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SunMArRY, — This paper is concerned with monochrematic wave
propagation in an infinite homogencous wicropolar clastic plate hounded
by two parvallel free planes. Two kinds of propagation are disenssed: Lamb
and TLove waves. We find that a displacement field (,, w,, 0) and a miero-
rotation feld (0, 0, ¢, leads to Loaub’s waves, while a displacement field
{(t, 0, 2,) and a microrotation Deld {(p,, ¢, 0) leads to Love's waves.

RrazsuxrTo. — In gnesto laveorn si tratta la propagazione i onde
monocromatiche in nn piatto elastico, micropolare, omogeneo ed infinitlo,
limilato da fdue piani paralleli e liberi. Vengono discussi dne tipi di propa-
gazione, gqnelle di Lamb e quello di TLove. 8 frova ehe i1 canpo di sposta-
menti (i, vy, 0) ed il eampo A1 microrotazioni {0, 0, ;) porta ad onide i
Lamhb, mentre nn eampo Jdi spostamenti {0, 0, #;) ed un campo di micro-
rotazioni {p,, @, 0) poria ad onde di Love.

IxTRODUCTION

Oscillations of an elastic plate, with stress-free swrfaces, have
been investigated by Ravleigh (29}, Tamb (M) aml oihers, and more
recently by Prescott (12), Gogoluilze (), Salo (M) and Ewing, Jardelzky
al Press (1),

In this paper we want to deal with the same problem in the frame-
work of the theory of micropolar elasticity.

(*) lstitute di Fisica, Universiltd (i Bologna,
Dipartimento di Beienze della Terra, Universita di Ancona (Italy).
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The linear theory of micropolar elasticity has been introduced
by Iringen (*). Tesan (1) has derived the fundamental equations using
invarianee conditions nnder guperposed rigid body motions.

Micropolar elasticity may give interesting results when applied
to geophysical problems. We have already applied it to derive an
explicit expression of the body foree and the hody couple equivalents
for seisinic dislocations (1-2),

BASIC EQUATIONS

Throughout this paper we employ the wsual indieial notations.
All regrularity hypotheses on the eonsidered fnnetions will be omitted.

We consider a rectangular Cartesian frame Oug (& == 1, 2, 3). The
busie equations in the linear theory of homogeneons and anisotropic
elagtic solids are (19):

— the kinematic relations:

€if = Uit — Eujk Pk 1.a]
Hij = i rlb]

- the equations of motion:

t gy +— Fy = o [2.a]
My s + Eun e + Mo =Ty qq [2.b]

— the constitutive Iaws:

Ty = Ayt 6er + Biger mrr [3.a]
My = Brugerr + Cuper 211 [3.b]

Tn the above equations we have used the following notations:
iy the components of the displacement vector; g, the components
of the mierorotation veetor; ey and =y, the kinematie characteristics
of the strain; 15, the components of the stress tensor; suy, the compo-
nents of the conple stress tensor; ¥, the components of the body forec;
My, the components of the body couple; p, the mass density; A ore,
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By, Cigrey Iy, the characteristic constants of the muterial; eys the
alternating tensor; a comma denotes partial derivation with respect
to ypace variables, and a superposed dot partial derivation with respect
to the time i. I‘urthermore, we have:

Ayt = Ay
Cirer = Cragg
I[; = I“

[4]

N o Ty

1f the body is homogeneous, isotropie and centrosymmetric, we
have:

Ayir = A0y 0 + (p — %) 0 0p0 + p1 Our Oue
By =0
Cissr = a 0y e +- b Sex 5z + ﬁ At D

aldd equations [3] are altered to:

ty = A exxdig + (0 + %) es + pen | (5]
My = @ %k O + § #as + f %51 \

where 2, u, %, a, p and f are material constants satisfying the following
inequalities:

3A+2u+%>0

2p-tx=0 ‘

T (6]
3a+f8+y=0

—y <Py ‘

y 20

which are the necessary and sufficient conditions for the internal
energy to be non-negative. Furthermore we can also write:

Iiy= 1384 f7]

where 7 is another material constant.
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I{ equations [3] s [7] are substituted into equations [1], we get:

(7= g upg + (p + #) de g + 2 em peg + Fi = oy [8.a}
(o + Mo+ yoen + zeae ey — 22+ My =Ig [3D]

Liet us now specialize our analysis to the ease in which;
o= MH;—=0
Wy = ti (X1, &0, 1)3 i = o1 (1, 2, 1)
Equations [8] leal lo:

(e + 2) Fruy + (2 S-phepa - 2gae — oin H
{pt + 2y Veug R (2 ple —xgan = o

e o (e — 1) — 2 gy = I (};‘:1

[9.a]

Y Fla A6 —2xg Fause =g
YPIPps e+ DO —2ugpr—xua=ILp: [9.b]
(e + #) Vs 4+ % (pea — @u2) = pita

wlere we have introduced the following notations:

€ = 1,1 | Uz»
g = @+ gz
2 = 32y 4 02fdiat

The two systems of equations [$.a] and [%.b] are independent. The
system [9.a] describes tlie displacement lield {#, @2, 0) and the micro-
votation lield (0, 0, g3}, The system [9.b] deseribes the displacement
fielil (0, 0, u3) aml the microrotation tield (gu, g2, 0). Our pwpoese is
to show that the system [9.4] leads to waves of Tmmb kind, while the
svstem [9.h] leads fo waves of Love kind.

LAMB WAVES.

The components of the stress and couple stress tensor determined
by the displacement ficld (%, %z, 0) aml by the microrotation fielil
(0, 0, @ga) nrve:
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tn = (3p+ =y + e
fra = (24 4 #)Uas + 7€
faa = JAe

fie = gt (a1 1 t1,8) + % U2y — ¢ 0
for == g {12 = #21) 4 % U1 |- £ g
tiz =l — feg = faz — 0 ' [10]
Mia = Y g1
a1 = ff gan
M2z == Y 03,2
Nz — ﬁ a2

My = Moz = Mg = M1z = Moy = ()

Let s now assume that a monochromatie wave propagates, along
the e —direction, in an infinite micropolar elastic plate. Let 2H be
the thickness of the considered plate. Morcover we assume that the
[ollowing conditions:

by =t =mp=0, al o7, = 1 [11]
gshould be satizlied. In other words, the surfaces of the plate are sup-
posed free of stresses and couple sirvesses,

Equations [9.a] arve satisfied by:

w1 = P — W
s = P2 + ¥y
provided
A+ 2a+:) [734{_—9@:“ |

(o) V2 W —oW —spa=0 [12]
[p Fe—20 —Tafot2)qga -f- 212 =0

The first equation [12] describes the propagation of longitudinal dis-
placement waves with veloecity:

02 — _i.m.;.,_ [13]

The last two equations [12] ean be reduced to the following form:

Ly V2 — 20— To2pte] [(pe £ 2) P2—pdfat2] - 2212} W =0 [14.a]
{lyPr— 2 — Tojat?] [(u — 2) V2—gd2foit] L 22 W2} @a =0 [1LD]
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Liet us assume solutions of the forn:

Q‘_I") (ml, .’.1':2, t) — (p:|: (ml) Bi ”5.1,‘2 ----- Lut)

N

W (@hy ey 1) = P (1) o FF— ob) [15]
P (&1, a2, 1} = ¥ (@) et (ki — ot}
The {irst eqnation [12] and equations [14] become:
¢tn——(M-——f})m*:; [16]
11_

]2 | E [ : %
1 |. @ S _|_ ﬁ,z) — 2 + de bz) _|_ o2 ( d — };2) 1 s —

iy ® P\ deg2 (f’t_'lz
[17.a]
s ( daz i i ;
. # 2} |- — 1 {2 —b2| L g° — k2 * ()
j (dl‘-le s J  dxy? ‘ ’ ) ( tliry® ) 1 # :
[17.b]
where the following notations have Deen introdnced:
a = w?f{e® -+ ¢4?)
&2 = w3fey®
b* =B axly
0t =y (u + #)] } [18]
e = pfe
et = #xfo
042 = viI

Equations [17] deseribe the modified transverse waves. We search
solutions of equations [16] and [17] of the form:

b — A sinh (n 1) + B cosh (n 21) [19]
Y* = sinh (k1 21) + D ecosh (Buan) -+ Esinl (k2 @) 4+ F cosh (k@)
gs* = G sinh (k@) + L coslh {kr &1) 4 Psinh (k2 ) 4+ ¢ cosh (ke ay)
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wlere
1
].122=,“;2J.__.; bz a2 —ogt — d2 [.ﬂ-z-{-a'e-{—(fg—bz'—
! 1o
— tar(d2— b)) ' |
/ w?
— ; -
K ( Tz

Let us now specialize our study to the case of symmetrie vibra-
tions. Then the component %z of the displacciment vector, the com-
ponents 1y and is2 of the stress tensor and the component mi; of the
couple stress tensor must be symmetric with respeet to the plane
71 = 0. This leads to:

A=D=F=L=¢ =10
and the expressions [19] are altered to:

@* = B cosh (5 @) 3
¥* = ¢ ginh (k1 @1) + E sinh (k2 21) [20]
ps* = G sinh (Lya) + P sinh (ke 24)

Furthermore introdueing these expressions into equations [12], we get:

=Ty O
P=1.F
wlere
= y 12 —|— s ({,1',2 | it — ,-‘l-_ﬂzj’ b — _1,2.
A

Therefore g% can be written as:

ga® = 71 € sinll (k1 @1} § 72 E sinh (ke a4), [21]

The boundary conditions [11] are expressed ns:
Bmpri2p A+ % —Akcosh (nHy —C4 2k (2p 4+ %) cosh (k1 H)
— Eikka (20 4 %) cosh (e H) = 0,
Bilyg (2p - %) sinh (5 H) + € o1 sinh (A H) + E g2sinh (k2 H) = 0,
C kit coshidy ITY 4 E Ra 12 cosh(fz H) = 0 [22]
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wletre
o, = (;”' S+ %} hav e # b —x Titn = 1'2
The charactevistic equation of the system [22] is:

teh oy H) 2+ %+ A)p>—# 1
tgh (ko H) (20 + )2 k2l (z2 — 1)
J"n'J_ fg]l (!{3 H)

e 23
Gitas s i tgh (ko H) 4

In the lmit of the usual elasticity, equation [23] rednees to the
periol equation for Lamb waves (-1}, The disenssion ol the trascen-
ilental equation [23] presents great diffienlties and, therefore, only
the asymptotic limits for long and short waves are considered,

For waves long comparedd with the thickness 271, the products
yn H, k1 H, k= H ave so small that the hyperbolie funetions arve replaced
by their argnments and eqgnation [23] takes the lorm:

(2 + 2)2 2kt (T — 71} = [(2pe + o+ A2 —R2A] - (o172 — a2m1)
[24]

Tror very short waves, the quantities »H, M H, b:H are large and
thie two ratios of hyperbolic tangents, which appear in equation [23]
become unity, giving:

{2ap 4o+ A p2—R2A) (oLt ke —ozTi Fy) =
=2pn FxPk2hikfra—11) [25]

In the eclassical limit both the equations [24] and [25] veduce to
the corresponding relations fonwl in the framework of the nsunl ol-
asticity (8). Tn particular, equation [25] ecan be reecognized as the
characteristic equation for Rayleigh wuves in a micropolar elastic
half space.

Bo fur we have disenssed the case of symmetrie vibrations, TLet
us now specialize onr stily Lo the ease of antisymunefrie vibrations.
The component w#2: of the displacement vector, the compeonents ti
anl £y of the stress tensor aml the component mas of the couple stress
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tensor are now antisymmetrie with respect fo the plane &1 = 0. These
conditions lead to:

B=0=R_G0G=P=10

and the expressions [19] become:

D% = A sinh (5 21) 1
Y% = [ eosh () 4+ F cosh (k2 2) [26]
gu¥ = L cosh (k1) + Q cosh (k2 a4)

As in o previously considered case, by introducing these expressions
into equations [12], we get:

L=n.D

0 =1 F
where 7 and re have been already defined. Therefore gs* ean now
be written as:

ga* = 71 D cosh (F1 @1) + 12 1 cosh (k2 @) 27]

The boundary conditions [1] are now expressed as:
A p+xe+ A)—2 k2 sinh (g H) — Dik ko 2p+ ) sinh(d H)—
— Fik ke (2p 4 %) sinh (k2 H) — 0, /

Adky(2pu— %) cosh (y Hy - Doy cosh (Ja HY L Foscosh (A2 H) =10, |
Drybysinh (b HY + F ve kaginh (2 H) = 0. [28]

The characteristic equation of the system [28] is:
71 Ta ke o271 Ay j
\ tgh (k1 H) tgh (ko ) ]

(2o L)t k2n ks ke {Ta — 1)
(2pfrt+iyypr—i22

tgh (y I}

[29]

In the elassical limit equation [28] reduces to the corresponding
relation found in the framework of the usual elasticity (7).
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For waves long compared with the thickness 2H, retaining up
to the third terms of the power expansion of the hyperbolic functions,
equation [29] becomes:

o1 72 T2 T1 |
Fi2 (3 — T2 HY) Fo2 (3 —- k12 H?)
(2 p + )2 (12 — 11}
(2pgtatnt—A2

(38 — o H?)

[30]

This is the period equation for long llexural waves. Dispersion oceurs
for these wawves, with phase velocity decreasing to zere with inereasing
wave length.

In the elassical limit, equation [30] reduces to the corresponding
relation found in the framework of the usual elasticity (%)

For wave lengths small compared to the thickness 2H, equation
[30] reduces to equation [25].

LovE WAVES

The components of the stress and couple stress tensors determined
by the displacement lield (0, 0, w«) and by the microrotation ficll
{1, gz, 0) ave:

iy = faa =l = lag — f1a =0

bia = (g + %) #aa +

gy = U3l — # P2

ly = (M +- %) 3.2 ®ip

lsz = QL Uaz2 + @1

= (f +v)p1n +ab [31]
ez = (f + y) g2 + a @

az = a G

Mz =y @21 + B @i
Mo =y @1z + F @2
W1z = W1 = flaa == MWas = U

Let ws now agsume that a monochromatic wave propagates,
along the @: —direetion, in an infinite mieropolar clastic plate, whose
thickness is 2H. Morcover we assume that the surfaces of the plate
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are free of stresses and couple stresses. This leads to the following
boundary conditions:

by =My =Me=0, at &= L H [32]

Equations [9.1] are satisfied by:
L= A,1 = .F,z
fPa = A,z —+ .F,l

provided:

[l +8+p) P2 —2z—T0pd =0
[y Ve —2z —Toxot2] ' — s u; = 0 : [33]
[ -+ ) P — p3epotz]us |- 2 P2 D = 0 )

The last two equations [33], after simple manipulationg, ean be reduced
to the following form:

{lyPe—20 —Io2pL][(n + ) P2 —oo2fott] + x P2} I =0  [34a]
{y Ve —2a —T00)[(u+ %) P2 —od2t2] + 2 P2 lus =0 [34.1]
Let ns assume solutions of the form:
A (m;,xg,t) = A* f-’f";l\, .’":‘.';" Wy — L) J
I (&, @0, 1) = T* (1) ot (k @y — wi) 'l [35]
Uy (@1, @y 1) = wz® (1) g T !
Then the first equation [33] and equations [34] become:
A% — (ke A= [36]
.i' dz _ Jam o ( dz R 1) 12— F2 .. 2 s i -ell B
!'( u".a']'—' fu + & ) 3 ci’mlz }ll + : b ) + 2 [ rﬂ{flg R ) F =
[37.a]

!.I "!: R T 2‘ da e i T 2) _(!": e, 2‘ R
i'(dmlz ?..2+a) e .—1—02((&12 k ]! g

[37.1]
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where

We searely, as in the previous ease, solutions of cquations [36] and
[37] ol {he form:

A% = A ginh (£ w) + B cosh (£ 1)
% = Cuinli (&) + 7 cosh (& x) + ,

4+ K sinh (b a1} + F cosh (ks a1) ’ [35]
wa™® == {r sinh (&1 &) + L cosh {k1 a1} - \

4+ P sinh (kaa1) 4 @ coslt {Fz a1

wliere

e
w

l
o
13

.’!.22

Let us now specialize our study to the case of symmetrie vibra-
tions. Then the component g2 of the microrotation vector, the com-
ponents mgy amd e ol the couple stress tensor and the component
i3 of the stress tensor must be symmetric with respect to the plane
a1 — 0. This leads to:

Sl = = U
G =&
P=&KFK

where:

B s {hE — ) S
S T S R | R L i

Trom the assumption that the deferminant of the system of the
three homogeneous equations, obfained giving an explicit expression
to the boundary condifions [3:2], must be zero, we get the following
period equation:
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teh (ke H)
teh (k) H)

teh (ke H} |
mmhm]v

teh (C H i
) (y + f) =k ‘ g2 Ry

tgh (k. H) {' ’ —- {1 lz] +

tllat+p+mr—ak:| gife—gh
; % fr + B0k (krfa— 2 fu) : =1 [39]
where;

mzﬁﬂéﬁmuwﬂﬁyfﬁwﬁ—M))

= o s H = 1,2,

frc = {‘LL i 3) F A En —+ = AR \

For wave lengths small compared to the thickness 2H, equation
[3%] reduces fo:

Sy perithh—Ilafe=(h—mnf)-
clly Yk — o |- f ) (T —a? ) [40]

It is obwvious that we have no counterpart of equations [39] and
[40] in classical elasticity. However we may conclude that in a micro-
polar elastic medium we have waves of Love type, while, in the clas-
gical frameworlk, this is possible only in a layered medium by imposing
some conditions on the material constants.

Let us now specialize owr study te the case of antisymmetric
vibrations. The component gz of the microrotation vector, the coni-
ponents mi and mee of the couple stress tensor and the component fys
of the stress tensor are antisymmetric with respect to the plane # = 0.
These conditions lead to:

B=C=KE=0G=P=1

L=KD

Q=&r
and by the procedure, already employed in the previous cages, we
get the following period equation:

13
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teh (S H)
tgeh (fy H)

la =1 y) 0 —alke

tgh (A )

gife— g h tah (Lo 1)

1 tgh (f ) -1
i =i o al I . - i y
g W = hasl \ S Geh (e gy I*. (4]

For wave lengths smull compared with the thickness 217, equa-
tion [41] reduces 1o equation [40].

COXCLUBIONS

We have studied the Lamb and Love wave propagation in an
infinite homogeneons micropolar elastic plate with free boundary
surfaces. We have found that a displacement fiekl (w1, %2, 0) and a
microrotation fiekl (0, 0, @s) lewds to waves which can be considered
of Lamb's kind, while a displacement field (0, 0, %) and a microro-
tation field (¢, g2, 0) leads to waves whieh can be considered of Love's
kind. Therefore it is possible to have, in micropolar melia, Love
waves without the comditions required in the framework of elassical
clasticity,
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