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R1assunTo. — Con le equazioni che sono servite al calcolo dei rap-
porti delle ampiezze fra le onde riflesse e rifratte, e le onde quasi-longitu-
dinali e quasi-trasversali incidenti su una superficie limite fra due mezzi
trasversalmente isotropi, sono state ricavate anche le direzioni di polariz-
zazione delle onde stesse.

Si sono fatte, inoltre, alcune particolari interessanti applicazioni delle
equazioni trovate. I rapporti delle ampiezze delle onde originate, sono stati
calcolati per I'onda incidente quasi-longitudinale, quando gli assi di sim-
metria dei mezzi coincidono con la normale alla superficie limite.

Nei diagrammi riportati nella nota, si vede chiaramente come i rapporti
delle ampiezze vengano influenzati dal variare dei diversi parametri elastici.

SumMaRY. — The equations leading to the calculation of the amplitude
ratios of the reflected and refracted waves to the incident quasilongitudinal
and quasitransversal waves at a boundry surface between two transversely
isotropic media have, been derived along with their polarisation directions.
Some interesting specialisations of the equations have also been given.
The amplitude ratios of the derived waves have been calculated for the
incident quasilongitudinal wave, when the symmetry axes of the media
coincide with the normal to the boundry surface. The influence of varying
the different elastic parameters has been presented in the diagrams.

ZUSAMMENFASSUNG. — Die linearen Gleichungen, deren l.oesung die
Amplitudenverhaeltnisse der reflektierten und gebrochenen Wellen zur einfal-
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lenden quasilongitudinalen und gquasitransversalen Welle an einer Grenz-
flaeche zwischen zwei transversalisotropen Medien ergeben, sind abgeleitet
worden. Die Polarisationsrichtungen der Wellen sind auch angegeben. Die
Gleichungen sind fuer einige Sonderfaelle spezialisiert worden. Die Ampli-
tudenverhaeltnisse sind fuer den Fall berechnet worden, in dem die Symme-
triachsen beider Medien mit der Grenzflaechennormale zusammenfallen.
Der Linfluss der Variation verschiedener elastischer Parameter auf die
Amplituden ist in einigen Diagrammen dargestellt.

The reflexion and transmission coefficients for the plane elastic
waves on the plane discontinuities between homogeneous isotropic
media were derived by Knott (!) for the first time. Since then
several authors c.g. Zoeppritz (2), Muskat et al. (3), Kocfoed ()
have investigated the influence of the different elastic parameters
on them. But as the methods of the interpretation of the applied
seismics were improved, it was found that the assumption of
isotropy for the media is in many cases doubtful and in certain de-
finitely untenable. It has been shown several times that the upper-
most layers of the Earth’s crust are anisotrope over a few thousand
meters e.g. see Ulrig et al. (3). The ultrasonic measurements of
the clastic wave velocities in some rock samples have shown clearly
their dependence on the direction of the measurement (%) (?) (8) (°),
has examined the implication of the anisotropy for the crustal and
upper mantle structure. Recently Vvedenskaya et al. (), Nuttli et
al. (**) and Meissner (*?) have tried to show the connexion of the
recorded amplitudes and directions of polarisation of the P- and
S-waves with the possibility of the presence of anisotropy in the
mantle and crust. The complicated behaviour of a few travel-time
curves could also be explained through the assumption of the
anisotropy. The theorctical considerations have also led to the
conclusion that the spacial inhomogeneities, which are definitely
present, must give rise to the elastic aeolotropy, mostly transversal
or hexagonal e.g. Postma (¥), Backus (). In order to take these
facts into consideration, the influcnce of the anisotropy on the re-
flexion and transmission coefficicnts has been investigated for a few
simple cases, for example Ossipov (%) (¢), Musgrave (7). In the pre-
sent article these coefficients have been calculated for two trans-
versalisotropic media in welded contact, which have a certain orien-
tation to each other (see below). The explicite formulas for the
arbitrary orientation has also been derived.
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The wave equations for the anisotropic media can be written
down quite generally under the assumption of linear elasticity, no
dispersion etc. as follows:

% U N u :
Cusnr - ‘L =0 - i—i—.Ff, [1]

where:

Cuym = the components of the elastic tensor,

¢ = the density of the medium,

(x:) #x = the orthogonal cartesian coordinates of a point of mass,
(wx) w: — the components of the displacement of the point in the

direction (xk) 2.

Fi; — the component of the body force along the z;-axis.

It has often been shown that there exist three different waves with
different velocities in every direction and that the displacement vectors
associated with them are orthogonal, and further that in the case of
the transversalisotropy (hexagonal type) all waves perpendicular to
a certain axis (mostly vertical in nature) are equivalent. For such a
special case the wave equations become:

0% d-u %y Q2w Ay 0%
=4 — +L-— —3
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Here the notation introduced by Love (¥) has been used, that is:

A:Cu L = 0y
¢ = (.. F = Cp4

As all directions in z-y-plane are equivalent here, one should make
the full use of this symmetry of rotation: for the plane wave the y-axis
should be taken in the direction of the trace of the wave front on
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the z-y-plane. Thus one gets (neglecting the elements containing
22 [dy? and ddyl):

d2y D2 )2 d%w
ST 2u? 22
A% %
Y N L 3b
€ e wr T o (3]
Ot MW 0w -
e T e %

EXPRESSIONS FOR THE PARTICLE MOTION IN THE DIFFERENT WAVES.

It can be seen from Egq. [3b] that it contains only v» and is inde-
pendent of % and w. That means that this wave is polarised in the
direction perpendicular to that of the propagation and the displa-
cement vector is parallel to the symmetry plane. An expression for
such a plane wave can be written quite easily.

One sees from Egs. [3b, 3¢] that these waves are polarised in z-2-
plane. To derive the expression for them the plane wave may be
written as follows:

u = U exp ik (z sin® + 2cos o — Vi) (4]
4
w = W exp ik (@ sin ¢ + 2 cos ¢ — Val)
where:
@ = the angle between the wave normal and the normal to
the discontinuity,
k = wave number = 2z / (wave length),

U,W = the components of the displacement vector in the -
and z-axis,

Va — V(p) = the phase velocity in the ¢-direction.
If one puts Eq. [4] in Egs. [3b, 3c], one gets:
(Asin®g + Leos*g —pV2) U + (L + F)singcosg W =0 [5]

(L+ F)singcosp U+ (Lsin2g + Ccos2p—pV2) W =0 [6]
? p—eVa
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Eq. [6] gives further [7]:

U o - W _
(L + F)sing cos g Asin?g 4+ Lceotep —p V2 (p)
+ N U+ W
- NI + F)2sin? g cos® ¢ + (A sin?g + Lcosp —g V* (p))?
4+ @

J(L + F)sin® @ cos? ¢ + (A sin*@ + L cos? g —p V2 (p))?

with G = J U? 4- W? = the total amplitude.

The signs of & in [7] can be chosen according to the definition of
the direction of the particle motion in the different waves.

For the non-trivial solution for U and W, one must put the de-
terminant of the coefficient matrix equal to zero and solve it. One
gets thus the velocity as a function of the direction ¢:

20V, (p) =(A — Csinp + L+ C) &
:H/(A——Csinﬂq; + L+ ¢ —4(A—Lsin* ¢ + L) (L—Csin*p+-0) +

44 (L 4 F)? sin2 ¢ cos? ¢ (8]

The plus sign belongs to the quasilongitudinal wave (¢ L—), as
this corresponds to the longitudinal wave, if the medium were isotrope.
For a similar reason the negative sign belongs to the quasitransversal
(¢ T —) wave.

The direction of the displacement vector as a function of wave
normal can be determined as follows:

U:w
cos a:cosff = ‘J’ﬁ—u_:w—z—
(L + F)sinpcosp:— (4 — Lsin*p + L Ve (@) [9]

V(L + F)sin g costp + (A — Lsin® ¢ + L—p V* (p))?

(Naturally one can use Eq. [6] instead of [5]. Both of the relations
so obtained are equivalent due to Eq. [8]).
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Thus one gets the following expressions for the ¢L- and ¢T-waves
(the two solutions of V in Eq. [8] are put into Eq. [10] and [11] and
they determine the type of the wave):

(Y
U=+ E\Ti(]q)) - (L + F)sing cos p exp ik (xsing +zcos o — V (@) 1)
¢
w=-+ > (Ad—Lsintg + L—p V- (¢)) [10]

cxpik (@sing +zcosp — V (@) t)
with:
N2 (p) = (L + F)*sin® @ cos* @ + (4 — Lsin?g + L —p V2 (). [11]

As one secs, the different waves are described by the expressions
of the same form, where one has only to assign the proper values of
V(p) in order to get the required wave, from now onwards the gL-
and ¢1'-waves would be called the waves of the I and II type respec-
tively. They would be assigned the same indices. The expressions
in the medium II (one not containing the source) would be represented
by astrisks e.g. 4%, C*, ... ete. ete.

From [10] and [11] one can easily show that their displacement
vectors are orthogonal.

REFLEXION AND TRANSMISSION.

Whenever a wave strikes a surface of discontinuity it is partly
vefleeted and partly refracted at different angles, which are determined
through the Snell’s law, that is here:

sin « sin g sin y

V™ Vi) V)

L+4]

where
a = the angle of incidence,
f = the reflexion angle,
y = the angle of refraction,
i = 1,2 according to the wave type,
Vi(a) = the phase velocity, Eq. [8], in the direction a, measured

from the normal to the surface of discontinuity.
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One can write the expressions of the components of the amplitudes
for the different waves as follows:

(1) Incident wave of I or II type

= — g i [ sin a + 2 cos a \
AL+ IM) s 208 ¢ eXD i :
b N (@) ( ) sin « cos « exp iw \ V. /
= g — i I - si % C¢Of
w (A —Lsinta +L—p Vf-z) oxD iw (-’6 sin a + 2 ¢os a t)

(2) reflected wave of I type

Gy . . @ si — % COS ‘
" = — N(/;) - (L 4 Iy sin f cos B exp iw (z sin v, c0s — t,)
L, . . [msinf—=zcosf |
= — N (A —L)sin®f + L —p Vi) expiw j——F —t)
(3) reflected wave of I type
w—— G (L + Fsiny cos y) exp iw ('/L Sy TSy
Gy . . Si —_— 203
W= — 2‘(A—Lsmzy—1—L—9VZ)expuu(wgmy zoo;y_t>
(1) refracted wave of I type
G . : . . . sin ¢ + 2 cos 0 ‘
6 = — N;d(lé) (L* + F*) sin 6 cos 0 exp tw (ac st ‘—]’r; coso t)
. 20050
W (6)(11* —L*sin2d + L¥ —o* V%) exp iw (w ﬁt)
(B) refracted wave of II type
' i 2¢O \
U = ?dz (L* + F*)sin 5 cos n exp iw TSN - F00sT —1
N* (s
v ( )(A-l ____L_:. Sillzn + L* _Q;;; V*z) exp MU(CU sinny + 2eosy t).
N*(n

Here Vi, = V, or V, according to the wave type.

(For the angles see Fig. 2).

The reflection and transmission coefficients have been defined in
the literature for the isotropic inedia as follows:

(@) as the ratio of the ainplitudes of the derived waves to that
of the incident wave (*®) (29);

(b) as the ratios of the elastic potentials between the different
waves and the incident wave ().
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Since one cannot separate the elastic potentials associated with
the different waves in the anisotropic media, the coefficients defined
under (b) do not have any meaning. Here they are defined there-
fore as in (a).

ARBITRARY ORIENTATION OF THE SYMMETRY AXES.

A situation, which sometime occurs in nature, is that the media
on both sides of the boundary surface separating them have their sym-
metry axes at some angle to the normal to the surface. One may
think of, for example, the unconformities, where the horizontal strata
are tilted, croded and subsequently overlain by new sediments. In
such a case one would find the symmetry axis in the underlying medium
at the angle of tilting to the unconformity, whereas in the overlying
medium it is perpendicular to it. Below the expressions for the re-
flexion and transmission coefficients are derived for a case, where the
symmetry axes in both media are not perpendicular to the boundry.
The above mentioned case would then be obtained by letting the axis
coincide with the normal to the boundary.

Let the angle between the normal to the boundary and the sym-
metry axis in medium I (containing the source) and II be ¢ and ¢*
respectively. The normal and the tangential components of the displa-
cements and stresses can be obtained as follows: w and w are trans-
formed as vectors and stresses as tensors of second order under the
rotation of the axes:

% = %' cos @ — w' sin @
17 T 1’ [13 ]
w = %' sin ¢ + W’ cos ¢
and
Ty — Qigrr Qe Tyrener [132],]
with &', I, ¢ and § = 1, 2, 3 and au as the cosine of the angle
between x: and zrr-axes (see Fig. 1).
For the stresses one has:
Toz — Tyz = Tatryr sin @ + Tyrrzrr COS @
Tig — Tzz = (Tarrarr — Terrzrr) SIDQ COS @ 4 COS 2 @ Tarrzrr  [14]

T3z -— Tzz = Tgrrgr Sill2(p + Tzrrz07 (‘,OS“(p + Txttp2? Sin 2 (p .
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As mentioned above the pure transversal wave XEq.[3b] has its
displacement only in the y-direction. According to Eq. [14] and the
definitions of 7.z, Ty ete. ete. it give rise to 7zy, T2y only, as generally:

d
Ty = L 30/ 4+ dwfoy) = L 2

Tz = L Qufoz + dw/ox)
Tz — Qwfoz  + Fodufox

Tzy = N Qufoy + dfox) =N — .

Fig. 1 — 0%, the normal to the boundry z = 0, OZ”, the symmetry axis

z Y z
x”’ cos @ 0 — sin ¢
y"’ 0 1 0
2’ sin ¢ 0 cos @

One has the followings boundry conditions (the two media in

welded contact):
) = u (z, —0,1)
w (x, +0,t = w(x, —O0,1) 15]
) = Tz (X, — 0, 1)

With these conditions one gets:

_&—(Jgﬁm sina cosa COS‘P_EV% (A—Lsin*a + L —p V¥)sing 4

NG(’I;) + #)sinBeosfcosp + (A —Lsin*f + L —g V3) sing] 4

¥ o) [— (L + F)siny cosy cosp+(A—Lsin®y + L—g V) sing] =
Y

[16a]
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Ga
V)
[— L* 4 F*sin § cos d cos p* + (A* — L* sin?d 4+ L*—p* V*)sin p*]+
Gaz
_|_ ) .
N*(n)
(L - F* sinz cosncos@* + (A*—L*sin®y ++ L¥* — p* V*) sin p* ],
[16a]
je [—Ld:‘:f sinacosasing + (4 —Lsin?a + L —p V?) cos ] —
—Z-V_(_ﬁj[L + FsinfcosfBsing + (A—Lsin?f + L—p v;)cosp]—
v (y) [L + Fsingcosy sing + (4 — Lsin®y + L—g V?) cos p] =
Ga
N*(9)

[—L* + F*sindcosdsing* 4 (A* — L*sin?d 4 L* —o* V*2) cos p*] 4

N* ()
[L* 4+ F*sinycosn singp* — (A* — L*sin?y + L* —p* V") cos p*],
[16 b]
G
T VN

: g[(A—F L4+ F 4 C—F - A—L)sinta + C (L —p V)] -

- cos a sin @ cos ¢ — Lsin a cos 29 (F 40 V2—A 4 I sin? a)g +

—+ _N(ﬂ)_:Vl{[(fl — 0. L4+ +C—F- - A—1L) 81112/3+
+ C(L—p V¥](—cosf sinpcosp) + Lsinfcos 2p(F +o VE—A + F sinzﬂ)i +
Gra — e

+ C (L —oV¥](—cosysingcosp) + Lsiny cos 2¢ (F + ¢ V:— A + F sin? 'y); =

— I
e (6)"’;,, (A% —F* . L* 4 F* 4 C*— F* . A* —L*)sin?6 +

+ O* (L* —p* V**)]sin p* co3p* cos § + L*sin 6 cos2¢p*
c (F* 4 0% V32 — A% + F*sin?d)y + [16¢]
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Gaz
N* )V,
+ C* . (L* —pg* V;?)]sin ¢* cos p* cos + L*siny cos 2 p* (F* 4

J[(A* —F* . L* 4 F* 4 C*— F* . A*—L*)sinty +

o* 12— A* 4 F*sin*y), [16c]
N (a [h,, a,p) + Lsinasin2¢ (F + o V*— A 4 Fsin® a)] +

F oo (B + LsinBsin2¢ (F + o Vi—A 4 Fsin®*f)] +

Y

. (:, {he (@) + Lsinysin2¢ (F +p Vi — A 4+ Fsin®y)] =

+

7 "N* [h ¥} + L*sind sin 2 p* (F* 4 g* I"*2— A* 4 F* gin?9)]
g N [h4 (7, *) 4+ L* sin 7 sin 2
- (I 4 p* VR — A - F*¥sin? )], [16d]
with

Iy (wyp) =(4d —F.-L 4+ F+ A —L-C—F)sintosinte +
+ F(L+ F)— C (A — L) sin?w—(L—p Vi) (F—C)sin* p—C (L—p V?).

The index 4 gives the two types of waves.

The solution of the Iqs.[16] gives the ratios of the amplitudes of
the different derived waves to that of the incident wave.

(One must bear in mind that all the angles in Egs. [16] are to be
measured from the symmetry axes).

A. — SPECIAL CASES.

A very common case arises when the symmetry axes in both
media coincide with the normals to the boundary surface, for example
in the crust, where the anisotropy is due to the layering. One can
obtain the formulas for this case, when one puts ¢ = ¢* = 0 in the
above Eqgs. [16]. So one gets:

aix - G = o + Go ib=1,. .., 4) [17]
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with
G = Gny, G — Gu, Go=Ga, Gi=CGa
and
a, = — (L + F) sin f cos B | N (B)
a, = — (L 4+ F) sin y cosy | N (y)
a,; = + (L* 4+ F*) sin 6 cos o | N* (d)
a,, = — (L* + F*) sinn cosn | N*(n)
ap = + (L4 F) sina cosa /| N (a)
ty = — (A —Lsin®f +L—oV? | N(p
Ugy = — (;1——L sinty + L —p VI) /| N (y)
gy = — (A% — L* sin + L* —o* V*2) | N* (6)
@y = + (A% —L* sin®y + L* —o* V°) | N* (n)
ay = — (4 —L sinta + L—pV-) /| N (a)
ay = — L sinf (4 + Fsintf—F —p VH /N (B) V,
4y, = — L siny (A4 + F sinty —F —o VY | N (y) V,
gy = — L*gin § (4% + F* sin2§ — F* —p* V*2) | N* (§) V*
tsg = + L*siny (A* + F*sin®y — F* — o* V32) [ N* () V*
Uyg = — Lsinar—i—lﬂsinza—F—Q V)| N(a)V

gy = + [C(A—L)—F (L + F)sin?f + C (L—o V¥]cos B/ N

tgp = + [0 (A —L)—F (L + F)sin*y + C (L—op V)] cosy/N (y)V.

ay = — [0% (A* — L*) — F* (L* 4+ F*) sin? 6 + O* (L* — o* V}?)]
cos 6/N*(6) V;

Gy = + [OF (A* — L*) — F* (L* + F*) sin*y 4 C* (L* — o* V2%)]
cosn [ N*n)V;

g = — [C (A —L)— F(L + F)sin?a +C (L—p V)] cosa/N(a) V.

The different angles (see Fig. 2) are to be determined from the
Snell’s law, wlheih holds for the wave normals (and not for the rays)
Eq. [12].

With

sin «
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one obtains:

sin 8 (vY = #n '|/(a + b n_z)_j:__\/(a_—{— b n®)* — E(Qf_ / n® + gni_)
¥ 2 (o* —fn* + gni)

Z,W qT-Welle

Fig. 2 — Angles, at which the different waves are reflected and refracted.
Wellennormale = wave normal, einfallende Welle = incident wave, ¢L-
and qT-Welle = ¢L- (I type) and ¢T- (Il type) wave.

with
=poL+0), ¢e=4LC, [f—-9o4d—0),
=L+Fr—-0CA—-L)+L(C—-L),
g =L+FP—A—-L)(C—L).

where, as before, the plus sign belongs to the wave of I type and to
the angle 8. A similar expression holds for the angles in medium II.

B. — FURTHER SPECIAL CASES.

Uptil now it was assumed that both of the media were transversal
isotrope. In the natural conditions one finds very often that one
of them is very approximately isotrope, e.g. if the strata underlying
the oceans were anisotrope (2?). In the following are given some
few of such interesting cases.
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1) Free Surface (surface of the BEarth for example).

This means that the second medium is practically vacuum. In
other words the elastic constants as well as the density vanishes
there. In Eq. [17] one sets therefore:

A* = C%* = L* = F* = ¥ = 0
and gets:
U1+ Gr 4 A3z - Ghre = g0 - Ge
(a1 - Gy + daz + Gra = a0 - Ge .
One can calculate the reflexion coefficients for the two waves

from these two equations. aix here have the same meaning as in {17].
Obviously there no refracted wave in this case exists.

2) Liquid against anisotropic medium.

Here one gets two cases according as the medium I or IT is liquid:

a) Let the medium IT be liquid, so one has to set:

A = OF — F* — )% and
L* = 0

(This is valid for isotropic liquids; they can always be considered
to be isotropic).

As the liquids can glide against solid, the continuity of the tan-
gential displacements cannot be assumed to hold; one can neglect it.
With the above mentioned changes in the elastic constants the
following aix are simplified to:

A = Q) = A3 = Qg = Qgy = gy = Gy = Q33 = v,
@y = + cos 0,
Ay = 0* V1.

With these changes in Eq. [17] one can calculate the reflexion
and transmission coefficients.

b) Let now the medium I be the liquid. One has then to set:

A=¢=F =1, and
L =20



[
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and get:

Ay = Qg — B3 = Ay — Ggg — O3y = A3y — dyy = 0,
Ay == + COS « Az = 0 ayp = oV
a, = + cosp a, = —po V.

In the present case the incident wave can only be of P-type (type I)
because no S8-waves (IT type) can propagate in the liquids.

3) Medium I, isotropic solid.

Here the source can radiate pure longitudinal or transversal
waves only. Therefore:

a) incident P-wave

Here one has:

A =0C=21+4+2u, L =u F =241,
and the following changes in a:
a,, = — sin g, Gy = — COS ¥ ,
ay, = + sin a, ay, = + cos B,
Gy, = — SIN y , yp = + COS a,
a = + (o I’;/Vl) -sin 2 8,
ag, = oV, cos 2y, agy = — oV, cos 2 8,
ap = + (o V3/V,) -sin 2a,
a;, = + oV, sin 2y, gy = + oV, cos 2a.

b) incident S-wave

Here one has similarly:

a, = + cos a,
Gy = — 8in a,
O3 = + 0 ¥, cCO8 20,
ag, = — o Vysin 2a.

All other as remain as in [3a].
In the above expressions V, (V,) is the velocity of P (8) waves
in the isotropic mediun.

4) Medium 11, isotropic solid.

The source can send here the qL- or ¢Z-wavess. Both of the
types can be treated here as before together because of the similar
almost identical (except in V), form of the two expressions.
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The transformation to isotropy in the medium II can be per-
formed as follows:

L* = p*, A* = C* = J* 4 2pu%, F* = }%,

One gets then:

@y = + €08 0, tgs = -+ sin 9,
G = £ VIOV, et @tV cos 20,
a4y, = — €08 77, y = + sin 7,

Ay = — 0* V] cos 27, Gy = + 0* V* sin 2 9.

It can be shown very easily that Eq. [17] give the same equations
determining the amplitude ratios of the derived waves to that of the
incident wave as in the case of isotropy, if one transforms the elastic
constants of the anisotropic to those of the isotropic media (*°)
For example one gets the following equations for the incident
P-wave:

Grl Gr8 Gdl Gdz Ge
+ sin f -+ cosy — sin 6 — cos 7 = — sin §
— cos f3 + sin y — cos 0 — sin 7 = — cos f
-s8in2¢ . cos 2 7
V. . o* V¥V o* V5 .
—c0s28 4+ —sin2y 4+ * L cos 20 + 2 8in2n =-cos2y.
Vi 4 eVy e Va g 4
RESULTS.

In the following diagrams the calculated results for the reflexion
and transmission coefficients as function of the angle of incidence are
shown for the incident ¢L-wave (I type). The results were obtained with
the help of the computer Telefunken TR 4 of the Bayerische Akademie
der Wissen-Schaften. The coefficients have been calculated for every
fifth degree, and for every degree near the critical angle. The direc-
tion of the particle motion was also tabulated, from the Eq. [9]. These
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tables are not reproduced here owing to their large volume. They
can however be seen in the library of the Institut fiir Angewandte
Geophysik der Universitdt Miinchen.

Fig. 3a: The amplitude ratios.

R1 and R2: reflexion coefficients for waves of I type
T1 and 72: transmission coefficients for waves of II type.

The angle of incidence has been taken (a) as that of the wave
normals (b) as that of the ray. R1 and RE2 are the reflexion coecffi-
cients for the wave of the I type (quasilongitudinal) and II (quasi-
transversal) type respectively. 71 and 72 are similarly the trans-
mission coefficients.
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(In the results presented here the normal to the discontinuity
surface coincides with the symmetry axis in both media).

Fig. 3a shows the amplitude ratios of the derived waves as a
function of the direcetion of the wave normals for the media: zine

ANGLE OF INCIDENCE (RAYS)
Fig. 3b — The amplitude ratios.
The full drawn curves are for zinc/beryl, the dotted for three hypothe-
tical isotropic media, which have some of their elastic constants common

with zine and beryl. The numbers on the dotted curves point to these
different cases, for the constants see text.
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against beryl. The elastic constants were taken from Hearmon
(1961).

P = 0,917 P* = 2,7 gr/em3

Tig. 4 — The amplitude ratios for ice/schists.

Fig. 3b shows the same as function of the ray direction. In
order to bring out clearly the difference between the coefficients for the
isotropic and anisotropic media, the results are also shown in Fig. 3b
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for three hypothetical isotropic media, which have some of the elastic
constants common with those of the allied anisotropic media that is

r P =264 P =3014 gr/em?3
‘ A =40 A*=2,0
b C =2706 *= 8,51

11 2
{,‘0 F - 1067  F*=2629 | 107" dynfem

= 0,814 "= 2431

Fig. 5 — The amplitude ratios. A case without critical angle.

zinc and beryl. These hypothetical media have the folloving constants:

case 1: p = T1glem® (A4 = C =) 1 + 2u =143 104,
(L =) u = 4104
o* = 2,Tglem® (A* = C¥=)A* | 2u* = 23,63 - 10",
(L* =) u* = 6,53 - 101
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case 2: (A=C=)A+2u=143.10" (L=)u = 5,5-10"
(A* = C%) A* 4 2 u* = 26,94 . 101 (L* =) ‘u,* = 10,165 - 101
case 3: (A=C:l—|—2/u=5-10u(—-) = 8,5 - 101

(A%= C*=) 1* + 2u* = 23,63 - 10" (L:)msal-lo11
Zine: A =143 (€ =50 F =33 L = 4,0 (allin 10" dyne/cm?®)
A =26,94 0 = 23,63 F =6,61L = 6,53 (all in 10" dyne/cm?)

= 2,64 P*= 3,014 gr/iem?3
= 4,0 A% - 4,0
= 2706 c* = 6,151 " 2
- 7067  Fr=o2629| 107 dynsem
= 0,814 [ =243

e ——— e

Fig. 6 — The amplitude ratios. Critical angle 900.

(In the cases 2 and 3 as well as zine and beryl the densities are
the same as in case 1. The constants are in dyne/cm?).
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The difference between the critical angles for the anisotropic and
isotropic media is due to the fact that the ray directions deviate a lot
from those of the wave normals in anisotropy, whereas in isotropy

10 20 30 40 50 60 70'

A/a,
I
(b)
R% 72
—
4 10 20 30 40 50 60 Grod

Fig. 7 — The amplitude ratios.
0 = o* = 2,67 g/fem?®, 0 = C* = 10,38, 4 = 10,38, 4* = 13,23,
= F* =441, L = L* = 2,98 in 10" dyne/cm?.

they are the same. As to the behaviour of the amplitude ratios the
maximum deviation from the isotropic cases occurs for 7'2. In the
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isotropic cases there is no extremum, while the anisotropy shows a
minimum. Besides there is a phase difference of 180 degrees for the
two media, for the whole range of angles except in the immediate neigh-

bourhood of the ecritical angles. The reflected wave of II type has
less amplitude in the anisotropic media here. The reflected wave of
the I type shows also a noticeable deviation. Apart from the dii-
ference in the critical angles, which exists for all the waves, the be-
haviour of the curves in both of the cases is similar excep for the
phase difference of 180° between them as with 7'2.
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Fig. 4 (a, b) shows the amplitude ratios as a function of the ray
direction as well as wave normals. Here Medium I is ice, while the
medium II consists of the schistose rocks. (The elastic constants of

9 =264 £ =304 gr/em3

these schists were taken from Schmidt (?%)) The amplitudes of the
reflected waves are greater than those of the refracted ones. It is
to be noted that in the ice the velocity in the vertical direction is
greater than that in the horizontal.
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Fig. 10 — The influence of varying A* on the amplitudes
of the refracted waves.
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Fig. 5 (a,b) shows a case without critical angle. One sees that
the wave of II type is not transmitted so strongly as the other one.

Fig. 6(a,b) shows a similar behaviour of the coefficients, if the
critical angle were 900,

Fig. 11 — The influence of varying p*/p on the amplitude.
o = 2,64 g/femd, A = 3,7, A* =10, C = 2,71, O* = 8,15,
I'=1,07, F* =263, L = 0,81, L* = 2,43, in 10" dyne/cm?.

Fig. 7 (a,b) shows a special case, where all the elastic constants
except A, which determines the longitudinal velocity in the hori-
zontal direction, are equal in both of the media. Medium I is iso-
trope. A*/A = 1,27, that is the horizontal velocity in the medium
IT is about 139, higher than that in the first medium. Here the
reflected waves (both types) have very small amplitudes up to about



REFLEXION AND REFRACTION COEFFICIENTS, ETC.

297



298 GULZAR AIIMAD
50° while 7'1 is the greatest. Fig. 8 (a,b) shows a case where both
media are anisotropic due to the periodic layering of the sandstones

Fig. 13 - The influence of the variation of F*/F on the amplitudes
(for the constants see Fig. 11).
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and limestones in different thicknesses (1¢). Figg. 9 (a,b) and 10 (a,b)
show the influence of the variation of 4* on the amplitudes of the
reflected and the refracted waves respectively, as a function of the ray
direction. Apart from shifting of the critical angles, the extremum of
R1 and R2 also shifts towards lower angles.

In the last three diagrams (Figg. 11-13) are shown the influence of
varying the ratios g*/p, C*/C, F*/F upon the amplitude ratios of
the derived waves. Most interesting is the influence of C*/C for
C*¥/C = 0.5. The transmitted wave of II type (7'2) has here the
maximum amplitudes near the vertical, whereas it is very small for
the other cases in this range. It can further be seen from Fig. 13
that the variation of F*/F has little effect upon T1.

For the time being the results are presented for the incident
gL-wave up to the smallest critical angle only. Itis intended to extend
them to the other cases over all the angles in near future.
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