3] we have that for largest values of 1/4, in comparison
with the thickness & of the water layer, the function v, becomes in-
creasingly small so that it can be neglected in eq. [4.8]: it follows that

Tw(A) ~ Tu(d) [5.5]
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Eq. [5.5] shows that the kernel 7,(4), when the apparatus is at
the bottom of the water layer, will not differ from the value of the
kernel 7,(A), which would be obtained when the same apparatus is at
the free surface, for largest values of 1/4.

These important properties of the kernel 7', will be essential for
the process of the direct interpretation of resistivity soundings with
the apparatus at the bottom.

6. — THEORETICAL COMPARISON BETWEEN THE BOTTOM AND FREE
SURFACE METHODS

A) The two-layer case.

In fig. 2 a set of two-layer curves are shown for T':(A)/o. against
1/Ahy with varying values of the ratio gofp:. These curves can be
compared with those of fig. 3 representing the function 7's(1)/p: against
1/Ahy for the same ratios pz/o1.

The following differences can be noticed:

a) the curves of T'z/p: are all of ascending type. This is a nor-
mal consequence of the asymptotical behaviour studied in section 3;

b) the same curves have no common asymptote;

¢) when p2/fp1 — 0 the T:/p: curves become flatter and flatter
so that a distinction in the trend of two contiguous curves becomes
more and more imperceptible;

d) when pz2/fp1 — - oo the curves approach in the trend the
corresponding of fig. 3. In other words this new technique does not
add any new information to those obtained with the array on the
free surface;

e¢) for intermediate values of p:/p1 (in the case of fig. 2, for
0.5 < 0z2/01 < 10) the new curves clearly show a wider width between
the left and right extreme values. In this case the new technique
presents a greater resolving power.



Fig. 2 — A set of two-layer curves for the water-bottom kernel function Ty(2) for various
resistivity contrasts.

20
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B) The three-layer case.

Now we compare the theoretical curves of T'sfp; and Tsfo1, both
as function of 1/Ahi, for the four foundamental three-layer sections:
I) K-type, or maximum type (o1<<g2>>p3);

II) H-type, or minimum type (01> 02<gs);
IIT) A-type, or double ascending type (o1<<gz2<.ws);
IV) @Q-type, or double descending type (01>02>p3).

Case I)

The following layering parameters have been choosen for the
resistivities:
o2/01=1.0;  ps/e1—0.2.

The values of the ratio hefh: are: 0.1; 0.2; 0.3; 0.5; 0.7; 1; 25 3; b;
10; 15; 25.

In the upper part of fig. 4 there is a set of curves T's/p: and in the
lower Tsfp,. The presence of the maximum is remarkably more
pronounced in the former set of curves than in the latter.

Case II)

In fig. 5 the curves of T's/p: and T's/p. are reported for the ratios:
02/01=0.65; 03/p1=100.

and with the same values of he/ 1 as in the case I).

In this case the new curves have no minimum and are of double
ascending type. This is a consequence of the always ascending trend
of the two-layer curves.

Case III)

Fig. 6 shows the same two functions for

p2fo1=1.5;  psfpr=100.
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Iig. 4 — Comparison between the free surface and water-bottom kernel functions in the case of
I -type three-layer section. Parametric values for each curve ave the values of the ratio



Tig. 5 — Comparison between the frec surface and water-bottom kernel functions in the case of
an H-type three-layer section. Parametric values for each curve are the values of the ratio hy/h,.



Tig. 6 — Comparison between the free surface and water-bottom kernel functions in the case of
an A-type three-layer section. Parametric values for each curve are the values of the ratio h,/h;.
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The double ascending trend in the new curves is preserved and
more pronounced.

Case IV)
Finally in fig. 7 the two sets of curves are shown for the ratios
02/01=0.65;  p3/p1=0.2.

The double descending characteristic is now lost and the new
curves present a well marked maximum.

By analysing and comparing all the sets of curves the following
conclusions can be drawn:

a) The new curves are of only two different types as concerns
their general shape:

— with a maximum which includes the old K and @-types

— of double ascending type which includes the old H and
A-types.
This fact does not constitute a restriction but it is a normal con-
sequence of the asymptotical behaviour.

b) A greater resolving power is clearly evidenced in all the new
curves, especially for the littlest values of the ratio hs/h: where the
curves of Tafo, strongly crowd together. The left-hand portion of
these new curves shows still more markedly such important and useful
property.

¢) In the case of the curves with a maximum, corresponding
to K and @Q-type curves for T'3/g,, the suppression principle is com-
pletely overcome. In fact a sight on the T's/g: curves when he/h1 becomes
increasingly smaller show that these curves can be confused with two-
layer curves. This is not the case for the curves of T'sos, since, as we
have previously pointed out, the two-layer curves are always of
ascending type and therefore there will never be any ambiguity.

d) In the case of double ascending curves, corresponding to H
and A-type curves for T's/p:1, the suppression principle is less markedly
overcome than case ¢). Also in this case the T's/o: curves for smallest
values of he/h: can be confused with two-layer curves. The T's/o:
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curves for ha/h; < 0.3 show a visible hump in the extreme left-hand
portion which becomes increasingly pronounced as ho/h1 — 0, so that
also in this case there will never be any ambiguity.

7. — CONCLUDING REMARKS

From the above analysis that has been for simplicity restricted
to two and three-layer sections, but that can be easily expanded to
more layers, the following conclusions seem to be of greatest interest:

a) as concerns the study of the properties of the kernel function,
its treatment is mathematically simple so allowing to construct the
model curve for any desired #n-layered section without the use of ele-
ctronic computers as is the case of the apparent resistivity curves.

b) Regarding the features of the water bottom method, it shows,
when adopted in opportune situations, many advantages as concerns
the resolving power and improvements are gained in eliminating the
ambiguities imposed by the principle of suppression.
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