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SUMMARY. —• A c o m p r e h e n s i v e s t a t i s t i c a l s t u d y of t h e p h e n o m e n o l o g y 
of a f t e r s h o c k s equences is m a d e in t h i s p a p e r . T h e s p a t i a l d i s t r i b u t i o n 
of a f t e r s h o c k s i nd i ca t e s t h a t t h e y a r e m a i n l y c r u s t a l e v e n t s ; h o w e v e r , 
d e e p e r s e q u e n c e s also t a k e p l ace . T h e ana ly s i s of t h e d i s t r i b u t i o n of a f t e r -
shocks in 15 s equences w i t h r e s p e c t t o t i m e a n d m a g n i t u d e l e a d s t o t h e 
s t a t i s t i c a l c o n f i r m a t i o n of a se t of p h e n o m e n o l o g i c a l l aws desc r ib ing t h e 
p rocess , n a m e l y , t h e t i m e - f r e q u e n c y l aw of h y p e r b o l i c d e c a y of a f t e r s h o c k 
a c t i v i t y w i t h t i m e , t h e m a g n i t u d e s t a b i l i t y l aw, a n d t h e e x p o n e n t i a l m a g -
n i t u d e - f r e q u e n c y d i s t r i b u t i o n . T h e h y p o t h e s e s i n v o l v e d a r e c h e c k e d . T h e 
g r o u p i n g of d a t a a n d t h e s t a t i s t i c a l m e t h o d s e m p l o y e d a r e c h o s e n accor-
d i n g t o s o m e bas i c we l l -conf i rmed a s s u m p t i o n s r e g a r d i n g t h e n a t u r e of t h e 
p rocess . 

RIASSUNTO. — Ques to a r t i co lo p r e s e n t a u n c o m p l e t o s t u d i o s t a t i s t i c o 
del la f e n o m e n o l o g i a del le serie d i r ep l i che d i t e r r e m o t i . L a d i s t r i b u z i o n e 
spaz i a l e degl i i p o c e n t r i delle r ep l i che i nd i ca c h e si t r a t t a d i u n p rocesso 
che i n t e r e s s a p r i n c i p a l m e n t e la c r o s t a t e r r e s t r e ; t u t t a v i a n o n m a n c a n o 
e s e m p i d i serie d i r ep l i che p r o f o n d e . L ' a n a l i s i del la d i s t r i b u z i o n e del le re-
p l i che in 15 ser ie r i s p e t t o a l t e m p o e al la m a g n i t u d o c o n f e r m a le leggi s t a -
t i s t i c h e che desc r ivono lo s v i l u p p o di u n a ser ie : la f r e q u e n z a del le r ep l i che 
decresce i p e r b o l i c a m e n t e ne l t e m p o , la m a g n i t u d o è s t ab i l e ne l t e m p o , e la 
d i s t r i b u z i o n e del la m a g n i t u d o è e sponenz ia l e . L e i p o t e s i c o n s i d e r a t e sono 
s o t t o p o s t e a d e s a m e . L a c lass i f icazione de i d a t i e i m e t o d i s t a t i s t i c i im-
p i e g a t i sono scel t i in b a s e a d a l c u n e ipo tes i c h e sono s t a t e a m p i a m e n t e 
c o n f e r m a t e . 

(*) U n i v e r s i t y of I l l inois , U r b a n a , I l l inois ; n o w a t t h e A t l a n t i c Océa-
n o g r a p h i e L a b o r a t o r y , B e d f o r d I n s t i t u t e , D a r t m o u t h , N o v a Scot ia , C a n a d a . 
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I N T R O D U C T I O N . 

A comprehensive s tudy of the phenomenology of af tershock 
sequences must include space, t ime, and magn i tude distr ibutions. Se-
quences which occurred in m a n y pa r t s of the world have been s tudied 
by various au thors and the results are scat tered in the geophysical 
l i terature. The determinat ion of the phenomenological laws describ-
ing the af tershock process is a stat ist ical problem, and it is therefore 
desirable to employ a consistent statist ical procedure and to perform 
appropr ia te tests . We feel t h a t some of the methods employed in the 
pas t were no t rigorous; consequently, this paper is an a t t e m p t to 
present a unified procedure for the statist ical s tudy of af tershock 
sequences. F o r this purpose, 15 sequences have been analyzed in 
detail, even if some of t h e m had already been studied according to 
different methods . 

The s tudy of the space distr ibution of af tershocks within a given 
sequence does not present par t icular problems. I t s accuracy depends 
011 the precision with which epicentral coordinates and focal dep ths 
are computed. I t has been mainta ined ( l) t h a t af tershocks are es-
sentially a shallow phenomenon. A review of available informat ion 
par t ly confirms this view, b u t allowance mus t be made for notable 
exceptions. 

The si tuat ion is more complicated with respect to t ime and 
magni tude distr ibution. The problem is basically t h a t of finding a 
statist ical relat ionship between the various quant i t ies involved, and 
of es t imat ing the paramete rs appear ing in the stat is t ical laws. F i r s t 
of all, when examining the da t a (which consist of the origin t imes 
and of the individual magni tudes Mi of the aftershocks), one mus t 
be reasonably sure to be dealing with a complete set; t h a t is, ideally 
no af tershock with M 5? M *, where M* is the min imum magni tude 
detected in a sequence, should be missing in the t ime interval considered. 
Moreover, it has been shown empirically by Suzuki (2) t ha t the mode 
of grouping the da t a influences the results: therefore the mode of 
grouping should be as uniform as possible. Final ly, it is desirable t o 
employ a statist ical procedure t h a t does not contradic t the under lying 
characteristics of the phenomenon observed, it is necessary to apply 
some statistical test to check the hypothesis being enter ta ined, and 
confidence limits on the results mus t be given. More of ten t h a n not , 
one or several of these conditions are not met in the s tudy of 
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aftershock sequences, and the significance of the results is therefore 
debatable . 

Among the several sequences for which origin t imes and magni-
tude of individual aftershocks have been published, 15 have been se-
lected for detailed s tudy . As f a r as possible we have tr ied to include 
sequences f rom different geographic regions, even if this implied con-
sidering a few sequences whose completeness m a y be in doub t . Since 
the de terminat ion of the stat ist ical laws is more reliable when da t a 
are more abundan t , no af tershock sequence consisting of less t h a n 46 
shocks has been included. 

Table I lists the af tershock sequences whose t ime and magn i tude 
distr ibutions are s tudied in this paper ; it includes region of occurrence, 
l i te ra ture reference, main shock parameters (f„ origin t ime; (f>o, X0 

geographic coordinates; ho focal dep th ; M0 magni tude) , min imum mag-
ni tude of af tershock included (J/*), focal dep th of af tershocks (h), 
and to ta l number K of af tershocks with M ^ M* recorded in the 
first 100 days. (In sequence (1) the first day af te r the main shock is 
excluded f rom the count.) Focal depths are in kilometers; t he t e rm 
" s h a l l o w " is t aken to mean " c r u s t a l " , and of ten (especially in 
California) " upper crustal " . Magni tude are given in the M-scale or 
J/r.-scale, with the exception of sequence (1), where the m-scale has 
been employed. 

I t will be seen t h a t the results of the analysis confirm the 3 basic 
laws describing the phenomenology of af tershock sequences, namely, the 
t ime-frequency law (Omori's law) as formula ted by Mogi (13), t h e mag-
ni tude stabi l i ty law (14), and the magni tude-f requency law (15). 

S P A T I A L D I S T R I B U T I O N OF A F T E R S H O C K S . 

The spatial dis t r ibut ion of the shocks in an af tershock sequence 
is na tura l ly related to the location of the main shock. The following 
considerations are based on a comprehensive survey of available da t a 
and are not l imited to the sequences listed in Table I . If one traces 
on a m a p the boundary of the area in which the epicenters are located, 
the epicenter of the main shock is usually close to this boundary . 
Such is the case for all af tershock sequences of large ear thquakes 
wicli occurred in J a p a n f rom 1923 to .1963 (Ic). W h e n af tershock 
act ivi ty takes place along a fau l t segment, as is f requent ly the case in 
California, the domain of t h e epicenters is approximate ly elliptical 
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with the long axis parallel to the act ive fau l t segment ; of ten the main 
shock occupies, roughly speaking, one focus of the ellipse, and the 
af tershocks are concent ra ted toward the two ends. I n some sequences 
t h e af tershock epicenters are clustered in a very small area (only a 
few kilometers in length and width), bu t this is ra ther exceptional ; 
usually t hey are spread out over a much larger area. I n the af tershock 
sequence of the Aleut ian Is lands ea r thquake of March 9, 1957 (4) the 
dis tr ibut ion of the epicenters follows closely t h e t rend of tectonic 
ac t iv i ty along t h e Aleut ian arc. 

As to the focal depths of af tershocks, a review of available d a t a 
by Page (*) indicates t ha t , when hypocenter determinat ions are ac-
curate, af tershocks are shallow events following a main shock whicli is 
itself shallow. Aftershock sequences therefore appear to be crustal 
phenomena, wi th the ma jo r i t y of shocks clustering in the upper layer 
of t h e crust (h < 20 km). 

There are, however, some exceptions. I n the region of Greece, 
the Southern Sporades ea r thquake of March 18, 1920 bad a repor ted 
dep th of 50 k m a n d was followed by 18 af tershocks wi th M > 3.9 
which were recorded in Athens ; the sequence of the Anatol ia ear th-
quake of March 18, 1953 (h = 50 km) comprised 21 af tershocks in 
the first 13 days; t h e sequence of the Zan te ea r thquake of November 15, 
1959 (h = 55 km) consisted of 18 shocks; the focal depths of indi-
vidual af tershocks, however, were not determined ( u ) . I n the af ter-
shock sequence of the K a m c h a t k a ea r thquake of November 4, 1952 
the m a j o r i t y of shocks were located near the Mohorovicic discon-
t inui ty , b u t some of t h e m h a d foci as deep as 00 k m (l7). The sequence 
following the Aleut ian Is lands ea r thquake of March 9, 1957 h a d an 
average focal dep th of 74 km, and individual shocks were as much as 
150 k m deep (4). 

Two more notable exceptions have occurred in Roman ia and 
in Central Asia. losif a n d R a d u (18) have s tudied the af tershock se-
quence following an ea r thquake with M = 7.4 and li — 150 km t h a t 
took place in the region of Vrancea, Romania , on November 10, 1940. 
The focal depths of af tershocks (3.3 < M < 5.5) were of the same 
order. L u k k (lfi) has s tudied the af tershock sequence of the D z h u r m 
ea r thquake of March 14, 1965, which occurred in the Pami r -Hindu 
Kusli region and had a focal dep th of 210 km. The observat ion period 
lasted for about 22 days, dur ing which 390 aftershocks were 
recorded; their focal depths increased in t ime f rom 200 to more t h a n 
2-10 km. 
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The examples of recorded suberustal af tershock sequences, how-
ever, fo rm a very small p a r t of the to ta l number of sequences known 
to da te ; on t h e other hand , suberusta l ea r thquakes are themselves 
much less numerous t h a n crustal ones. Therefore the compara t ive index 
of af tershock act ivi ty should be given by the ra t io of the percentages 
of crustal and suberusta l ear thquakes which are followed by a sequence. 
At present there is a bias due to ins t rumenta t ion which favours the 
detect ion of shallow af tershock sequences whereas deep ones m a y go 
undetec ted . Thus, the conclusion t h a t af tershocks are generally a 
shallow phenomenon has to be accepted and a t the same t ime i t mus t 
be realized t h a t exceptions exist and t h a t the da t a are fa r f rom 
complete. 

T I M E D I S T R I B U T I O N OF A F T E R S H O C K S . 

I t is cus tomary to regard af tershocks as r a n d o m events in t ime, 
whose f requency is governed by some t ime-decay law. Jef f reys (20), 
in a s tudy of the af tershocks of the Tango, J a p a n , ea r thquake of March 
7, 1927, found no sign of mu tua l dependence between af tershocks. 
T h a t is, there was no indicat ion t h a t the chance of an af tershock in 
a given interval of t ime depended on any th ing b u t the t ime since the 
ma in shock, the af tershock f requency falling off wi th t ime according 
to Omori 's law. The observed f requency showed only r andom de-
par tures from the law. I t has since become a commonly accepted 
fact t h a t af tershocks can be regarded as r a n d o m independent events. 
I t follows t h a t any mathemat ica l relat ionship relat ing t ime a n d fre-
quency mus t not be in terpre ted as a physical " law " giving an exact 
correspondence, bu t as a stat ist ical law of chance which is followed 
" on the average observed frequencies showing r a n d o m fluctuat ions 
f rom the theoretically expected values. 

The fac t t h a t af tershock sequences consist of independent ran-
dom events does not imply t h a t they are a simple Poisson process. 
Tn a simple Poisson process Hie probabi l i ty of occurrence of one event 
in a given t ime interval is cons tant for all t\ this is obviously not the 
case for af tershocks, where the probabi l i ty of occurrence depends on 
the t ime elapsed since the ma in shock. But , as Jef f reys (20) and 
m a n y others have established, apa r t f rom the common dependence 
upon the main shock, no fu r the r mu tua l relat ion is found within the 
seq uence. 
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I n this section t h e stat ist ical decay law of af tershock act ivi ty 
is es t imated for the 15 sequences listed in Table I . The d a t a have 
been grouped according to a procedure suggested by Utsu (-1). The 
origin t ime t„ of the main shock has been t aken as origin of the t ime 
axis, to = 0. The origin t imes t-, of the af tershocks, obta ined f rom the 
reference listed in Table I , have been expressed in te rms of days 
a f t e r the main shock. The first day has been excluded f rom the ana-
lysis because of its possible incompleteness with respect to the number 
of shocks counted, due to the high f requency of af tershocks. Usually, 
af tershocks occurring in the t ime interval 1 < i < 100 have been 
considered, unless a sequence comes to an end in a period of t ime 
shorter t h a n 100 days. The t ime axis has been divided into logari thm-
ically uni form intervals , such t h a t their boundaries t* sat isfy the relation 

log t* = 0 . 1 i , i = 0,1, . . ., 20. 

Now, if Ni is the number of af tershocks occurring in the t ime in-
terval At* = t*+l — t*, the quan t i ty 

represents the observed f requency per un i t t ime interval . This ob-
served f requency is associated wi th the centered value of the t ime 
interval concerned 

_ V + t{+1 
' ~ 2 

so t h a t one obtains a set of points (tt, nt) in t h e (t, w)-plane. The 
da t a a r ranged in this fashion are shown in Table I I , t he first column 
representing t h e centered t ime, t h e second the number of shocks in the 
t ime interval concerned, and the th i rd the observed f requency. I n the 
sequences(4), (7), (10), (12), (13) and (15), in which the number of 
shocks in some of the original t ime intervals was zero, the t ime intervals 
have been grouped two by two and nt and ti have been calculated 
accordingly. 

The (ti, »¡i)-points usually show an approximate ly linear t rend on 
doubly logarithmic paper . Consequently, it is reasonable to assume 
t h a t the f requency of aftershocks per uni t t ime n and the t ime t are 
related by an equat ion of the form 

n (t) = a t f J 
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T a b l e I I - O B S E R V E D F R E Q U E N C Y OF A F T E R S H O C K S . 

N, 

(1) Alaska 1964 

n i N, 

1 . 129 19 73 .379 
1 .422 17 52 . 154 
1 .790 18 43 .863 
2 .254 16 30 .970 
2 .837 19 29 .213 
3 .572 13 15 .877 
4 .496 13 12 .612 
5 .661 12 9 .247 
7. . 126 19 11 .630 
8 .972 11 5 .348 

11 .295 10 3, .862 
14 .219 17 5, .215 
17. .901 22 5, .361 
22. .536 19 3, .678 
28 .371 6 0, .923 
35, .717 13 1 , .588 
44. .965 15 1, .455 
56. .607 13 1, .002 
71, .264 9 0, .551 
89, .716 13 0, ,632 

(2) Aleu t i an I . 1957 

1 . , 129 6 23. ,172 
1, .422 9 27. 611 
1. .790 4 9. ,747 
2, ,254 6 11. .614 
2. ,837 9 13. 838 
3. .572 9 10. 992 
4. 496 6 5. 821 
5. 661 7 5. 394 
7. 126 8 4. 897 
8. 972 13 6. 321 

11. 295 12 4 . 635 
14. 219 11 3. 375 
17. 901 6 1. 462 
22. 536 10 1. 936 
28. 371 7 1. 076 
35. 717 12 1. 466 
44. 965 6 0. 582 
56. 607 9 0. 694 
71. 264 3 0. 184 
89. 716 7 0 . 340 

(3) L o n g Beach 1933 

1. 129 3 1 I . 586 
1. 422 1 3. 068 
1. 790 2 4 . 874 
2. 254 3 5 . 807 

2, .837 2 3, .075 
3. . 572 2 2 ,443 
4 .496 3 1. .910 
5, .661 1 0. ,771 
7. . 126 1 0. .612 
8. .972 2 0. .972 

1 1 ,295 1 0. ,386 
14. .219 1 0. ,307 
17. .901 1 0. 244 

(4) Deser t H o t Springs 1948 

1 .292 
2 . 0 4 8 
3 .246 
5 . 1 4 5 
8 . 1 5 5 

12 .924 
2 0 . 4 8 4 
32 .465 
5 1 . 4 5 3 
81 .548 

5 . 1 2 9 
2 . 1 5 8 
2 . 7 2 3 
3 . 0 0 6 
2 . 1 6 8 
0 . 5 1 3 
0 . 5 3 9 
0 . 3 4 0 
0 . 0 4 3 
0.081 

(5) K e r n C o u n t y 1952 

1 .129 
1 .422 
1 .790 
2 . 2 5 4 
2 . 8 3 7 
3 . 5 7 2 
4 . 4 9 6 
5 . 6 6 1 
7 . 1 2 6 
8 . 9 7 2 

11 .295 
14 .219 
17 .901 
22 .536 
28 .371 
35 .717 
4 4 . 9 6 5 
56 .607 
7 1 . 2 6 4 
89 .716 

11 
13 

7 
3 
8 
9 
4 
7 
8 

19 .310 
2 1 . 4 7 5 
2 6 . 8 0 5 
2 5 . 1 6 3 
10 .763 

3 . 6 6 4 
7 . 7 6 1 
6 . 9 3 5 
2 . 4 4 8 
3 . 4 0 4 
3 . 0 9 0 
1 .534 
1 . 2 1 8 
1.549 
0 . 9 2 3 
0 . 7 3 3 
0 . 4 8 5 
0 . 3 8 5 
0 . 1 8 4 
0 . 1 4 6 

(6) San Franc i sco 1957 

1 .129 
1 .422 
1 .790 

27 .034 
27 .611 

4 .874 

I T 
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T a b l e I I - C o n t i n u e d 

tl N, lit 

2 . 2 5 4 6 11 .614 
2 . 8 3 7 2 3 . 0 7 5 
3 . 5 7 2 5 6 . 107 
4 . 4 9 6 6 5 . 8 2 1 
5 . 6 6 1 2 1 . 541 
7 . 126 2 1 .224 
8 . 9 7 2 3 1 . 4 5 9 

1 1 . 2 9 5 2 0 . 7 7 2 
1 4 . 2 1 9 2 0 . 6 1 4 
17 .901 6 1 .462 
2 2 . 5 3 6 5 0 . 9 6 8 
2 8 . 3 7 1 3 0 . 4 5 1 
3 5 . 7 1 7 3 0 . 3 6 6 
4 4 . 9 6 5 4 0 . 3 8 8 
5 6 . 6 0 7 4 0 . 3 0 8 
7 1 . 2 6 4 1 0 . 0 6 1 
8 9 . 7 1 6 6 0 . 2 9 2 

(7) Sa l inas 1963 

1 . 2 9 2 3 5 . 129 
2 . 0 4 8 2 2 . 1 5 8 
3 . 2 4 6 4 2 . 7 2 3 
5 . 145 6 2 . 5 7 7 
8 . 155 3 0 . 8 1 3 

12 .924 8 1 . 368 
2 0 . 4 8 4 2 0 . 2 1 6 

(8) P a r k f l e l d 1966 

1 .129 4 1 5 . 4 4 8 
1 .422 7 2 1 . 4 7 5 
1 . 7 9 0 5 12 .184 
2 . 2 5 4 10 19 .356 
2 . 8 3 7 2 3 . 0 7 5 
3 . 5 7 2 4 4 . 8 8 5 
4 . 4 9 6 9 8 . 7 3 1 
5 . 6 6 1 5 3 . 8 5 3 
7 . 1 2 6 3 1 .836 
8 . 9 7 2 3 1 .459 

1 1 .295 3 1 .159 
14 .219 5 1 .534 
17 .901 6 1 .462 
2 2 . 5 3 6 5 0 . 9 6 8 
2 8 . 3 7 1 9 1 .384 
3 5 . 7 1 7 10 1 .221 
4 4 . 9 6 5 5 0 . 4 8 5 
5 6 . 6 0 7 4 0 . 3 0 8 
7 1 . 2 6 4 4 0 . 2 4 5 
8 9 . 7 1 6 5 0 . 2 4 3 

N, 

(9) C h a l k i d i k e 1932 

nt 

1 790 6 14 621 
2 254 4 7 743 
2 837 4 6 150 
3 572 12 14 656 
4 496 9 8 731 
5 661 6 4 624 
7 126 6 3 673 
8 972 6 2 917 

11 295 6 2 317 
14 219 8 2 454 
17 901 4 0 975 
22 536 1 0 194 
28 371 1 0 154 
35 717 2 0 244 
44 965 1 0 097 
56 607 2 0 154 
71 264 1 0 061 
89 716 4 0 195 

(10) W e s t e r n T h e s s a l y 1954 

I .292 
2 . 0 4 8 
3 . 2 4 6 
5 . 145 
8 . 155 

1 2 . 9 2 4 
2 0 . 4 8 4 
3 2 . 4 6 5 
5 1 . 4 5 3 
8 1 . 5 4 8 

I . 129 
1 .422 
1 . 790 
2 . 2 5 4 
2 . 8 3 7 
3 . 5 7 2 
4 . 4 9 6 
5 . 6 6 1 
7 . 1 2 6 
8 . 9 7 2 

13 
9 

13 
24 
32 
20 
11 
34 
26 

2 2 . 2 2 6 
9 . 7 0 9 
8 . 8 4 9 

1 0 . 3 0 7 
8 . 6 7 1 
3 . 4 1 9 
1 . 1 8 7 
2 . 3 1 4 
1 .117 
0 . 190 

A m o r g o s 1956 

27 
27 
26 
24 

6 
12 
13 

5 
10 

4 

1 0 4 . 2 7 5 
8 2 . 8 3 2 
6 3 . 3 5 8 
4 6 . 4 5 5 

9 . 2 2 5 
1 4 . 6 5 6 
1 2 . 6 1 2 

3 . 8 5 3 
6.121 
1 . 945 

(12) M a g n e s i a 1957 

I . 292 
2 . 0 4 8 

13 
4 

2 2 . 2 2 6 
4 . 3 1 5 
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Tab le 11 - Cont inued 

n' ti N, 

3 240 23 15 655 5 661 6 4 624 
5 145 24 10 307 7 126 2 1 224 
8 155 24 6 503 8 972 1 0 486 

12 924 13 2 223 11 295 6 2 317 
20 484 15 1 618 14 219 4 1 227 
32 465 6 0 408 17 901 2 0 487 
51 453 4 0 172 22 530 7 1 355 
81 548 38 1 030 28 

35 
44 

371 
717 
965 

1 
14 
4 

0 
1 
0 

154 
710 
388 

(13) Z a n t e 1962 56 607 7 0 539 (13) 
71 264 6 0 367 

1 292 11 18 807 89 716 18 0 875 
2 048 7 7 551 
3 
5 

246 
145 

6 
11 

4 
4 

084 
724 (15) 1 a wke ' s Bay 1931 

8 155 13 3 523 1 292 2 3 419 
J 2 924 3 0 513 2 048 4 4 315 
20 484 19 2 050 3 246 3 2 042 
32 465 5 0 340 5 

8 
12 

145 
155 
924 

9 
5 

16 

3 
1 
2 

865 
355 
736 

(14) Creinast a 1966 20 484 7 0 755 
32 465 4 0 272 

3 572 1 1 221 51 453 5 0 215 
4 496 4 3 881 81 548 3 0 081 

t h a t is, Omori 's law. The commonest procedure for es t imat ing the 
parameters a and ft is the least squares method , which has been ap-
plied to the great ma jo r i ty of af tershock sequences whose t ime distri-
but ion has been invest igated so far . Accordingly, relation [1] is linear-
ized by tak ing logari thms on both sides 

log n(t) — log a — ft log t. 

Then, sett ing 

log n(t) = y, log t = x, log a = a*, — f t = ft* 

the following model is obta ined 

[2] 

y ßl; 

t h a t is, the expected value of y is a linear func t ion of x. Therefore 

yi - a* + ft*xi} + si 

F T T M I 
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i.e., the observat ion yt consists of the expected value a t the given xt 

plus a r andom fluctuat ion si. 
I n the me thod of least squares, the parameters a* and ( j* are 

chosen in such a way t h a t the sum of squares of the vert ical distances 
of the points f rom the regression line is minimized. Fo r the linear 
model, this sum of squares is 

I («*, I}*) - £ e; = £ (yi — a* — f)*x,)° 
i-1 i-1 

and the necessary conditions for f (a*, /?*) to be min imum are 

d£ i f 
D- = 0 - W = 0 

from which one obtains 

k 
k S Xi iji -

i-i 
k 

- S a 
i-l 

k 
"i E y i 

i-i 
k / * /,: Z x : -

- s 
Xi) 

i-1 \i-l J 

1 k 
it — y = 1c £ y>, i-l 

1 £ ~ — y 
k i-i 

xi 

[3] 

According to the Gauss-Markov theorem (22), the est imates of the 
parameters calculated according to t h e least squares me thod will be 
unbiased and of m a x i m u m efficiency if, and only if, t he linear hy-
pothesis is such t h a t the r andom fluctuation e has zero m e a n and 
constant var iance ( independent of x). Tn other words, if t he calculated 
regression line is to give the expected value of y for each x, the ob-
served values m u s t be uncorrelated, and the probabi l i ty distr ibution 
of y for each x mus t be symmetr ic . I n m a n y cases, especially when 
the fluctqation e can be considered to be the sum of m a n y independent 
factors , t he conditions of the Gauss-Markov theorem are satisfied and 
the probabi l i ty dis t r ibut ion of y may be regarded as approximate ly 
normal for every x. I n other cases, however, t h e ma t t e r is very 
debatable , par t icular ly when a t ransformat ion of coordinates is per-
formed in order to linearize the least square model. 

I t tu rns out t ha t , under reasonable assumptions, neither the 
original model [1] nor the linearized model [2] sat isfy the conditions 
of the Gauss-Markov theorem. This has been noted, for instance, 
by Page (3). An appropr ia te me thod mus t t ake into account the prob-
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abil i ty dis t r ibut ion of n for each interval of t ime considered. On 
the other hand , it has been suggested (-3) t h a t the least squares method 
is approximate ly correct also when the conditions for its theoretical 
val idi ty are not realized in practice. I n order to clarify these mat ters , 
in the sequel we shall es t imate the parameters in equat ion [1] by means 
of bo th the least squares method for the linearized model [2], and 
the m a x i m u m likelihood method (24), which takes into account the 
dis tr ibut ion of n for each t ime interval . F i rs t of all, we analyze this 
distr ibution. 

I n the following discussion i t is assumed t h a t t h e deviat ions of 
the observed values m f rom the expected value n(f) reflect actual 
r andom fluctuations and t h a t other contr ibutions to such deviations 
are negligible. Since the only other sources of deviations are errors 
of measurement , and these have been reduced to a min imum by ex-
cluding the first day a f te r the main shock and by counting only well-
defined af tershocks with M > M*, the assumption is most probably 
correct. I t is also assumed tha t , if the number of shocks expected 
in the i-ili in terval is E (Nt), the probabi l i ty t h a t the observed number 
is Nt , is given by 

p (Nt; E(F()) = e~E(N<) M 

i.e., t he number of shocks in each t ime interval is given b y a Poisson 
distr ibut ion. The Poisson distr ibution is the most f u n d a m e n t a l dis-
t r ibut ion for such discrete var iates as t h e number of shocks in a 
given t ime interval , and it has been postula ted for the case of af ter-
shocks by a number of authors , e.g., recently, by Ut su (21) and Page (3). 

The expected value E(Nt) in the i-th in terval is given by 

1 

E (Ni) = | n(t)dt = j at-Pdt ~ atr^ At* [5] 

h t; 

where t h e approximat ion is in t roduced in order to avoid using the 
integral in equat ion [4]; this is necessary because is unknown and 
could be uni ty . The approximat ion has been checked numerically 
for some randomly selected samples and the error was found to be 
negligible. Then relation [4] becomes 

/ w (a t-PAt;f< -at^PAt* _ 
V(Ni-, a,f>)= ' - e [b] 

J\l i: 
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The principle of the me thod of m a x i m u m likelihood is to t ake esti-
mates of the unknown parameters t h a t maximize the probabi l i ty of 
obtaining the observed sample. Considering a sample of k independent 
values, each with a probabi l i ty distr ibution p ( N f , a, ft), t he proba-
bility t h a t the sample consists precisely of these A: values is 

L(a,ft) = h p ( N f , a , f t ) [7] 
t-1 

The funct ion L(a, ft) is called the likelihood funct ion. The necessary 
condition for L (a, ft) to have a max imum is 

i t S i 
= 0 , , = 0 . 

Ha ' i ft 

Since In L(a,ft) (where In s tands for the na tu ra l logarithm) a t ta ins 
its m a x i m u m for the same values of a and /9 as L(a, ft) itself, it is 
the func t ion In L(a, ft) which is commonly maximized. I t follows 
from equat ions [6] and [7] t h a t the likelihood func t ion in the present 
problem is 

L(a, ft) - n { a t ^ f f i 

i.e., 

, r, zs VI " t r l A J j f ati i:M] In L(a, ft) = 2 In .. , c 
i-l IV i! 

from which one obtains 

k k k 
In L(a, ft) = In a £ N, — ft 2 Nt In U + 2 N, In A t* 

i-l i-l ¡=1 

— a S t~P A t* — £ In Nt! 

The m a x i m u m likelihood est imates of a and ft are obtained by solving 
the equations 

Mn L(a,ft)_ 1 | | = 0 

I i a a ¡-1 i-i 

L (a, ft) = N ( l n u + a £ t r P A t : i n t t = 0 

t> ft i-l i-l 
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i.e., 
Ic k 

i £ N,—a 2 t. p At* = 0 
I (-i i-i 1 ' 

I £ JViln U — a t t. At* In /, 0 
¡-1 ¡-1 

Equa t ions [8] are the normal equat ions in the m a x i m u m likelihood 
method. F r o m them one obtains, 

k k 
2 N, £ N, In U 

S i , Zl t* S i (
 ß A t: 111 U 

= I Ni 2 <4 '' A t* In U — £ 2T, In <f S <(
 P A t* = 0. [10] 

i-l i=l i-1 i-l 

Equa t ion [10] mus t be solved for f), and then a can be obtained f rom [9], 
A p rogram has been wr i t ten to solve equat ion [10] by the secant 

me thod (25). The first approximat ion to the root of [10] and to the 
es t imate of a has been obtained by means of the least squares me thod 
for the linearized model, according to formulas [3]. The est imates 
«i, /?! obta ined by the least squares method , when compared with the 
m a x i m u m likelihood est imates, give an idea on how statist ically reliable 
the least squares me thod is when the under lying assumpt ions are no t met . 

The numerical results for the 15 sequences are summarized in 
Table I I I . F r o m left to r ight, t he columns indicate the sequence 
involved, the least square est imates a , , , and the m a x i m u m likelihood 
est imates a, ft. The pa ramete r which characterizes a sequence is t h e 
decay paramete r ft, which measures the ra te of decay in t ime of 
the f requency of aftershocks. I t can be seen t h a t differences between 
fti and ft are present b u t not very large. The decay pa ramete r is 
usual ly around uni ty . 

Now, we proceed to check the val idi ty of the t ime-frequency 
law. If t h e expected value of the f requency n varies in t ime accord-
ing to equat ion [1], and using the approximat ion expressed by [5], 
t he mean and the variance of the Poisson-distr ibuted n u m b e r of shocks 
are in each interval 

E(N) = V(N) = v(t) A t* = at ~P A <* 
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and therefore the s t anda rd deviat ion of n is 

-ß 
D(v) = 

/ at 
A t* 

T a b l e I I I E S T I M A T E S OF T H E P A R A M E T E R S IN" T H E T I M E - F R E Q U E N C Y LAW 

Sequence Leas t square e s t ima tes M a x i m u m l ikel ihood 
e s t ima tes 

<h ß, a ß 

(1) Alaska 76 824 I 097 77 547 1 085 

(2) A leu t i an I . 32 611 0 997 33 662 0 984 

(3) L o n g Beach 10 956 1 302 11 731 1 301 

W Deser t I l o t Sp. 9 303 I 075 9 970 1 042 

(5) Kern C o u n t y 36 484 1 150 39 047 1 154 

(6) San Franc i sco 19 070 1 103 22 720 1 120 

(V Salinas 6 651 0 902 6 778 0 844 

(8) Parkf te ld 20 622 0 981 23 424 0 998 

(9) Chalkid ike 47 918 1 448 45 392 1 355 

(10) W . Thessa ly 32 600 0 949 34 211 0 917 

(H) Amorgos 150 139 1 882 151 694 1 830 

(12) Magnes ia 27 607 0 988 29 761 0 918 

(13) Z a n t e 20 176 1 063 19 565 0 970 

(14) Creinas ta 4 210 0 518 4 738 0 481 

(15) I l a w k e ' s B a y 8 639 0 907 11 135 0 941 

A general theorem which holds for an a rb i t ra ry dis tr ibut ion wi th 
a second momen t is Tchebychev 's theorem (24). I t s ta tes t ha t , if X 
is a r andom variable with mean E(X) and s t andard deviat ion D(X), 
then the following inequali ty holds 

P { \ X - E(X) | > k D(X) } < ^ 

where k is an arb i t ra ry positive number . I n other words, the prob-
ability t h a t A" assumes values outside the interval E(X) dz k (A') is 
less t h a n 1 ¡1;-. Conversely, f rom the viewpoint of sampling, in t h e 
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long r u n less t h a n (100/A;-)% of the values assumed by X will fall 
outside the interval . 

The application of Tohebychev's inequal i ty to check the val idi ty 
of the t ime-frequency law has two limits, namely, it yields r a the r 
weak conditions, and the sample size is small. Nevertheless it gives a 
reasonably safe criterion for reject ing the val idi ty of the law for se-
quences t h a t show too wide fluctuations. Regarding the observed 
values of n as the result of r a n d o m sampling f rom a populat ion whose 
expected value varies with t ime according to [1], and choosing lc = 2, 
Tchebychev 's inequal i ty takes the form 

t h a t is, in the long r u n less t han 2 5 % of the observed values in should 
fall outside the interval E(n) ± 2 D(n). If this condition is not sa-
tisfied, t h e assumption regarding the var ia t ion with t ime of the expected 
value n(t) mus t be rejected. 

In order to determine a confidence b a n d according to Tchebychev 's 
inequali ty, therefore, the quant i t ies E(ri) + 2 /?(»), E(n) — 2 J)(n) 
have been computed a t selected ti, i = 1, 2, . . ., Ic, and compared 
wi th the observed >u. Table IV gives the results, showing in the 
columns f rom left to r ight the sequence, the to ta l number of da t a 
points, the number of points outside the confidence band , and their 
percentage. Consequently, according to the selected criterion, se-
quences (10), (12), (13) and (11) do not follow the assumed t ime-
frequency law, inasmuch as the observed f requency cannot be explained 
only in te rms of random fluctuations f r o m the law. The other 11 
sequences appear to follow the law and the fit is generally fair ly good. 
All t he sequences which show considerable depar tures f r o m the assumed 
law have occurred in the region of Greece; this f ac t migh t have some 
geotectonic significance. However, there exists the possibility t h a t 
relatively poor ins t rumenta t ion plays a p a r t in some appa ren t ir-
regularities. Sequence (11) originated under peculiar conditions; the 
f requency of aftershocks in i t appears to be correlated to t h e variat ions 
in the water loading of a nearby artificial lake (12). 

Figures 1 to 5 display on doubly logarithmic paper the results 
for some of the 11 sequences which appear to decay according to the 
postulated law. The dots represent the da t a points , the full line the 
fitted n(t), and the broken lines the confidence limits. 
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T a b l e I V F L U C T U A T I O N S OF TI IE O B S E R V E D F R E Q U E N C I E S IN T H E DECAY 

O F A F T E R S H O C K ACTIVITY W I T H T I M E . 

Sequence T o t a l n u m b e r P o i n t s ou t s ide % P o i n t s Sequence of poin ts confidence band ou t s ide 

(1) Alaska 20 2 10 % 
(2) Aleu t ian I . 20 0 — 

(3) L o n g Beach 13 0 — 

(4) Dese r t H o t Sp. 10 0 — 

(5) K e r n Coun ty 20 0 — 

(0) San Franc i sco 20 0 — 

(7) Sal inas 7 0 — 

(8) Pa rk f i e ld 20 0 — 

(») Chalkid ike 18 1 5 . 6 % 
(10) W . Thessa ly 10 3 30 % 
(11) Amorgos 10 1 10 % 
(12) Magnesia 10 7 70 % 
(13) Z a n t e 8 2 25 % 
(14) Cremas ta 15 4 2 6 . 7 % 
(15) H a w k e ' s Bay 10 1 H» % 
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Fig. 3. - T ime d i s t r ibu t ion 
of a f t e r shocks : K e r n County 1952. 

Fig . 4. - T ime d i s t r ibu t ion 
of a f t e r shocks : San Franc i sco 1957. 

n(t) 



Table V - C O M P A R I S O N OF H Y P E R B O L I C A N D E X P O N E N T I A L D E C A Y OF A F T E R S H O C K A C T I V I T Y . 

Sequence a i A a 2 0 . » V 

(1) Alaska 76 824 1 097 0 016 18 295 0 051 0 . 123 

( 2 ) Aleut ian I . 32 611 0 997 0 027 9 575 0 050 0 . 0 6 9 

( 3 ) Long Beacli 10 956 1 302 0 031 5 917 0 211 0 . 0 5 2 

( 4 ) Deser t H o t Sp. 9 303 1 075 0 078 2 529 0 055 0 . 1 0 9 

( 5 ) K e r n Coun ty 36 484 1 150 0 025 8 570 0 056 0 . 1 0 5 

( 6 ) San Franc isco 19 070 1 103 0 063 4 308 0 049 0 . 1 9 7 

(V) Salinas 6 651 0 902 0 061 4 281 0 136 0 . 0 4 0 

( 8 ) Parkf ie ld 20 622 0 981 0 038 5 751 0 046 0 . 1 1 9 

( 9 ) Clialkidike 47 918 1 448 0 075 5 093 0 060 0 . 2 1 6 

(10) W . Thessa ly 32 600 0 949 0 063 10 796 0 051 0 . 0 5 8 

(11) Amorgos 150 139 1 882 0 035 112 473 0 482 0 . 0 6 2 

(12) Magnes ia 27 607 0 988 0 133 7 264 0 044 0 . 2 4 7 

(13) Z a n t e 20 176 1 063 0 076 8 346 0 103 0 . 1 1 6 

(14) C r e m a s t a 4 210 0 518 0 119 1 468 0 .016 0 . 1 4 2 

(15) H a w k e ' s B a y 8 639 0 907 0 073 3 108 
0 

.050 0 . 0 4 6 
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I ts is interest ing to note t h a t most decay phenomena in physics 
are exponential , Avhereas the decay of af tershock ac t iv i ty wi th t ime 
appears to be hyperbolic. I n order to check rapidly the possibility 
of exponent ial decay, the model 

/j\ —/M M(£) = a2 e 

has been linearized, and the parameters a2 and ft2 have been es t imated 
b y the least squares method. Then the m e a n square deviat ion 
(s tandard error of est imate) of the da t a points f rom the f i t ted curve 
lias been calculated by the formula 

1 k 

•V = 0 2 [log m — (log a2 — ft2 U log e)]2 

— Z i-i 

(where k is t he number of da t a points) and compared with the mean 
square deviat ion f rom the f i t ted t ime-frequency law 

n(t) = 0l 

t h a t is, 

1 k 

s~e = ~ r — ^ 2 [log m — (log a i — ft, log f<)]2 

K — Z i-i 

(where a, and are the least square estimates). If .ŝ  < s'e" the assumed 
t ime-frequency law represents a be t te r fit, in the least square sense, 
t han the exponential decay. The results are summarized in Table V. 
I t can be seen t h a t s2

e < s~e' in all bu t three cases, namely, sequences (7), 
(10), and (15). I t can be concluded t h a t the f requency of af tershocks 
usually decreases in t ime liyperbolically and not exponential ly. 

C O N F I D E N C E L I M I T S ON T H E D E C A Y P A R A M E T E R . 

The parameter ft appear ing in equat ion [1] is related to the ra te 
of decay of af tershock act ivi ty with t ime and is therefore an impor t an t 
characterist ic of the sequence under consideration. Consequently, it 
would be interest ing to see whether the differences in the computed 
decay parameters for different sequences are significant or not . Con-
fidence limits on ft, however, cannot be calculated according to the 
usual least square procedure, which assumes the f luctuations to have 
a normal distr ibution. 
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All approx imate procedure for calculating confidence limits on ft 
can be based on the addit ion theorem for the Poisson distr ibution (-*). 
Since in this procedure the pa ramete r a is assumed to be known exact ly, 
it will yield no more t h a n an indication of the range in which t h e real 
value of ft is likely to fall. 

The addit ion theorem for the Poisson dis t r ibut ion s tates t ha t , 
if Nt, i = 1, 2, . . . , A', is a sequence of stochastically independent 
and Poisson-distr ibuted r a n d o m variables with expected values E i = 

k 
E(Nt), then the sum A' = £ Nt will be Poisson-distr ibuted with 

(-1 
k 

expected value E(X) — £ E-,. I n the present case, Nt being the i-i 
number of shocks in the i-th t ime interval , t he expected values are 

Et = a t~fl A t* 

and 

E(X) = a £ A t*. 
i-l 

The value of E(X) for each of the 11 sequences which follow the 
t ime-frequency law is such t h a t the distr ibution of X can be approxi-
ma ted by the normal distr ibution. Therefore the s tandardized va-
riable 

Y * - -
D(X) 

is approximate ly normally dis t r ibuted wi th E(X*) 0, V(A*) = 1. 
Therefore, the probabil i ty t h a t X * assumes a value in t h e interval 
( k , is 

P { < X* < h } = <f(/2) — 0(h) 

where &(X*) is t he normal distr ibution funct ion. In par t icular 

P { — 1 .»<) < X* < 1.96 } = 0.95. 

Then the approx imate 9 5 % confidence limits on the decay paramete r 
are obtained by solving for ft the equations 

X* = ± 1.96 

t h a t is, recalling the definition of A*, 
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k k 
S Ni — a y. t, p At; 
i-1 ¡-1 • 

= ± 1 . 9 « . 
. / k 

a S i , p At] 

Natural ly , the central value of X* is obta ined when a, ft are given 
by the m a x i m u m likelihood est imates. Assuming the value of a to 
be known exactly, the above equat ions t ake the form 

k k 
V Ni — a V —A 
¡-1 i-1 
k k 
y ¿J N, —• a 2 
i-l i = l 

At* — 1.96 l / a E t, ß At; = 0 

[HI 

Equa t ions [11] have been solved by the secant method. The 
results for the 11 sequences wi th t ime-frequency law of the form given 
by [1] are shown in Table VI . I t can be seen t h a t the 95 % confidence 
limits on the m a x i m u m likelihood es t imate always contain the least 
square es t imate of ft, which therefore appears to be a good approxi-
mat ion to t h e real value of the decay parameter . 

T a b l e V I - C O N F I D E N C E LIMITS ON T H E DECAY P A R A M E T E R . 

Sequences 9 5 % C onf ldence l imi ts 

(1) Alaska 1 .033 < ß 1 139 

(2) Aleu t i an I . 0 . 9 2 0 < ß < l 052 

(3) L o n g Beach 1 .009 < ß 1 650 

(1) Deser t H o t Sp. 0 . 9 1 3 ß 1 185 

(5) K e r n C o u n t y 1 .072 < ß <c 1 242 

(6) San Francisco 1 .020 ß 1 229 

(V) Sal inas 0 . 6 4 5 < ß < 1 064 

(8) Parkf ie ld 0 . 9 1 9 < ß < 1 082 

O) Chalkidike 1 .254 ß < l 464 

(11) Ainorgos 1 .644 < ß < 2 032 

(15) H a w k e ' s B a y 0 . 8 2 9 < ß < 1 051 
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The values listed in Table VI mus t not be considered as exact . The 
limits rounded to the second decimal digit are probably fairly reliable. 
Most /9-values cluster a round the 0.9-1.2 range. Sequence (11) s tands 
by itself, showing a very rapid decay in act ivi ty. Also sequence (9) 
has a decay coefficient somewhat higher t h a n usual. This fac t h ints 
a t t he possibility t ha t sequences in Greece decay more rapidly; b u t 
no conclusion can be reached with such a small sample size. 

M A G N I T U D E S T A B I L I T Y IN T I M E . 

When the characteristics of af tershock sequences with respect to 
magni tude are examined, two sources of error are added to the pos-
sibility of the incompleteness of da t a ; namely, lack of accuracy in 
magni tude determinat ion, and confusion between different magn i tude 
scales. Unfor tuna te ly , authors sometimes do not specify which scale 
they are using. W h e n one single sequence is being examined, no 
problems arise, because the da t a are consistent within t h e sequence; 
if, however, results for different sequences are to be compared, the use 
of different magni tude scales m a y affect the conclusions. In t h e sequel, 
the various " local " magni tude scales, for the purposes of comparison 
of results among sequences, have been assimilated to M. Thus the 
only distinction left is between M and m; the la t ter scale has been 
used only in sequence (1). 

Two aspects of the sequences have been examined in detail, na-
mely, the var ia t ion of af tershock magni tudes wi th t ime, and the magni-
tude-f requency distr ibution. For all sequences except (1), where 
1 ^ t < 100 days, the da t a for I < 100 days have been included in 
the analysis. We first consider the distr ibution of magn i tude with 
respect to t ime. 

The overall mean magni tude , M, has been calculated for each 
sequences as 

M = 4 2 Mi , i = 1, 2, . . . , K 
A ¡=i 

where K is t he tota l number of aftershocks in the sequence. Then 
the mean magni tude, M', of each group of 10 successive af tershocks 
is computed , thereby eliminating large individual f luctuat ions. In 
almost all the sequences considered the mean magni tude M' oscillates 
about M during the whole length of the sequence and no appreciable 
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decrease with time is detectable for t < 100 days. When a sequence 
lasts less than 100 days, the mean magnitude is stable throughout 
the sequence. Sometimes higher values of M' are observed in the 
first few hours after the main shock, but this can almost certainly 
be attributed to the fact that some shocks with M > M* are not de-
tected when the frequency is very large. Figure 0 gives an example. 
The dotted line represents M. 

Fig. 6. - Magnitude stability in time: Aleutin Islands 1957. 

Thus, the law of magnitude stability in aftershock sequences 
(first proposed by Lomnitz (l4)) is fully confirmed; during an after-
shock sequence the mean magnitude of the shocks is constant in time. 

Table VII - O S C I L L A T I O N S OF MEAN M A G N I T U D E . 

M Number of M' % Within Sequence M Number of M' M ± 0 . 2 0 

(1) Alaska 4.89 29 89.7% 
(2) Aleutian I. 0.19 20 100 % 
(5) Kern County 4.44 18 83.3% 
(6) San Francisco 2.55 16 81.3% 
(8) Parltfield 2.46 17 88.2% 

(10) W. Thessaly 3.83 29 89.7% 
(11) Ainorgos 3.92 40 65.5% 
(12) Magnesia 3.43 29 72.4% 
(13) Zante 3.87 13 100 % 
(14) Cremasta 3.75 10 100 % 
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Consequent ly , the decrease of seismic ac t iv i ty with t ime is solely due 
to t h e decrease in a f t e r shock f r equency . 

Moreover , t h e f luc tua t ions of M' a b o u t t h e overal l m e a n m a g n i t u d e 
M a re n o t ve ry wide. Tab le V I I summar izes t h e resul ts for t h e 
sequences w i th a larger n u m b e r of shocks. F r o m lef t to r igh t , t h e 
first co lumn indicates t h e sequence, t h e second t h e overal l m e a n magni -
tude , t h e t h i rd t h e n u m b e r of ca lcu la ted Jl i | -points, a n d t h e f o u r t h 
t h e pe rcen tage of such poin ts which fal l wi th in t h e in t e rva l M ± 0.20. 
I t is t o be no t ed t h a t also t h e sequences wi th a lesser n u m b e r of a f t e r -
shocks a n d not inc luded in t h e t ab le show r e m a r k a b l e m a g n i t u d e 
s tabi l i ty . The only sequence in which M' shows a decreasing t r e n d 
wi th t i m e is sequence (11). I n all t h e others , M ' shows only r a n d o m 
fluctuations f r o m M and t h e law of m a g n i t u d e s tab i l i ty in t i m e is 
satisfied. 

M A G N I T U D E - F R E Q U E N C Y D I S T R I B U T I O N . 

T h e f r equency d a t a for t h e 15 sequences of Tab le I a re l isted in 
Tab le V I I I . T h e f i r s t co lumn gives t h e cen tered va lue of m a g n i t u d e 
in t h e in t e rva l concerned (M i 0.05); n(M) is t h e f r e q u e n c y ; a n d 
N(M) t h e cumula t ive f r equency . F o r b rev i ty , in te rva l s in which t h e 
f r equency was zero h a v e been o m i t t e d f r o m t h e Table . The m a g n i t u d e s 
in sequence (1) a re in t h e »¡.-scale. The mos t common ly accep ted 
f o r m for t h e m a g n i t u d e - f r e q u e n c y d is t r ibu t ion , in case of b o t h in-
dependen t seismic even ts a n d a f t e r shock sequences, is 

log n(M) = a—b M [12] 

where log is t h e logar i thm to the base 10 a n d n(M) is t h e n u m b e r 
of shocks wi th M ± dM (15). 

E q u a t i o n [12] is to be regarded as expressing a s ta t i s t ica l re la t ion-
ship. Usual ly , t h e coefficients a and b have been ca lcula ted according 
to t h e least squares m e t h o d . Suzuki (2) has po in ted ou t t h a t th is 
is n o t r igorous, because log n(M) is n o t symmet r i ca l ly d i s t r ibu ted 
wi th u n i f o r m va r i ance for each m a g n i t u d e in te rva l AM. 

I n th i s section we shall define n(M) is such a w a y t h a t log n(M) = a 
not when M = 0, as in equa t ion [12], b u t when M = M*, Avhere 
M* is t h e m i n i m u m de tec tab le m a g n i t u d e in t h e sequence. T h e n 
t h e m a g n i t u d e - f r e q u e n c y law takes t h e f o r m 

log n(M) = a — b {M — M*) , M > M* . [13] 
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Table VIII - M A G N I T U D E - F R E Q U E N C Y D I S T R I B U T I O N . 

M n(J/) N(M) .1/ N(M) 

(1) Alaska 1904 (4) Desert Hot Sp. 1948 
4.5 44 294 3.0 15 08 4.6 45 250 3.1 14 53 
4.7 32 205 3.2 9 39 4.8 30 173 3.3 4 30 4.9 30 137 3.4 0 2(5 
5.0 20 107 3.5 5 20 
5.1 24 81 3.0 3 15 
5.2 9 57 3.7 2 12 
5.3 13 48 3.8 I 10 5.4 12 35 3.9 2 9 
5.5 10 23 4.3 1 7 
5.0 7 13 4.4 3 0 
5.7 3 6 4.5 1 3 
5.8 2 3 4.0 I 2 
5.9 1 1 4.9 1 ! 

(2) Aleutian I. 1957 (5) Kern County J 952 
5.9 38 205 4.0 25 184 
0.0 49 167 4.1 29 159 
0.1 29 1 IS 4.2 20 130 
0.2 34 89 4.3 10 104 
0.3 14 55 4.4 15 88 
0.4 8 41 4.5 25 73 
0.5 10 33 4.0 8 48 
0.0 7 23 4.7 12 40 
0.7 2 16 4.8 4 28 
0.8 2 14 4.9 5 24 
0.9 2 12 5.0 2 19 
7.0 
7. 1 

4 
3 

10 
6 

5.1 
5.2 

4 
I 

17 
13 

7.2 
7.3 

2 
1 

3 
1 

5.3 
5.4 
5.5 

1 
1 
1 

12 
11 
10 

5.0 1 9 
8 (3) Long Beach 1933 5.7 3 
9 
8 

3.9 13 78 5.8 2 
2 

5 
4.0 3 65 O . 1 

2 
2 3 

4. 1 2 62 0.4 1 1 
4.2 17 60 
4.4 
4.5 

16 
3 

43 
27 (0) San Francisco 1957 

4.0 0 24 2.0 25 100 
4.7 3 18 2. 1 9 135 
4.8 2 15 2.2 21 126 
4.9 5 13 2! 3 11 105 
5.0 4 8 2.4 12 94 
5.1 1 4 2.5 9 82 
5.2 2 3 2.0 12 73 
5.4 1 1 2.7 14 01 
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Tab le V I I I Cont inued 

M n(M) N(M) 

2 . 8 13 47 
2 . 9 7 34 
3 . 0 6 27 
3 .1 4 21 
3 . 2 4 17 
3 . 3 3 13 
3 . 4 3 10 
3 . 5 1 7 
3 . 0 1 6 
3 . 8 2 5 
4 . 0 1 3 
4 . 2 1 2 
4 . 4 1 1 

(7) Sal inas 1963 

1 . 0 2 46 
1 . 1 4 44 
1 . 3 4 40 
1 . 4 1 36 
1 . 5 1 35 
1 . 6 7 34 
1 . 8 3 27 
1 . 9 2 24 
2 . 0 4 22 
2 . 1 2 18 
2 . 2 2 16 
2 . 3 4 14 
2 . 4 2 10 
2 . 5 2 8 
2 . 6 2 6 
2 . 8 1 4 
2 . 9 1 3 
3 . 1 1 2 
4 . 6 1 1 

(8) Parkf ic ld 1966 

2 . 0 36 173 
2. 1 18 137 
2 . 2 16 119 
2 . 3 20 103 
2 . 4 13 83 
2 . 5 15 70 
2 . 6 9 55 
2 . 7 7 46 
2 . 8 5 39 
2 . 9 7 34 
3 . 0 10 27 
3 . 1 5 17 
3 . 2 2 12 
3 . 3 1 10 

M n(M) N(M) 

3 . 4 3 9 
3 . 5 1 6 
3 . 6 1 5 
3 . 7 1 4 
4 . 1 1 3 
4 . 5 1 2 
5 . 0 1 1 

(9) Chalkid ike 1932 

3 . 4 5 85 
3 . 5 2 80 
3 . 6 2 78 
3 . 7 6 76 
3 . 8 13 70 
3 . 9 12 57 
4 . 0 5 45 
4 . 1 10 40 
4 . 2 7 30 
4 . 3 4 23 
4 . 4 4 19 
4 . 5 1 15 
4 . 6 1 14 
4 . 7 3 13 
4 . 8 1 10 
4 . 9 2 9 
5 . 0 2 7 
5 . 1 1 5 
5 . 6 I 4 
5 . 7 1 3 
5 . 8 1 2 
6 . 2 1 1 

(10) W . Thessa ly 1954 

3 . 2 13 299 
3 . 3 1 286 
3 . 4 33 285 
3 . 5 18 252 
3 . 6 98 234 
3 . 7 7 136 
3 . 8 8 129 
3 . 9 34 121 
4 . 0 15 87 
4 . 1 9 72 
4 . 2 17 63 
4 . 3 7 46 
4 . 4 11 39 
4 . 5 6 28 
4 . 6 6 22 
4 . 7 2 16 
4 . 8 2 14 
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Tab le V I I I -

3 8 5 

Cont inued 

M MM) N(M) 

4.9 4 12 
5.0 4 8 
5.2 1 4 
5.8 2 3 
5.9 1 1 

(11) Amorgos 1950 
3.5 87 400 
3.0 78 313 
3.8 22 235 
3.9 78 213 
4.0 40 135 
4.1 12 95 
4.2 27 83 
4.3 4 56 
4.4 8 52 
4.5 0 44 
4.0 0 38 
4.7 0 32 
4.8 5 26 
4.9 4 21 
5.0 3 17 
5. 1 4 14 
5.2 1 10 
5.3 2 9 
5.4 1 7 
5.0 3 0 
5.7 1 3 
5.8 1 2 
6.8 1 1 

(12) Magnesia 1957 
3.0 53 291 
3.2 84 238 
3.3 12 151 
3.4 73 139 
3.5 7 66 
3.6 4 59 
3.7 10 55 
3.8 11 45 
3.9 3 34 
4.0 5 31 
4. 1 2 26 
4.2 2 24 
4.3 1 22 
4.4 3 21 
4.5 4 18 
4.6 2 14 
4.7 I 12 
4.8 1 11 
4.9 4 10 
5.2 1 6 
5.4 I 5 
5.5 2 4 
5.8 1 2 
5.9 1 1 

M MM) N(M) 

(13) Zante 1962 
3.6 66 139 
3.8 12 73 
3.9 7 01 
4.0 29 54 
4.1 8 25 
4.2 4 17 
4.3 2 13 
4.4 1 11 
4.5 3 10 
4.0 1 7 
4.7 1 6 
4.8 1 5 
4.9 1 4 
5.2 1 3 
5.3 2 2 

(14) Cremasta 1966 
3.4 16 103 
3.5 15 87 
3.0 21 72 
3.7 11 51 
3.8 13 40 
3.9 4 27 
4.0 9 23 
4.1 3 14 
4.2 3 1 1 
4.3 1 8 
4.4 3 7 
4.0 2 4 
4.9 1 2 
5.1 1 1 

(15) Hawke's Hay 1931 
4.1 2 71 
4.2 10 09 
4.3 3 59 
4.4 0 50 
4.5 10 50 
4.0 2 40 
4.7 5 38 
4.8 2 33 
4.9 4 31 
5.0 5 27 
5.1 5 22 
5.2 3 17 
5.3 2 14 
5.4 3 12 
5.5 1 9 
5.0 1 8 
5.8 I 7 
5.9 3 0 
6.1 1 3 
6.3 1 2 
6.9 1 T 
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Converting to na tura l logarithms one obtains 

In n(M) = a' — b' (M — M*) [14] 

where 

Therefore 

a' = . " , // = . 1 [15] 
log e log e 

a' — b'OI — M*) — b'(M-M') a' 

n(M) = e e == ye , e = y. 

Normalizing, i.e., imposing the condition t h a t QO 
| n(M) dM = 1 

one has 
ce 

{' -b'(M-M') y 
j y e dM —¿7 = 1 
M' 

i.e., y = / / . Thus we assume t h a t the probabi l i ty distr ibution of M 
takes the form 

n(M) - b' ; M ^ ¡-16] 

A procedure for es t imat ing the parameter b' in [16] can be deriv-
ed as follows. The mean of the distr ibution is 

E(M) = f M n(M) dM = M* ' 1 

b' 

Approximat ing the populat ion mean by the sample mean M, given 
by 

1 K 

M —— "' X Mi 
K i-i 

where K is t he to ta l number of shocks, one has 

M = J f . + y 

i.e., 
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The above procedure is bu t a par t icular case of the t ime-honored 
method of moments , in t roduced by K . Pearson and his school (-'). 
Formula [17] was also proposed by Utsu a t a meet ing of the Seismo-
logical Society of J a p a n (reported by Aki (26)). The est imation of the 
pa rame te r b' given by [17] has been proved by Aki (-'•) to be equivalent 
to the m a x i m u m likelihood est imate, and therefore has several desir-
able stat is t ical properties. 

T a b l e I X - E S T I M A T I O N OF T H E P A R A M E T E R b 

IN T H E M A G N I T U D E - F R E Q U E N C Y ' L A W . 

Sequence M M* b' h 

(1) Alaska 4 .89 4 45 2 273 0 987 

(2) Aleut ian I. 0 .19 5 85 2 941 1 277 

(3) L o n g Beach 4 .40 3 85 1 818 0 790 

(4) Deser t H o t S)>. 3 .38 2 95 2 320 I 010 

(5) Kern County 4 44 3 95 2 041 0 886 

(G) San Francisco 2 55 1 95 1 667 0 724 

(7) Sal inas 1 94 0 95 1 010 0 439 

(8) Parkf ie ld 2 40 1 95 1 961 0 852 

(i>) Chalkidike 4 13 3 35 I 282 0 557 

(10) W . Thessa ly 3 83 3 15 1 471 0 639 

(11) Amorgos 3 92 3 45 2 128 0 924 

(12) Magnesia 3 43 2 95 2 083 0 905 

(13) Xante 3 87 3 55 3 125 1 357 

(14) Cremas ta 3 75 3 35 2 500 1 080 

(15) H a w k e ' s B ay 4 83 4 05 1 282 0 557 

Table I X gives the results of calculations. P r o m left to r ight, 
t he columns indicate sequence, sample mean M, min imum magn i tude 
M*, and the est imations of the parameters b', b appear ing in relations 
[16] and [13] respectively. The est imate of b' is given by [17], and 
b is given by [15]. The min imum magni tude M* has been t aken 
to be 0.05 uni ts less t h a n the values given in Table V I I I because the 
value of M approx imated to one decimal could actual ly come from 
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anywhere in the interval M ± 0.05. I t can be seen t h a t b is usually 
slightly less t h a n uni ty . 

The basic idea for examining the observed fluctuations f r o m the 
magni tude-f requency law is as in the case of t h e t ime dis tr ibut ion 
of af tershocks. Suzuki (2), among others, has argued t h a t the number 
of shocks with M ± dM mus t follow a Poisson distr ibution. Accord-
ingly, the problem is t h a t of checking whether the observed deviation 
can be explained in terms of r andom fluctuations f rom the law. 

I t is more convenient to consider the cumulat ive dis tr ibut ion 
because individual large fluctuations in small intervals, possibly due 
to inaccurate magni tude determinat ion, are smoothed out in this 
fashion, and moreover the normal approximat ion can be employed. 
The basic idea of the method is due to Suzuki (2). Some minor modi-
fications have been introduced, and the normal approximat ion to the 
Poisson distr ibution, ins tead of the Poisson distr ibution itself, has 
been used. 

F r o m equat ion [16], it follows t h a t the cumula t ive distr ibution 
func t ion of magni tude has the form 

CO 

F(M) == n(M) dM = e-b'Ui-M*) 

m 

Assuming t h a t the to ta l number of af tershocks in a sequence, K , 
coincides with the theoretical value for M = M*, t he expected value 
of the cumulat ive f requency a t various M > M* is given b y 

N(M) = Re-**"-*') [18] 

which, when t ransformed by tak ing logari thms 011 both sides, is a 
s t raight line 011 semi-logarithmic paper , with slope equal to -b if t he 
logari thms are to the base 10. 

Now, to each magni tude range there corresponds a Poisson-
dis t r ibuted number of shocks. The cumulat ive n u m b e r of shocks ait 
a given magni tude M, therefore, is the summat ion of independent 
samples taken f rom each of the Poisson distr ibutions corresponding 
to magni tudes greater or equal to M. According to the addit ion 
theorem for the Poisson distr ibution, such a cumulat ive number will 
also be Poisson-distr ibuted. If t he expected value is large enough, 
say, N(M) > .10 for all intervals, the Poisson dis tr ibut ion can be ap-
proximated by the normal distr ibution with mean N(M) and s t andard 
deviation y N(M). I t is then possible to calculate the fiducial in-
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terval beyond which fluctuations are expected wi th a probabi l i ty 
smaller t h a n 5 % (2.5% on each side). The limits of the interval 
such t h a t 

P < N < fa } ~ 0.95, 

are, for the normal distr ibution, E (N) ± 2 D (N); i.e., in the present 
case, N(M) ± 2 *J n(M). 

Accordingly, the above quanti t ies have been calculated a t 

M, = M* + 0.1 i , i = 1, 2, . . . , k. 

Then, by joining all points of ordinates 

N(Mi) + 2 V N(Mt) and N(M,) — 2 V N(M7), 

respectively, one obtains a confidence b a n d which should contain 
approximate ly 95 % of the da t a points if they come f r o m a populat ion 

T a b l e X - V A L I D I T Y OF T H E M A G N I T U D E - F R E Q U E N C Y L A W 

Sequence T o t a l n u m b e r 
of d a t a po in t s 

N u m b e r of 
po in t s ou ts ide 

conf . l imits 
% P o i n t s 

ou ts ide 

(1) Alaska 15 4 2 0 . 7 % 

(2) Aleu t ian 1. 11 0 — 

(3) L o n g Beach 12 2 1 0 . 7 % 

(4) Deser t l lo t Sp. 9 0 — 

(5) K e r n C o u n t y 15 0 — 

(0) San Francisco 17 0 — 

(7) Sal inas 16 0 — 

(8) Parkf ie ld 15 0 

(9) Chalkidike 17 2 1 1 . 8 % 

(10) \Y. Thessaly 24 14 5 8 . 3 % 

(11) Amorgos 18 1 5 . 0 % 

(12) Magnesia 17 3 1 7 . 0 % 

(13) Z a n t e 9 2 9 9 9 0/ 
. - /o 

(14) Cremas ta 10 0 — 

(15) I l a w k e ' s Bay 10 0 — 
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whose expected value is given by the magni tude-f requency law 
expressed by [18]. The r ightmost in terval (say, f rom M, to oo) ha 
always be chosen in such a way t h a t N(M) > 10. 



t v I B 
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Table X gives the results. I t follows t h a t sequences (1), (3), (9), 
(10), (12) and (13) do not appear to be governed by the assumed mag-
ni tude-frequency law. When these sequences are examined one by one, 
however, i t is seen t h a t several circumstances t end to decrease the 
weight t h a t m u s t be assigned to their appa ren t irregulari ty. For 

Pig. 11. - Magn i tude - f r equency d i s t r ibu t ion : C remas t a 19(5(>. 

sequence (1) the b o d y - wave magni tudes as given by the U.S. Coast 
and Geodetic Survey have been employed. Page (3) f ound t h e m in-
accurate and modified t h e m on the basis of records of five selected 
stat ions, thereby obtaining a be t te r fit; however, no test on the fluc-
tuat ions was performed in his s tudy. Of the sequences occurring in 
Greece, it is wor th not ing t h a t sequence (14), which was studied with 
a network improved with respect to the others, appears to follow the 
assumed law; this fact supports indirectly the conclusion t h a t t h e 
irregular behavior of its af tershock f requency is due to changing 
local stress conditions. Sequences (10), (12) and (13) are also irregular 
with respect to af tershock f requency in t ime. This fac t points to t h e 
likelihood t h a t such irregularities are due to poor da ta , a l though no 
definite s t a t ement can be made. 

I t can therefore be concluded t h a t the magni tude- f requency 
law [18] is statist ically followed b y the large m a j o r i t y of the sequences 
under consideration. Figures 7 to 11 give some examples; the lo-
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garithmic ordinate represent the cumulative frequency, the linear 
abscissa the magnitude. 

C O N F I D E N C E L I M I T S ON T H E F R E Q U E N C Y P A R A M E T E R . 

Differences between 6-values may be significant or not. In order 
to decide the question, confidence limits must be set on the estimated 
value of the parameter. We shall follow in this matter a procedure 
suggested by Aki (26). 

Given a sample of K shocks with magnitudes Mi, i = 1, ..., K, 
let tji and Y be defined by 

a 
?/•• = j }), In n(Mi) 

K 
Y= S y, 

1-1 

where n(M) is given by formula [16]. Clearly for all i, 

y = y —M + M* 

and therefore 
OO 

E(y) = | y n(M) dM = 0 
M' 

CO 

V(y) = j" f- n(M) dM = ~ 
'.i/* 

By the central limit theorem (") the distribution of Y will be approxi-
mately normal if K is sufficiently large. Since 

E(Y) = 0 , V(Y) = 

it follows that the variable 

Y * = r - V W = b' r 

D(Y) 
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is approximate ly normally distr ibuted with mean 0 and s t andard 
deviation 1; therefore 

P { — 1.96 < Y* < 1.96 } = 0.95 . 

Accordingly, the 9 5 % confidence limits on b' are obtained by solving 
the inequali ty 

— 1.96 < b
;
 Y < 1.96 

V x 

which gives 

b' K ( 1 \ 
1.96 < £ — Mi + M*\ < 1.96 

*Jk \ b l 
i.e., 

1 — 1 . 9 6 I < < 1 + 1.96 1 - j K 
M — M* M — M* 

T a b l e X I - C O N F I D E N C E L I M I T S ON T H E F R E Q U E N C Y P A R A M E T E R . 

Sequence 95 % Confidence l imi ts 

(2) Aleu t ian 1. 1 102 < < 1 .452 

(4) Deser t H o t Sp. 0. 770 < < 1 .250 

(5) K e r n Coun ty 0 . 757 < 1 .015 

(6) San Franc isco 0. 612 < 0 . 8 3 6 

(7) Salinas 0. 312 < 0 . 5 6 6 

(8) Parkf ie ld 0. 725 < 0 . 9 7 9 

(11) Amorgos 0. 833 < 1.015 

(14) C remas t a 0. 876 1.296 

(15) H a w k e ' s B a y 0. 427 0 .687 

Table X I summarizes the results for the 9 sequences where the as-
sumed magni tude-f requency law appears to hold. According to usage, 
the pa ramete r b, instead of b', has been employed. I t can be seen 
t h a t the ¿»-values cluster a round the interval 0.8-1.0. 
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Although sequence (2), which occurred along an active island 
arc, shows an anomalously high value of the frequency parameter, 
the sample size is too small to support the contention that b has some 
geotectonic significance. 

C O N C L U S I O N . 

The basic statistical laws describing the phenomenology of after-
shock sequences are confirmed by the present study. These laws 
are as follows: 

(f) Aftershock sequences are generally crustal events, although 
deeper ones also occur; 

(2) The frequency of aftershock occurrence within the same 
sequence decays in time according to the law 

n(t) = « r ^ , i > 100 

where the decay parameter ft is approximately equal to, or slightly 
greater than, unity; 

(3) The aftershock magnitudes, apart from individual fluctua-
tions, show stability in time to the end of the sequence; 

(4) The frequency-distribution of magnitude in a sequence is 
of exponential form 

N(M) = Ke-»'(M-M') 

where the frequency parameter b = b' log e is usually slightly less 
than unity 

The importance of the mode of grouping the data in a statistical 
analysis makes it desirable to introduce a standardized procedure. 
Furthermore, an appropriate statistical method must be employed, 
and the hypotheses involved must be checked. A systematic treatment 
of data greatly increases the reliability of the results. 

It also turns out that the least squares method, when the observed 
values are uncorrelated, yields rather satisfactory results even if the 
conditions for its theoretical validity are not met. 
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