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SuMMARY. — This paper is concerned with a reciproeity theorem and
a variational theorem in the lincar theory of viscoclastic porous media in
the quasi-statie case.

Riassunto. — In questo lavoro viene trattato mn teorema di reci-
procita ed un teorema variazionale nell’ambito della teoria lincare dei mezzi
porosi viscoelastiei nel caso quasi-statico.

INTRODUCTION.

The theory of deformation of viscoelastic porous solids containing
a viscous fluid has been developed by Biot (1), who has also obtained
a variational theorem which leads to practical methods for the treat-
ments of dynamical problems and stress analysis in viscoelastic porous
materials.

A viscoelastic porous solid is represented as a viscoelastic ske-
leton, with a statistical distribution of interconnected pores containing
a viseous fluid.

Predelanu (1*) has established a reciprocity theorem by making
use of the Laplace transforms. Predelanu and Nan (%) have made
some applications of sueh a theorem.

(*) This work has bheen performed during a tenure of a C.N.R. fel-
lowship.

(**) Cavendish Labhoratory, University of Cambridge. On leave from
Istituto di Geofisica, Universita di Bologna, and Dipartimento di Scienze
della Terra, Universita di Ancona.
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Tesan (8:9:10) has established a method by means of which he was
able to give reciprocity theorems in the dynamic theory of continuea
with arbitrary initial conditions without using Laplace transform, in
the case of non-homogeneous boundary conditions.

Tesan (1) has also given a method to obtain variational theorems
of Gurtin type () using these new reciprocity theorems.

For viscoelastic non-porous media, the reciprocity theorems and
the variational theorems have been given by Leitman (3) and Iesan (12).

Using the Iesan’s method, we have already found a reciprocity
theorem and a variational theorem for isotropic and anisotropic porous
materials (2:3:4:3),

In this paper we want to give the reciprocity theorem and the
variational theorem in the linear theory of viscoelastic porous media.

BASIC EQUATIONS.

Throughout this paper we employ a rectangular coordinate sys-
tem, Ox; (i =1, 2, 3), and the usual indicial notations.

Let B be a regular (in the sense of Kellog) region of space occupied
by a viscoelastic porous medium, whose boundary is X. Moreover BB
is the interior of B, n; are the components of the unit outward normal
to L.

For convenience and clarity in presentation, all regularity hypo-
theses on considered functions will be omitted.

On these grounds, the field equations in the linear theory of
viscoelastic porous media, for the quasi-stationary case, are:

1) - the constitutive equations:
t

O = I Nt —1)éiy () + At — 1) (T) by + Q (t — 7) &(7) d4j] dr,
[1.a]
{

o= J [Q (t—1)é(r) + R (t—7)é ()] dr, [1.b]

-0

2) - the strain-displacement relations:

2 Cij = Wi,j + Uj,i [2]
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3) — the equations of equilibrium:

(0i + dbus)y 5 + 0 Fie = 0, (3]

1) — the law governing the fluid flow:

kogu=¢e¢—e + W. (4]

In the above equations we have used the following notations:
u; — the components of the displacement vector for the solid phase;
g, €y — the components of the stress and strain tensors of the solid;
¢ — the hydrostatic state of the fluid; e, ¢ — the dilatations of the
solid and of the fluid, respectively; o — the density of the solid; F; -
the components of the body forces; & — the permeability of the me-
dium; N, 4,  and R - characteristic functions of the viscoclastic
mediunm; W — the output of the fluid source. A comma denotes partial
differentiation with respect to space variables xx, and a superimposed
dot denotes partial differentiation with respect to the time ¢

Let wus also introduce the mnotion of admissible state
S = {u;, iy, & Oj, a} by which we mean a set of functions ui, ey, €, gij,
o defined on B X (—oo, oo) and such that the following symmetry
relations:

Cij = Cjiy Gij = Oji,

are satisfied.

Since a viscoelastic porous material ‘remembers’ its past history,
we must prescribe the above functions in the body up to some initial
time .. The initial data consist of the functions { Wiy Cijy €y Gijy G § — o
defined on B X (—oo, t,). Without loss of generality we take 1o = 0.
Therefore the initial history condition is:

S =N, on B X (—oo, 0). [5]
If S is an admissible state which satisfies the initial history con-

dition [5], then automatically ¢ and e satisfy the following initial con-
ditions:

e(xz, 0) = lim e(r, 1) == a(x) [6.a]

e(x, 0) = lim e(x, 1) = ¢(r) [6.D]

where @ and ¢ are prescribed functions.
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Moreover, we must adjoin the boundary conditions (%)

gni = fp, on Y [7.a]
oiyny=(1—f)p, on 2y [7.b]

where f is a constant, called porosity, defined by Biot (1), and p; are
prescribed funetions.

By a solution of the considered problem we mean an admissible
state S which satisfies to the field equations [1]-[4], the initial history
condition [5] and the boundary conditions [7].

PRELIMINARIES.

Let f, ¢ and & be functions defined on BX[0, co0), continuous on
[0, o) with respect to the time ¢ for each xeB, we denote by fx¢ the

convolution of f and g¢:
{

(e} (@) = | f @t =)y @, 7)o

0

We will have occasion to use the following well-known properties
of the convolution (7)

fxg = g+f
fe(g=h) = (f=g)xh = fxg=h
fla + h) = frg + foh
Henceforth we will denote by ! the function defined on [0, co) by :
i)y =1 [8]
Let 22 be the function defined on B X [0, co) by:
Q =10=W —(¢g—a) [9]
It is easy to prove:

Theorem 1. If the functions w:, o satisfy the equations [4] and
the initial conditions [6], then:

/ﬂl*o’,” =& -——6€ + !.). [10]
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We will have also occasion to use the ‘‘convolution scalar product™
defined as (M)

f®g) = J fxg dB. [11]

B

If we introduce the notations:

0 0
oy =2 J Nt —1)ey(r)dr + oy J [A¢t—T)e(r)+0Q (—1) & (r)d7,
0 :
6=J Q@t—7)e(r) + R(t—r1)é(x)]dr [12]

the equations [1] can be written as:

Oy = 01y + - (2 Nxeiy + A*céu + Q*Eéu), [13.21]

dt

=0+ Idt (@xe + Rxe). [13.b]

THE RECIPROCITY THEOREM.
We consider the body subjected to two ditferent systems of
loadings:
L@ = {F® po W@ S@} o =1, 2, [14]
and the two corresponding configurations:
C@ = {w(®, ¢@, @ gy gD} g =1,2 [15]

Theorem 2. If a viscoelastic porous material is subjected to two
different systems of loadings [14], then between the two corresponding
configurations [15], there is the following reciprocity relation:

l (V) 4 peWyxu2y AL 4 kf f Ix(pe) + G, i@ dY +

L3

+ J o (Fi) + Fiyxu dB kJ lg,i V%0, dB —
B B
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— ’ (1) — o)A B = ’ (P:@) - gy, W) dY +

+ /.'f l I*([N(?’ + ,71(2));140-#(1) ax + ' 0 (L2 4 Ft"”)*ui(”(”f +
- .

z B
+ K ' Leg,i@ee, i) AB — | (0:@ — g@)x001B [16]
B
where: Pl = — (g 4 6@ y) 0y, [17]
79 = — (1/f) '@ a,, (18]
0 P4 = (0D + 0D duy),s (19]

Proof. From equations [13], we can write:

oyt — oyt — (t (Q*E(l)) (Si) = lt’ (2 l\T*G”u) + Axe) (5”) [20.‘&]
( (

Gy — gy — = (Que) by = (2 Neey® 4 A0 dy) [20.b]

at
d
1) g - (OxeM)) = - (Rxe® 1.
o o g (@xe) = o (Tee) [21.a]
d d ]
g — g — - (Qwe®) = T (Rxg@) [21.b]

By making the convolution product of both members of every
equation [20] and [21] with ei;®), eV, £ and W), respectively, we get:

d
— oyt — §iy — (QreM)]xei?) = ey o (2 Nxey0) +
(

+ e - (AxeW) [22.a]

d d
[04“(2) — gy — (l; ((2*6(2)) (51;]:1:(3”‘1) = ey *ﬁ (2 N:x:cu(i’)) =+
3 (

eMx o (Axe®) [22.b]
at

- Qe e = gz — (Rxe) 23.a

o (QHet)]we e@x o (Rwel) [23.a]
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. , d . it ,
[0@) — o — = (Q#e®)]xe® = gWhx - (Rxe®) [23.D]

It is easy to show:

eyWx —— (Nse = ey — (Nseg), [24.a]
d d
e —- (Axe@) = @)% - (A xem), [;_H,b]
(e at
d
e - (Rxe@) = @ -— (RxeW)), [23.c¢]
ar «r

Taking into account the relation [24], from equations [22] and [23]
we get:

(03,1 — gi)ey2) — Tl? pre e pEos = (G502 — 05@))ke ) —
— 4 (@re@)sem (23]
(W) — gMW)gl@r — o (QxeW)xe2) = (g@ — g@))xgl) —
— (% (QPxe@)e) [26]

By adding these two relations, we have:
(0t — giyD)xe @) 4 (@) — g))ke?@) =

= (0i® — gij@)xey M 4 (@ — o@)ug), [27]

If we introduce the notation:

n

Iuﬂ B J [(0®;; — 6D ) w6y + ('Y — o ®)xe(B)] dB; a, f = 1,2, [28]

from the relation [27] we obtain:
I, =1I,. [29]

Using the equations [2], [3], [10], [17]-[19], we find:

Iy = | 0d® + pi®)sul® aX -+ kf Le(pdD - 7d9) o, (B) +
8 ¥
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) <]

+ J (o Fi' 40 Fi @y (B) dB — k J Ixa,i{ ¥, (B} AB + [30]
n 5

+J lx0,\®xc,(8) dB;
B
therefore the reciprocity relation [16] is obtained from [29] and [30],

and the theorem is then proved.

If we assume So'® = 0, the relation [16] becomes.

pisu® X+ kf j Lep g, dX + J o FiWsy, dB —

> B

b~

—J cxQ@ dB = | p@xu, X + kf | Lepi@xg, M A2 4
B

by

y

pre}

+ ‘ o Fi@su, 1) dB — J o@=QW0d B, {31]
B B

In the case of homogeneous boundary conditions, equation [31]
leads to:

J (oF 1 Wy, @ — g% dB = J (o Fi@%uW) — g@xL2W) dB. [32]
B B
Furthermore we have:
@) =[xy, [33]

and equation [32] becomes:

(0 Fithwu® —lagta W) dB = | (g Futtwust — Lsg W) B [34]
B yi3

SOME APPLICATIONS OF THE RECIPROCITY THEOREM.

Let us firstly consider applications of equation [31] which cor-
responds to the case with S, = 0.
Let us assume that the following loading system:
Fyv =0 (@ — &) 3(t) busy

pil) = W) = q&) = ¢ —= 0, [35]
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where o is the Dirac measure, will generate the following functions:
uy (.17, Ey t)v o (‘Da 57 t) [36]

The Kronecker symbol which appears in [35] expresses the fact that
only the i — th componet of the force is = 0. The indices between
parenteses in [36] mean that u and o are quantities corresponding
to such a force. Then [31] gives

ouj (&, 1) = | prusth dX + J o Fixuih dB +

QxcHh dB + kf | lxpixo,t) dY [37]
Let us now assume that the following loading system:
W =g (x—§)3 (1)
F; = pi) = al) = ¢y = 0 [38]

will generate the following functions:

v (@, &, 8); v (@ §,1) [39]

Then the relation [31] gives:
)

(&, 1) = ji ‘ porvs dY 4 k]‘J Lepisy, dY +
‘X

2
—i—JgF:*L‘; dB + J 0xy dB (
B B
Let us, finally, assume that the following loading system:
¢n =0 (@— [40]
Fi)y = p) = WO = al) = 0
will generate the functions:

04 ("l'a 5, t); = (.’D, 57 t). [41]

Then from the relation [9], it follows that:

D= —¢ = —5 @@ —¢&)



394 1. BOSCHI

and, from equation [31], we obtain:

3

g (& 1) =— 3 J pecw; AY + kf l Laepiserr, AY +
+ J o Fyawy AB + ’ Q= B % . [42]

Let us now consider an application of equation [16] corresponding
to the case S, # 0. Let us suppose that the following loading system:

P = pi(l) =00 = 0, Se # 0, [—13]
with, in particular
F» =0 (@ — &) 6(t), [£4]
will generate the functions:
8 (w, &, 1), g (@, &, 1). [45]
Then equation [16] gives:
ouy (§,1) = — ' Pebraugh dX — kf J Legysg ) X —
> z

— k J L0, 0,9 AB + J (9 — N=Q AV + J (pi + po)xsin A -
B B X

+ kf ’ Is(py — a0 dY + J o (Fi — Fi)x$,0 dB +
X B

+ & J Lo, ixd, ) AB . [46]

THE VARIATIONAL THEOREM.

We want firstly to write the field equations in terms only of the
components of the displacement vector, u;, of the solid and of the
hydrostatic state of stress, o, of the liquid.

From equations [1.b] and [8], we get:

li(c — 0) = Qe + Rse. [47]
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It is easy to prove:

Theorem 3. Let M be the set of all functions {u;, ¢}, in which o
is such that the initial conditions [6b] are satisfied. Then the funciions
of M satisfy the equations [4] and the initial conditions [6], if and only
if the relation [10] is satisfied.

From the relation [10], we get:

kR#lxg,u = R+ — Rxe 4+ R0 [48]

From equations [47] and [48], we obtain:

lx {kR%0,u — (6 — 0)} + (Q + R)xe = R=Q. [49]

From equations [13.a] and [47], we obtain:

lsRx(0iy — 0ij) = 2 NxRxeiyy + (AR — Q=Q)xedi; + Q#lx(c — o) duy. [50]

From equation [3], we have:

I#Rx01,) + lxRx0g, + olxR=F; = 0. [51]

Then, from [50] and [51], we can write:
2 NxRwey, + (AxR — QxQ)xe, + Qxlx(0,i -— o,1) 4 xR0y +
+ #Rx g, + ol+R+F; = 0.
This relation may be written as:
NuRuwy,y; + (NR 4+ AxR — Q#Q)*ur i + 1%(Q + R)*0,i +
+ ol#R«F; + lxR%0ij; — 1xQ*0, = 0. [52]
In what follows without loss of generality we consider the case
in which 8, = 0. In this case the field equations become:
x {kRxo, — 0} + (Q + R)#ttss = R0 [53]
N#Ruuiyj; + (N+R + AR — Q#Q)*ur,ri +
4 Ix(Q + R)*0,: + ol#R+F: = 0. [54]

The reciprocity theorem, given by equation [32], with the equations
[53] and [54], leads to:

’ I#R#(oF W@ + Oixg?) dB =
B

l#Rx(o F i@, 4+ Q@xcW)) dB. [55]

B
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The equation [53] can be written as:
g {kReo,u — o} + 1#(Q + R)xttse = lxR+0Q, [56]
where the function g is defined by:

g =1=l =1.

Let us, now, introduce the notations:

AU = — N#Rsui,y— (NxR + AxR — QxQ)%ur ri — 1%(Q + R)*0,: [57]
AU = g {kRx0yui — 0} + 1%(Q + R)*us.s, (58]

where
U = {ui,0}. [59]

With these notations the equations [54] and [56] can be written in
the form:

au — F [60]

where
F — {olsR«Fy, 1+R+Q} [61]
av = {4.U, A,U} 162]

Also equation [55] by the notations [57] and [58] can be expressed
in another form. Let us write:

U= {m'l), 0‘1)}, V= {uim, (7(2)}
then, from equations [60], [61] and [62], we get:

AU = o l1sR=Fi); AU = exRxQW
AV = o lsRxF2; AV = xR0,

Then the reciprocity theorem [55] becomes:

au=vVdB = | U=aVdB [63]
B B
or, taking the relation [11] into acconnt, we can write:
QU@ V)= (U®av) [64]

This relation shows that the operator & is symmetrical in convolution.
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Let us consider the functional:
Fu) = (@U@ U) — 2 (UDF). [65]
If the operator & is symmetric in convolution, then:
3F(U) = 0, on D, [66]

if and only if UED. satisfies to the equation [60]. D, is the domain
of definition of the operator &.

Let us now consider the vectors U = {u;, a} and V '—*-{1‘1,7;}-
In the case of homogeneous boundary conditions, we have:
@uev) = | lxR#(015 + 001))xv1,; AB — | gxkRx0,%n,: AB 4

3

1x(Q + R)xlxy AB [67]

+ | gxaxn AB +

Moreover, from equation [67], we have:

@u®v)= J IxR#(0gi; + 001j)*usyy AB + J Ix(Q + R)*ur,r 0 AB +

+ f gxoxo dB — l gxkRx0,x0,i AB [68]

In this case, we can write:

IxRx0i; = 2 NxRxeiy + (AxR — QxQ)xe diy + Qlx0dyy [69]

Therefore equation [68] becomes:

QU U) = ’ {[N*R*(u[,, + wyy0) + (AxR — Q%Q)*us,s04
B
+ Qxlxabi]xuiyy + leReoxttrr + 1%(Q + R)*tr,x0 -+

+ groxc — g*kR*a,i*a,;} dB 10]

In our case, the functional [65] has the expression:

DU) = @UOU) —2 J { wirolxRxF; + o*lxRxQ } AB. [71]



398 E. BOSCII
Thus we get:

Theorem 4. Let mCM be the set of all vectors U — {uz, ok
which satisfy the homogeneous boundary conditions. Then

3D (U) = 0, on m

if and only if U € is a solution of the considered problem [60].
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