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RIASSUNTO. — In questa seconda parte, vengono studiati i rapporti 
dell'energia fra onde riflesse e rifratte dalla superfìcie limitante due mezzi 
trasversalmente isotropi. L'equazione dell'energia è stata ricavata tenendo 
conto due volte dell'energia cinetica (a), due volte dell'energia potenziale (ft). 

I rapporti fra le onde originate e l'onda incidente quasilongitudinale, 
sono stati calcolati per il caso particolare in cui l'asse di simmetria coincide 
con la normale alla superfìcie limitante i due mezzi in questione. 

SUMMARY. — The energy ratios of the reflected and refracted waves 
at the boundary between transversely isotropic media have been investig-
ated. The energy equation has been derived on two bases, namely as (a) 
double of the kinetic energy, (ft) double of the potential energy. The ratios 
of the derived waves to that of the incident quasilongitudinal wave have been 
calculated for the particular case, where the symmetry axes of the media 
coincide with the normal to the boundary surface. The influence of varying 
the different elastic parameters is shown in a few diagrams. 

ZUSAMMENFASSUNG. —• Die Energieverhaeltnisse der an einer Grenzf-
laeche zwischen transversalisotropen Medien reflektierten und gebrochenen 
Wellen sind untersucht worden. Die Energiegleichung ist auf zweierlei Art 
aufgestellt worden, naemlich als (a) doppelte kinetische Energie, (6) doppelte 
potentielle Energie. Die Energieverhaeltnisse der aufgespaltenen Wellen sind 
fuer die einfallende quasilongitudinale Welle fuer den Sonderfall berechnet 
worden, in dem die Symmetrieachsen beider Medien mit der Grenzflaechen-
normale zusammenfallen. In verschiedenen Diagrammen ist der Einfluss der 
Variation verschiedener elastischer-Parameter dargestellt. 
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In this article the energy ratios of the derived waves would be 
investigated, when a plane elastic wave strikes a surface of disconti-
nuity between two transversely anisotropic media. 

As is generally known, in an elastic medium the total energy con-
sists of (a) kinetic (b) potential energy. The latter is obtained by 
multiplying the stress tensor with the strain tensor, while the former is 
proportional to the square of the velocity of the particles in the medium. 
In elastic waves both of them averaged over a full period are equal. 
Accordingly there are two methods of calculating the total energy (or 
energy flux) in a wave, namely as twice the: 

(а) kinetic energy, 
(б) potential energy. 

In the following the expressions for the ray velocity (the velocity 
of the energy propagation) and its direction as a function of the direc-
tion of the wave normals would be derived, since they would be needed 
for the calculation of the energy flux. 

R A Y DIRECTION AND R A Y V E L O C I T Y . 

I t is a characteristic property of the wave propagation in the 
anisotropic media that the direction and the velocity of the propaga-
tion of the energy (ray energy or, with some authors, group velocity) 
deviate from the direction of the wave normals and the phase velocity 
respectively, see for example Lighthill (l). That the displacement 
vector also deviates from the ray or wave normal - direction can be 
seen from Eq. 9 of the last article (2). 

Lighthill has extended an argument of Rayleigh (3) for calcula-
ting the group velocity to the three dimensional case as follows: 

U = grad <?/(?> ff/3 w) 

where: U = the group or ray velocity, [1] 
G = the slowness surface. 

Rudzki (1911) has given a parameter expression for the calculation 
of the ray direction and velocity. Another method to calculate the 
ray direction as a function of the wave normals directly is to use the 
energy vector, that is, the vector which points in the direction of the 
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energy propagation (ray direction); namely the following identity 
must hold for it: 

^ horizontal component of the flux 
° vertical component of the flux ' 

and the components of the energy flux can be obtained from Eq. [2] 
Love (2): 

Fx — (« • Txx + V • Txy + tv • Txz) , 

F y = (M • Xyx + À • tw + W • Tyz) , [ 2 ] 

Ft = (Ù • txz + V • Tyz + lb • Tzz) , 

where u, v, w and Tit are the x-, y-, z- components of the displacement 
vector and stress tensor, and the dots on them mean the differentia-
tion with respect to time. 

From [2] one gets: 

t g / ? = t g 9 . « 1 ^ > + _ a 2 s i n > + a3 
8 p 8 r a4 sin4 <p + a5 sin2 <p + a8 ' 

where: 

ai = L (A — L* — L + F2) , 

a2 = L (L+Fy + {L—q V2) [(£ + F)2 + 2 1 ( 1 —-L)] , 

a3 = (L — q F2) [L(L—Q F2) — L + F2] , 
a4 = G {A — LY — {L + Ff A , 
a5 = L {L + F)2 + {L — q F2) [2 G (A — L) — (L + F)2 

a6 = C ( £ — g F2)2 . 

T H E E N E R G Y F L U X : ITS CALCULATION FROM THE KINETIC ENERGY. 

In the following it would be assumed that the ray velocity and 
its direction are known, since they can be calculated quite easily from 
Eq. 3 and (6) (see below). 

Waves of I or II type. 

As in the last article (2) the quasilongitudinal and quasitransversal 
waves in the anisotropic media are termed here the waves of the I 
and I I type respectively. Owing to the very similar (almost identical) 
form of their representation through a plane wave, they can be con-
sidered here together. The energy flux of the individual waves may 
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be calculated separately and then added together to give the total 
energy (6). A plane wave of both types can be written as follows: 

_ L + F . fx sin <p z cos m 
u = — G , , sm w cos cp cos co — t 

N (99) \ F 

G — . T ¡x sin w + z cos w 
w = ——r {A —L sm2 ffl + L — Q V2 cos w r — — t 

N (<p) \ V 

with 

N2 (<p) = (L + FY sin2 95 cos2 tp + {A — L sin2 cp + L — g F2 (cp))2 . 

The kinetic energy per unit volume is given by: 

F = E V. S , [4] 
where: 

F = the energy flux, 
E = the total energy ( = twice the kinetic), 
F , = the ray velocity, 
S = the surface of the wave front, which takes part in the 

reflexion and transmission process. 

The energy flux per unit surface of the boundai-y surface would now 
be calculated. Prom Pig. 1 it is clear that the energy contained in 
the wave surface A G propagates along A" A — B" B. Imagine a 
bundle of rays and follow its path. I t would distribute itself on 1 5 
of the boundary surface. One has: 

AD = AB cos fl , 
= AG cos (/5 — cp) , 

where 
¡j = the ray direction , 
<p = the direction of the wave normal , 

and 
AG = AB cos /? I cos (fi — cp) , 

= cos (} I cos (¿3 — cp) with AB as unit . 

The energy flux is therefore: 

„_oTr cos B . n (x sin cp + z cos <p \ 
qco'GPV, TII —N • S M M ZZ — t . [5] cos (/? — 95) 

Bq. [5] shows that the energy flux varies periodically. The net flux can 
be found by averaging over a period. 
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One has farther the following definition 

V. cos (P — (p) = V<p. [6] 

Eq. [5] becomes then (using [6]): 

r, , „™.-rrtCos/9 • sin V + a cos w \ 
Energy flux = qo>*G*V] - — - • sin2 co - — t . 

V<p \ V ) 

Similarly the fluxes of the other waves can be determined: 

Ki 
We 11 eniormale 

Fig. 1 - Energy considerations. Wellenfront = wave front. 
Strahl = ray. Wellennormale = wave normal. 

Reflected ivave of I type: 
„ COS Brl . „ /»sin cp* — Z COS (B* \ 

Fri — q co2 G\ 1 F2«i J • sm2 co r Tr i 
V ri \ frl / 

Reflected wave of II type: 
„ tt * cos ßr2 . , I x sm y •— z cos y \ 

Fr2 = JOI ! (x r2 F2 , —fT1 • sm2 CO r-r=. L — t , 
t r2 \ V r2 / 

COS 

Refracted ivave of I type: 
„ „ cos Bti . fx sin (5 + a cos <5 \ 
F,n = q* co2 (?2di F2„3 — ~ • sin2 w ( <) , 

Refracted wave of II type: 
_ cos /?a2 . Ix sin w + 3 cos ?? ,\ 
F S 2 = o* a»2 (?2i2 F2«4 • sin2 co ^ ' — t . 

V d2 \ Ki2 / 

Here are /5ri, /Sra, fS<n, £<¡2 and cp, cp*, y, d, t] the angles of 
rays and wave normals of the incident, reflected wave of I and I I 
type, refracted waves of I and I I type respectively. The index s in 
F,i etc. points to the ray velocity (German: Strahlcligeswindigkeit). 
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According to the law of the conservation of energy, the total 
energy of the derived waves must be equal to that of the incident: 

o w2 (i2e V2.e C0-/- oo^rl V2, C°*/rl + ooj'G^V^ ^ + 
Ve V rl ' r ! 

+ . . . o*a>-G-di F2»3 —= \- p ftru ii K »4 T,— Kil ' <22 

or with the incident flux as a unit: 

! _ flj, I72'1 h . C 0 S Ä i + J t f p Z!ü Z i . COS ßrj 
V2,e Vrl COS ße V»„ F r 2 COS T 

, 772 cos ßj} , T I r üü. e*X± 008 ft* 
^ Q V2,e Vdl COS ße J gV2s, Vdi COS ße 

[ 7 ] 

Further if one likes to save the trouble of calculating the ray 
velocity, one can use Eq. [6] to eliminate it from [7]: 

[8] 

_ R r F r i COS/5ri_COS2 (fie — <p) Vr* COS j8r a COS2 (fie — f ) 

~ ' Ve COS cos2 (pr1 — <p*) ' V. COS fie COS2 (/3r2 — y) 

2'/2 C0S C0SZ — ̂  -I- TIF- Vd2Q* cos Pde cos2 ih. — T> 
" Ve'g COS /3. COS2 0?di — <5) + FegCOS ( 8 . C O S 2 (ySca — ?j) ' 

with: 
i?Z = the reflexion coefficient (amplitudes) of wave of the I type, 
B I I = the reflexion coefficient (amplitudes) of wave of I I type, 
TI = the transmission coefficient (amplitudes) of wave of I type, 
Til — the transmission coefficient (amplitudes) of wave of I I type. 

(Note that RI . . . Til are to be determined as described in the 
last article) (2). 

If in the medium I, that is the one containing the source 
of disturbance, the symmetry axis coincides with the normal to the 
boundary surface, fie can be set equal to /3n or fjr2 according as the inci-
dent wave is of I or I I type. 

[The astrisks wherever they occur, characterise the elements 
belonging to the medium I I (not containing the source)]. 

For the wave of I type: 

i = b p + r i p ^ c 0 s f 2 c ° s ; f - y ! + 
Ve COS fie COS2 (P r 2 — / ) [ 8 a ] 

T P Vdi COSpd 1 cos2 (Pe — <p) g* T i r g* Fd2 cos cos2 (pe—<p) 
Ve COS Pe COS2 (/3di — 6 ) g g V, COS Pe COS2 (/Sd2 — Yj) ' 
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For the wave of II type: 

= Vn COS COS2 ( f t . — <p) 

Ve COS fie COS2 CfH rl 

+ 7UP + TP ^ 
Q Vc C O S ft, c o s 2 (/3di — (5) 

, T ] J : , Q* Vdt c o s c o s 2 (/3e — 9 ? ) 

g 7 e c o s /Se c o s 2 ( / S d 2 — r j ) 

In order to see the correctness of the above formulae, they may be 
specialised for the isotropic media, that is, the ray direction and velocity 
are set equal to the direction of the wave normal and the phase velocity 
respectively. The result is: 

i = EP + rip y<;C0R y + TP q ^ i i + TIP ¿ J - ™ * , 

V e c o s 9? p F e c o s < p g F e C o s q u 

and with the help of Snell's law: 

t~w sin 2 y p* sin 2 ò „,TT q* sin 2 r\ 1 = IIP +RIP . „ Y + TP "-, - 1- TIP . [9] 
s i n 2 cp q s i n 2 cp q s i n 2 cp 

This is the same expression as obtained by Blut (6) for isotropic 
media. 

SPECIAL CASES. 

In the following, the above formulae would be specialised for a 
few interesting cases, which occur frequently in nature. 

(1) Free Surface. 

Here the density and the velocities would practically vanish in 
medium II . Setting this in Eq. [7], [8] etc. one gets: 

1 _ p j 2 cos ß» , RIP V'"V<coaß" . [10] 
~ V2,e Vrl COS ße + F 2 „ F R A COS ße 

(2) Incidence against a liquid. 
The following changes would be made for an incident longitudinal 

wave: 
F « 3 = 7 « , 7 , 4 = 7 d 2 = 0 , ßdl = Ö , 

to get: 
_ V'tlVe COB ßrl 7 2 , a 7 , COS ft, V«V. CO* ö Q* 

1 ~ 7 a « » 7 r l COS ß, + IiU 7 2 „ 7 r 2 COS ße + 11 V^OOSß.Q 111J 
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and: 

= R p Vn cos fin COS2 (Pe — cp) Fr2 COS /3,2 cos2 (p. — y) 
Ve cos fi, cos2 (fin —q>*) F* cos pe cos2 (/?r2 — y) n , [licij 

T J 2 e*Fdt cos d cos2 (ft. — y) 
gFe cos 

(3) 1/ the medium I be liquid, then the following substitutions are to 
be made, 

pn = , F,s = Vr2 = 0 , 7.1 = Vn = Vs. = 7 e , 

to obtain: 

i = ^ + T p g * ^ 2 , 3 T ' C 0 S ft*1 + t i p , [ i 2 ] 
gF2e F « cos y gVe Vdi cos <p 

and 

1 = PZ2 + TP g*7n COS + T i p Q* Vai COS ßt 

[12a] 

Q Ve COS Cp COS2 (jSdi — (5) Q Ve cos <p cos2 (/3i2 — rj) 

(4) One of the media: solid isotropic. 

(a) Let the medium I be isotropic solid. With the coincidence of 
the ray direction with the wave normal, one gets for the incident P-wave: 

i = BP + b i p + + ot^I [ 1 3 ] 

sm 2 y gVeVdiCOStp qVeVd2 cos cp 

and for incident 8-wave: 
! = Rp + BIp + TP g7;3COS^ + tip . [i*,] 

sm 2 cp q Ve Vdi cos rp q Ve Fd2 cos y 

(b) If the medium II be isotropic solid, one would get for the 
incident P-wave: 

= Fri cos Pn cos2 (Pe —cp) RIJ[2 Fr2 cos /?R2 COS2 { P E — y) , 

Fe cos /?« cos2 (/3ri —y*) Fe cos /?, cos2 (0r2 — y) " r 

T p g*7ai cos Ô cos2 (Pe — cp) T I p Q*Vd 2 cos q cos2 (Pe—cp) 
Q Ve COS /S, g Ve COS P, 

There would be more simplifications in the formulae, if the sym-
metry axes coincide with the normal [to the boundary surface, as then 
the angle of reflexion of the P (8) waves would be equal to that of 
the incident P (S) waves. 
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T H E ENERGY F L U X : CALCULATION FROM THE POTENTIAL ENERGY. 

As mentioned above the energy flux can be calculated from Eq. [2]. 
For the energy ratios one needs to consider only the normal component 
of the energy flux. 

For the transversely isotropic media, the elastic potential function 
is given by (4)): 

2W = A {e*xx + e\y) + G eh* + 2 F {exx + eyy) e„ + _ 
LJ.DJ 

+ 2 (A — 2 JV) + L(e2 1JZ -f V zx ) + A 

The stress tensor needed is further: 

a TP 
r it = - — [15a] 

i> e<jt 

The equations [15], [15a], and [2] yield: 

(a) Arbitrary Orientation of the Symmetry Axes; 

Incident wave of I or II type: 

FT)2 GR\ 
F c ^ 2 F A2(a) ^ ( a ' ^ SiQ2 a + qk C°S " S i n 2 9 + 

+ 2 L rat sin a cos 2 cp) + 2 fk (a, cp) cos a (p sin2 a sin2 <p-fssin2a— 
[16] 

— qk sin2 cp + LROK sin a sin 2 9?) + 20 {qV\ — i ) 2 ] sin2 co = 

ft)2 G2« „ , , . (x sin a + z cos a Rk (a, cp) sm2 — — t 2F* A2(a) 

With the introduction of the following abbreviations: 

p = (L+F) (.A—F) + (A—L) (G-F), 

2* = (G-F) (L-QVI) , 
ra* = F + qVI — (A+F) sin2 a, 
s = F(L+F) — G(A—L), 

gn(a, cp) = {L+F) sin 2 a cos cp + 2 {A—L sin2 a + L—qV\) sin cp, 
fk (a, cp) = {L+F) sin a cos a sin cp + {L—A sin2 a—L + gVl) cos <p, 
Rt (a, cp) = the expression in the brackets, with k = 1, 2 according 

to the wave type. 
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The energy flux normal to the boundary surface must be conti-
nuous, otherwise the energy density would change there enormously. 
One would get then: 

1 = RT2 I M i l l ' W , RID V_R*(y, <p)_NHa) 
Fi R(a, cp) N*(P) ^ V,R(a,cp)N^ 

[18] 
, T I i V R[(d, <p_*) N*(a) VRl(V, <p*)N*(a) 

VI R(a, <p) N*'(d) ' VI R(a, <p) N**{ri) ' 

with the incident flux as unit. 

SPECIAL CASES. 

The above equations would be simplified to some extent, if they 
are specialised for some cases, which occur in nature. As before the 
following specialisations may be suggested: 

(1) Free Surface. 

In this case all terms containing the transmission coefficients vanish 
identically in Eq. [18]. That is, one can set TI and Til equal to zero 
there to get the required expression. In other words [18] would not 
consist of its second row here. 

(2) Incidence against a liquid. 

Since the liquids can be considered to be isotropic media where 
P-waves only can exist, one would have: 

cp*) = 2 A*3cos2 y , N*2(y) = A*2cos2 y , 

and thus the energy equation: 

i = p n VRl(P> P> + IUP , 
Vx R(a, cp) N2(P) ^ F 2 R(a, cp) N2(y) 

2N*(a) V*V q* [19] 

It (a, cp) 
where F * is the P-wave velocity in the liquid. If in the solid medium 
the symmetry plane coincides with the surface of discontinuity, a = /? 
and cp = 0. Then the above equation becomes: 

V Rily, 0) N*(a) V N2(a) p*2F* 
1 = BP + RIP - - J f c . + TP 119«] 



E N E R G Y D I S T R I B U T I O N AMONG T H E R E F L E C T E D , E T C . 3 1 3 

with 
Rk(a, 0) = (L + F) sin2 a cos a L r*k + C (L — g F2)2 — 

— s cos a sin2 a (A — L sin2 a + L — g F2) = 
= — cos a (a sin4 a + /? sin2 a + y) = 
= — cos a P(a) , 

with 
a* = A (L + F)2 — G (A — I ) 2 , 
ft* = 0 (Q K — L) 2 (A — L) — g V2 (L + F)2 , 

Pk{cp) = a sin4 y + ft sin 2 cp + y . 

Now if the medium containing the som'ce is liquid, the energy 
equation would be obtained as: 

i 72J2 4- TI2 + TIP - R'2 (V' ri9ftl 

(3) There is a simple case, where the symmetry axes in both of 
the media coincide ivith the normal to the boundary surface. In this 
case one has simply to put cp = <p* = 0, to get: 

i = m2 4- mi* V e N 2 ( a ) cosvp*w . tp coBaprw 
+ F 2 JV2(y) cos a P(a) F* N*2(6) cos a P(a) "t" 

Ft _y"2(a) cos r, P\(r,) [20] 
+ V\N*2{r]) cos a P(a) ' 

with the incident energy flux along the normal to the boundary surface 
as a unit. 

(4) Isotropic solid medium I. 

In the present case cp = 0. Further one has to account for the 
transition, of the anisotropy to the isotropy, that is: 

A = G = X + 2/i, F = I, and L = p . 

The source would radiate only pure longitudinal or transversal waves. 
For the incident longitudinal wave one would get for example: 

1 = RIP + BP + TP 
sin 2 a 2 V' N*2(6) g F cos a ^ 

. TIP B*{r>> • 
^ 2F* N*2(rj) q F cos a 
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The case of the incident transversal wave can also be treated similarly. 
One can check for himself that all the above equations lead to the same 
equation [9], after specialisation to isotropy. 

In the above considerations it has been assumed that the angle 
of incidence does not exceed the smallest of the critical angles; there 
would exist at the most two such angles for the incident wave of the 
I type, and three for the I I type. Therefore the time, x- and a-
factors go into the expressions as: 

/x sin a + z cos a 
S i n , £ 0 l V& * 

This shows that the direction of the energy flux and not its magnitude 
remains constant always over the whole boundary surface. 

If the angle of incidence exceeds the smallest of the critical angles, 
it happens that depending upon the elastic constants at first the sine 
of the refracted angle becomes greater than unity and then after a 
certain incidence angle it becomes imaginary. In such a case the reflex-
ion and transmission coefficients (amplitudes) BIRII, TI and Til 
become complex. The factor containing the time and space turns into 

sin co fx sin a \ (x sin a , , \ 
\ 7(a) — t + e ) 0 0 8 W l > ( a ) ~ + £ ) 6 X P Z C°S a / ' ' 

where e is the phase difference. 
This shows quite clearly that the energy of such a wave is bound 

with the boundary surface; it decays exponentially with the distance 
from the surface. The direction of the flux depends upon the time as 
well as the position on the surface. At a given place it changes its 
sign every quarter of a period and for a given time it changes its sign 
every quarter of the wave length along the boundary surface. If the 
energy flux is integrated over a full period, it would vanish identi-
cally. The behaviour of the energy flux in anisotropic media has been 
investigated by Synge (5) and Ossipov (7). Tooley et al. (8) come to the 
conclusion, while investigating the same for the isotropic media, that 
the. Knott's equations guarantee the continuity of the net and momen-
tory energy flux within the smallest critical angle, but if it is 
exceeded, it is necessary that the imaginary and the real parts of the 
equation must be fulfilled for the continuity of the momentory flux. 
The same can be extended to the anisotropic media. 
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T H E CALCULATED RESULTS. 

In the following figures (2-12) the energy ratios of the different 
derived waves are presented. The incident wave is of I type, 
that is the quasilongitudinal wave. They are represented as functions 
of the ray direction and the wave normals. The tables are not reprod-
uced here due to their huge volume. The energy ratios for the same 
media as in the last article have been calcultated. They are also a 
very useful check on the correctness of the formulae derived above for 
the amplitude and energy ratios. The energy ratios of the derived waves 
add together to unity with an accuracy up to the ninth decimal place. 
The results were obtained through the computer Telefunken TR 4, 
which produces results up to the tenth decimal place with the 
rounding off error in the last. 

Pig. 2 shows the energy ratios of zinc/beryl, along with three 
hypothetical isotropic media, having some of the elastic constants 
common with those of zinc and beryl. These isotropic media have the 
following elastic constants: 

case 1: A = 0 = 14.3 ,L = 4 .0 (A = C=A+2 ¡ i , L=[i, X) 

A* = C* — 23.63, L* = 6.53 

case 2: A = C = 14.3 ,L = 5 .5 

A* = G* = 26.94, L* = 10.165 

case 3: A = G = 5 .0 ,L = 0.85 

A* — G* — 2 3 . 6 3 , 1 * = 8.51 

zinc: A = 1 4 . 3 , 0 = 5.0, F = 3.3, L = 4 .0 

beryl: A = 26.94, C = 23.63, F = 6.61, L = 6.53 

(the numbers on the curves in the figure refer to these cases). 

The densities in the I and I I medium were always the same, that is 
7.1 and 2.7 gr/cm2 respectively. All the constants are in 1011 dynes/cm2. 
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From the figure it can be seen clearly, what a difference the devia-
tion from the isotropy in the media produces on the energy distribution 
in the derived waves: a maximum in T2 is not present at all in the iso-
tropic media. 

Fig. 3 represents ice against schists. I t shows that the refracted 
wave of I type is the major carrier of energy as in the isotropy. 
In Fig. 4 is represented a media-combination, where no critical angle 
exists. I t can be seen that here also the refracted wave of I type carries 
the major part of the incident energy. I t demonstrates further that in 
the range of 35°-45° (wave normals) or 40°-60° (ray direction) the 
reflected wave of I type and the refracted wave of I I type are 
almost non-existent. This means that in the overlying medium (I) 
the reflected wave of I I type only can be recorded in the said range of 
the incident angles. A very similar case is reproduced in Fig. 5, where 
the critical angle is 90°. Fig. 6 displays an interesting case, where medium 
I is isotrope with the elastic constants approximating those of the up-
per crust, while the underlying medium is anisotrope, where the velo-
city of the P-waves in the horizontal direction is about 13% higher than 
that in the vertical. I t can be seen from the figure, that only near 
the critical angle (about 61°) some of the energy is sent back. Fig. 7 
represents media, which are anisotrope owing to the alternate layering 
of the sandstones and limestones (9). Here the energy in the re-
fracted wave of I I type is so small that it is not drawn in the figure. 

In the last five diagrams is shown the influence of varying the 
different elastic parameters A*, q*/q, G*/G, F*/F, and L*jL on the 
energy distribution. I t is worthwhile to notice that the critical angle 
changes only with A* and the density ratio. 

For the time being the results have been presented for the incident 
wave of I type, up to the smallest critical angle. I t is intended to ex-
tend them to all the angles (as well as to the wave of I I type), owing 
to their significance for the wide angle reflexions. 
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Fig. 2 - Energy ratios as function of wave normal direction (above) and 
ray direction (below) for zinc/beryl. The dotted curves are for the isotropic 

media. For explanation see text. 
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Fig. 3 - The energy ratios for ioe/sehists. 

Ice: q = 0.917, A = 1.36, 0= 1.46, F = 0.52, L = 0.32 in 1011 dynes/cm2 

Schists: e = 2.74, A = 9,06, G = 7,41, F = 2,39, L = 2.21 » » 
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Fig. 4 - Energy ratios for: — q = 2.64, q* = 3.014, A = 4, A* = 2, C = 2.71, 
(7* = 8.15, F= 1.07, F* = 2.63, L = 0.81, i * = 2.43 in 10" dynes/cm2' 
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Fig. 6 - Energy ratios for medium I, being isotrope. 
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Fig. 7 - Energy ratios for: — g = 2.4, o* = 2.6 gr/cm3, A = 3.36, A* = 6.25, 
0 = 2 .46 ,0* = 4.57, F = 0.97, F* = 1.74, i = 0.74, £ * = 1.40 in 1011 dynes/cm2 

T2 is not drawn due to its negligible energy ratio. 
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Fig. 80 - Energy ratios: the constants are the same as in Fig. 4, excepting 
A*, which is shown on the curves. 
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Fig. 86 - The energy ratios (for text, see Fig. 8a). 
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? = 2,64 gr/cm^ 

A =3,696 A*= 9,966 ' 
C = 2,706 C'= 8,151 
F = 1,067 F*= 2,629 
L = 0,814 L* = 2,431 J 

• 10JJ dyn/cm2 

'(b) 

30 R2 

Fig. 9 - The energy ratios. 

Influence of varying the density ratio (?*/(?> shown on the curves. 



Fig. 10 - Energy ratios. Influence of varying the ratio G*/C. 
For the other constants see Fig. 9. 
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Fig. 11 - Energy ratios. Influence of varying F*/F. 

For the other constants see Fig. 9. 
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Fig. 12 - Energy ratios. Influence of varying L*/L. 

For the other constants see Fig. 9. 
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