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SUMMARY. — A comprehensive statistical study of the phenomenology
of aftershock sequences is made in this paper. The spatial distribution
of aftershocks indicates that they are mainly crustal events; however,
deeper sequences also take place. The analysis of the distribution of after-
shocks in 15 sequences with respect to time and magnitude leads to the
statistical confirmation of a set of phenomenological laws describing the
process, namely, the time-frequency law of hyperbolic decay of aftershock
activity with time, the magnitude stability law, and the exponential mag-
nitude-frequency distribution. The hypotheses involved are checked. The
grouping of data and the statistical methods employed are chosen accor-
ding to some basic well-confirmed assumptions regarding the nature of the
process.

RiassunTo. — Questo articolo presenta un completo studio statistico
della fenomenologia delle serie di repliche di terremoti. La distribuzione
spaziale degli ipocentri delle repliche indica che si tratta di un processo
che interessa principalmente la crosta terrestre; tuttavia non mancano
esempi di serie di repliche profonde. I’analisi della distribuzione delle re-
pliche in 15 serie rispetto al tempo e alla magnitudo conferma le leggi sta-
tistiche che descrivono lo sviluppo di una serie: la frequenza delle repliche
decresce iperbolicamente nel tempo, la magnitudo ¢ stabile nel tempo, e la
distribuzione della magnitudo & esponenziale. I.e ipotesi considerate sono
sottoposte ad esame. La classificazione dei dati e i metodi statistici im-
piegati sono scelti in base ad alcune ipotesi che sono state ampiamente
confermate.

(*) University of Illinois, Urbana, Illinois; now at the Atlantic Ocea-
nographic Laboratory, Bedford Institute, Dartmouth, Nova Scotia, Canada.
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INTRODUCTION.

A comprehensive study of the phenomenology of aftershock
sequences must include space, time, and magnitude distributions.  Se-
quences which oceurred in many parts of the world have been studied
by various authors and the results are scattered in the geophysical
literature. The determination of the phenomenological laws describ-
ing the aftershock process is a statistical problem, and it is therefore
desirable to employ a consistent statistical procedure and to perform
appropriate tests.  We feel that some of the methods employed in the
past. were not rigorous; consequently, this paper is an attempt to
present a unified procedure for the statistical study of aftershock
sequences.  For this purpose, 15 sequences have been analyzed in
detail, even if some of them had already been studied according to
different methods.

The study of the space distribution of aftershocks within a given
sequence does not present particular problems.  Its accuracy depends
on the precision with which epicentral coordinates and foeal depths
are computed. It has been maintained (1) that aftershocks are es-
sentially a shallow phenomenon. A review of available information
partly confirms this view, but allowance must be made for notable
exceptions.

The situation is more complicated with respect to time and
maghitude distribution. The problem is basically that of finding a
statistical relationship between the various quantities involved, and
of estimating the parameters appearing in the statistical laws.  TFirst
of all, when examining the data (which consist of the origin times
and of the individual magnitudes M of the aftershocks), one must
be reasonably sure to be dealing with a complete set; that is, ideally
no aftershock with M > M* where M* is the minimum magnitude
detected in a sequence, should be missing in the time interval considered.
Moreover, it has been shown empirically by Suzuki (2) that the mode
of grouping the data influences the results: therefore the mode of
grouping should be as uniform as possible.  Finally, it is desirable to
employ a statistical procedure that does not contradict the underlying
characteristies of the phenomenon observed, it is necessary to apply
some statistical test to check the hypothesis being entertained, and
confidence limits on the results must be given. More often than not,
one or several of these conditions are not met in the study of



Table I — LisT 0oF AFTERSHOCK SEQUENCES Skrporep FOR DETAILED Styupy,

Sequence Region Reference to
1. Alaska 1964 Alaska Page (%) Mar 28,03:36:13
2. Aleutian I. 1957 Aleutian I. Duda (%) Mar 9,14:22:28
3. Long Beach 1933 California Benioff (3) Mar 10,17:54:08
4. Desert Hot Sp. 1948 » Richter et al. (5) Dec 4,15:43:17
5. Kern County 1952 » Richter (7) Jul 21,11:52:14
6. San Franecisco 1957 » Tocher (8) Mar 22,19:44:21
7. Salinas 1963 » Udias (?) Sept 14,19:46:17
8. Parkfield 1966 » McEvilly et al. (10) Jun 28,04:26:13
9. Chalkidike 1932 Greece Papazachos et al. (1) Sept 26,19:20:37
10. W. Thessaly 1954 » » Apr. 30,13:02:36
11. Amorgos 1956 » » Jul  9,03:11:40
12. Magnesia 1957 » » Mar  8,12:21:13
13. Zante 1962 » » Apr 10,21:37:13
14. Cremasta 1966 » Comninakis et al. (12) Feb 5,02:01:43
15. Hawke’s Bay 1931 | New Zealand | Benioff (%) Feb  3,10:15:00
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aftershock sequences, and the significance of the results is therefore
debatable.

Among the several sequences for which origin times and magni-
tude of individual aftershocks have been published, 15 have been se-
lected for detailed study. As far as possible we have tried to include
sequences from difterent geographic regions, even if this implied con-
sidering a few sequences whose completeness may be in doubt. Since
the determination of the statistical laws is more reliable when data
are more abundant, no aftershock sequence consisting of less than 46
shocks has been included.

Table I lists the aftershock sequences whose time and magnitude
distributions are studied in this paper; it includes region of occurrence,
literature reference, main shock parameters (f, origin time; do, 2o
geographic coordinates; h, focal depth; M, magnitude), minimum mag-
nitude of aftershock included (M*), focal depth of aftershocks (h),
and total number K of aftershocks with M > M* recorded in the
first 100 days. (In sequence (1) the first day after the main shock is
excluded from the count.) Focal depths are in kilometers; the term
“shallow " is taken to mean “ crustal’, and often (especially in
California) * upper crustal . DIMagnitude are given in the I/ -scale or
Mi-scale, with the exception of sequence (1), where the m-scale has
been employed.

It will be seen that the results of the analysis confirm the 3 basic
laws describing the phenomenology of aftershock sequences, namely, the
time-frequency law (Omori’s law) as formulated by Mogi (13), the mag-
nitude stability law (¥), and the magnitude-frequency law (!3).

SPATIAL DISTRIBUTION OF AFTERSHOCKS.

The spatial distribution of the shocks in an aftershock sequence
is naturally related to the location of the main shock. The following
considerations are based on a comprehensive survey of available data
and are not limited to the sequences listed in Table 1. If one traces
on a map the boundary of the area in which the epicenters are located,
the epicenter of the main shock is usually close to this boundary.
Such is the case for all aftershock sequences of large earthquakes
wich oceurred in Japan from 1923 to 1963 (*%). When aftershock
activity takes place along a fault segment, as is frequently the case in
California, the domain of the epicenters is approximately elliptical
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with the long axis parallel to the active fault segment; often the main
shock occupies, roughly speaking, one focus of the ellipse, and the
aftershocks are concentrated toward the two ends.  In some sequences
the aftershock epicenters are clustered in a very small area (only a
few kilometers in length and width), but this is rather exceptional;
usually they are spread out over a much larger area. In the aftershock
sequence of the Aleutian Islands earthquake of March 9, 1957 (4) the
distribution of the epicenters follows closely the trend of tectonic
activity along the Aleutian are.

As to the foeal depths of aftershocks, a review of available data
by Page (1) indicates that, when hypocenter determinations are ac-
curate, aftershocks are shallow events following a main shoek whiel is
itself shallow. Aftershock sequences therefore appear to be crustal
phenomena, with the majority of shocks clustering in the upper layer
of the erust (b << 20 km).

There are, however, some exceptions. In the region of Greece,
the Southern Sporades earthguake of March 18, 1926 had a reported
depth of 50 km and was followed by 18 aftershocks with M > 3.9
which were recorded in Athens; the sequence of the Anatolia earth-

guake of March 18, 1953 (I = 50 km) comprised 21 aftershocks in
the lirst 13 days; the sequence of the Zante earthquake of November 15,
1959 (b = 55 km) consisted of 18 shocks; the focal depths of indi-

vidual aftershocks, however, were not determined (). In the after-
shock sequence of the Iamchatka earthquake of November 4, 1952
the majority of shocks were located near the Mohorovicie discon-
tinuity, but some of them had foei as deep as 60 km (*7). The sequence
following the Aleutian Islands earthquake of March 9, 1957 had an
average focal depth of 74 km, and individual shocks were as much as
150 km deep (4).

Two more notable exceptions have occurred in Romania and
in Central Asia. Tosif and Radu (8) have studied the aftershock se-
quence following an earthquake with M = 7.4 and = — 150 km that
took place in the region of Vrancea, Romania, on November 10, 1940.
The focal depths of aftershocks (3.3 < M < 5.5) were of the same
order. Lukk (1) has studied the aftershock sequence of the Dzhurm
carthquake of March 14, 1963, which occurred in the Pamir-Hindu
Kush region and had a focal depth of 210 km. The observation period
lasted for about 22 days, during which 390 aftershocks were
recorded: their focal depths increased in time from 200 to more than
240 km.
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The examples of recorded subcrustal aftershock sequences, how-
ever, form a very small part of the total number of sequences known
to date; on the other hand, subcrustal earthquakes are themselves
much less numerous than crustal ones. Therefore the comparative index
of aftershock activity should be given by the ratio of the percentages
of erustal and suberustal earthquakes which are followed by a sequence.
At present there is a bias due to instrumentation which favours the
detection of shallow aftershock sequences whereas deep ones may go
undetected. Thus, the conclusion that aftershocks are generally a
shallow phenomenon has to be accepted and at the same time it must
be realized that exceptions exist and that the data are far from
complete.

TiyME DISTRIBUTION OF AFIERSHOCKS.

It is customary to regard aftershocks as random events in time,
whose frequency is governed by some time-decay law. Jeflreys (),
in a study of the aftershocks of the Tango, Japan, earthquake of March
7, 1927, found no sign of mutual dependence between aftershocks.
That is, there was no indication that the chance of an aftershock in
a given interval of time depended on anything but the time since the
main shock, the aftershock frequency falling off with time according
to Omori’s law. The observed frequency showed only random de-
partures from the law. It has since become a commonly accepted
fact that aftershocks can be regarded as random independent events.
It follows that any mathematical relationship relating time and fre-
quency must not be interpreted as a physical “ law ** giving an exact
correspondence, but as a statistical law of chance which is followed
“on the average -, observed frequencies showing random fluctuations
from the theoretically expected values.

The fact that aftershock sequences consist of independent ran-
dom events does not imply that they are a simple Poisson process.
In a simple Poisson process the probability of occurrence of one event
in a given time interval is constant for all ¢; this is obviously not the
ase for aftershocks, where the probability of oceurrence depends on
the time elapsed since the main shoek. But, as Jeffrevs (2*) and
many others have established, apart from the common dependence
upon the main shock, no further mutual relation is found within the
sequence.
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In this section the statistical decay law of aftershock activity
is estimated for the 15 sequences listed in Table 1. The data have
been grouped according to a procedure suggested by Utsu (-!). The
origin time f, of the main shock has been taken as origin of the time
axis, t, == 0. The origin times t; of the aftershocks, obtained from the
reference listed in Table I, have been expressed in terms of days
after the main shock. The first day has been excluded from the ana-
lysis because of its possible incompleteness with respect to the number
of shocks counted, due to the high frequency of aftershocks. Usually,
aftershocks occurring in the time interval 1 < ¢ < 100 have been
considered, unless a sequence comes to an end in a period of time
shorter than 100 days. The time axis has been divided into logarithm-
ically uniform intervals, such that their boundaries t* satisfy the relation

log t* == 0.1 i, i = 0,1, ..., 20.

Now, if N, is the number of aftershocks occurring in the time in-
terval At* = t*, — t*, the quantity

represents the observed frequency per unit time interval. This ob-
served [requency is associated with the centered value of the time
interval concerned

g

: 2

so that one obtains a set of points (¢, »,) in the (t, n)-plane. The
data arranged in this fashion are shown in Table II, the (irst column
representing the centered time, the second the number of shocks in the
time interval concerned, and the third the observed frequency. In the
sequences(4), (7), (10), (12), (13) and (15), in which the number of
shocks in some of the original time intervals was zero, the time intervals
have been grouped two by two and »; and t; have been calculated
accordingly.

The (¢, ni)-points usually show an approximately linear trend on
doubly logarithmic paper. Consequently, it is reasonable to assume
that the frequency of aftershocks per unit time » and the time ¢t are
related by an equation of the form

n(t)y = at #
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Table II — OBSERVED FFREQUENCY OF AFTERSHOCKS.
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Table 11 - Continued
U Ny ng N Ny
2.254 b 1.614 (9) Chalkidike 1932
2.837 2 3.075
3.572 5 6.107 I 790 6 14 621
1.496 G 5.821 2 254 4 7 743
5.661 2 1.541 2 837 4 6 150
7.126 2 1.224 3 572 12 14 656
8.972 3 1.459 1 496 9 8 731
11.295 2 0.772 5 661 6 1 624
14.219 2 0.614 7 126 6 3 673
17.901 6 I.462 8 972 6 2 917
22.536 5 0.968 | 11 295 6 2 317
28.371 3 0.451 | 14 219 8 2 454
35.717 3 0.366 | 17 901 4 0 975
11.965 1 0.388 | 22 536 1 0 194
56.607 4 0.308 | 28 371 1 0 154
71.264 I 0.061 | 35 717 2 0 244
89.716 6 0.292 | 44 965 I 0 097
56 607 2 0 154
71 264 1 0 061
(7) Salinas 1963 89 716 + 0 195
) 5 N (10) Western Thessaly 1954
3.246 + 2.723 i.292 13 22,226
5. 145 6 2.577 2.048 9 9.709
8. 155 3 0.813 3. 246 13 8.849
12.924 8 l.368 5.145 24 10,307
20.484 2 0.216 8. 155 32 8.671
12.924 20 3.419
20. 484 11 1.187
(8) Parkfield 1966 32.465 34 2.314
51.453 26 1.117
I.129 4 15.448 | g 548 0. 190
1.422 7 21.475
1.790 5 12.184
2.254 10 19.356 Amorgos 1956
2.837 2 3.075
3.572 4 1.885 1.129 27 104,275
1.496 9 8.731 1422 27 82.832
5.6061 5 3.853 1.790 26 63.358
7.126 3 1.836 2.254 24 46.455
8.972 3 1.459 2.837 6 9.225
11.295 3 1.159 3.572 12 14,656
14.219 5 1.534 4.496 13 12.612
17.901 6 1.462 5.601 5 3.853
22,536 5 0.968 7.126 1o 6.121
28.371 9 I.384 8.972 4 1.945
35.717 10 1.221
44.965 5 0. 485 (12) Magnesia 1957
56.607 it 0.308
71.264 4 0.245 1.292 13 22,2326
89.716 5 0.243 2.048 4 4.315




A STATISTICAL STUDY OF AFTERSHOCK SEQUENCES 367

Table 11 — Continued

nt l N
3 246 23 15 655 5 661 6 4 624
5 145 24 10 307 7 126 2 1 224
8 1535 24 6 503 8 972 1 0 486
12 924 13 2 223 11 295 6 2 317
20 484 15 1 618 14 219 4 1 227
32 465 6 0 408 17 901 2 0 487
51 458 4 0 172 22 536 7 1 355
81 548 38 1 030 28 371 | 0 154
35 717 14 1 710
+4 965 4 0 388
(13) Zante 1962 56 607 7 0 539
71 264 6 0 367
1 292 11 18 807 89 716 18 0 875
2 048 7 7 551
3 246 6 4 084 ) Pavekers Rac 10
5 145 ' 17y (15) lawke’s Bay 1931
8 155 13 3 523 1 292 2 3 119
12 924 3 0 513 2 048 4 4 315
20 484 19 2 030 3 246 3 2 (042
32 465 5 0 340 5 145 9 3 865
8 155 b 1 355
) 12 924 16 2 736
(14) Cremasta 1966 20 484 7 0755
32 465 4 0 272
3 572 1 1 221 51 453 5 0 2135
4 496 + 3 881 81 548 3 0 081

that is, Omori’s law. The commonest procedure for estimating the
parameters « and f is the least squares method, which has been ap-
plied to the great majority of aftershock sequences whose time distri-
bution has been investigated so far. Accordingly, relation [1] is linear-
ized by taking logarithms on both sides

log n(t) - - log a — plogt. 2]
Then, setting
log n(t) =y, logt =2, logu = a*, —j3 = g%
the following model is obtained
y [
that is. the expected value of y is a linear function of ». Therefore

Yi — oF + ¥y, - &
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i.e., the observation y. consists of the expected value at the given w:
plus a random fluctuation e:.

In the method of least squares, the parameters a* and p* are
chosen in such a way that the sum of squares of the vertical distances
of the points from the regression line is minimized. For the linear
model, this sum of squares is

& (a*, 3%y — ) Pt }E (yi — a¥ — p*ed)

=1 = iml

and the necessary conditions for & («*, #*) to be minimum are

D E d
— =0 , o
da* 2 f*
from which one obtains
E, E ¥
kX wr iy — X 2y
i=1 {=1 i=]l
L
DY A I .
' =1 =1 ) (3]
. 1 & 1 &
S N,
Y — prE, Y = — Yi, — - T
Y P,y [ Yis kote1

According to the Gauss-Markov theorem (22), the estimates of the
parameters calculated according to the least squares method will be
unbiased and of maximum efficiency if, and only if, the linear hy-
pothesis is such that the random fluctuation & has zero mean and
constant variance (independent of x). In other words, if the calculated
regression line is to give the expected value of y for each z, the ob-
served values must be uncorrelated, and the probability distribution
of y for each x must be symmetric. In many cases, especially when
the fluctuation e can be considered to be the sum of many independent
factors, the conditions of the Gauss-Markov theorem are satistied and
the probability distribution of y may be regarded as approximately
normal for every z. In other cases, however, the matter is very
debatable, particularly when a transformation of coordinates is per-
formed in order to linearize the least square model.

It turns out that, under reasonable assumptions, neither the
original model [1] nor the linearized model [2] satisfy the conditions
of the Gauss-Markov theorem. This has been noted, for instance,
by Page (]). An appropriate method must take into account the prob-
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ability distribution of »n for each interval of time considered. On
the other hand, it has been suggested (-3) that the least squares method
is approximately correct also when the conditions for its theoretical
validity are not realized in practice. In order to clarify these matters,
in the sequel we shall estimate the parameters in equation [1] by means
of both the least squares method for the linearized model [2], and
the maximum likelihood method (24), which takes into account the
distribution of » for each time interval. First of all, we analyze this
distribution.

In the following discussion it is assumed that the deviations of
the observed values n; from the expected value n(f) reflect actual
random fluctuations and that other contributions to such deviations
are negligible. Since the only other sources of deviations are errors
of measurement, and these have been reduced to a minimum by ex-
cluding the first day after the main shock and by counting only well-
defined aftershocks with M > M*, the assumption is most probably
correct. It is also assumed that, if the number of shocks expected
in the i-th interval is E (Ny), the probability that the observed number
is Ny, is given by

p(Ni; BOV)) = o o7 BOY [4]

i.e., the number of shocks in each time interval is given by a Poisson

distribution. The Poisson distribution is the most fundamental dis-

tribution for such discrete variates as the number of shocks in a

given time interval, and it has been postulated for the case of after-

shocks by a number of authors, e.g., recently, by Utsu (2!) and Page (3).
The expected value E(N;) in the i-th interval is given by

1

E(N) = [ n(f) At = ] at=Bar ~ at7 B A [5]

iy t
where the approximation is introduced in order to avoid using the
integral in equation [4]; this is necessary because 8 is unknown and
could be unity. The approximation has been checked numerically
for some randomly selected samples and the error was found to be
negligible. Then relation [4] becomes

@t P A

AN

p(Ni; a,p) = (6]
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The principle of the method of maximum likelihood is to take esti-
mates of the unknown parameters that maximize the probability of
obtaining the obhserved sample.  Considering a sample of I independent
values, each with a probability distribution p (¥:: «, ), the proba-
bility that the sample consists precisely of these & values is

k
L(a,B) = Il p (Nyiu,p) (7]
f=y
The function L(w, f) is called the likelihood function. The necessary
condition for L («, f) to have a maximum is

DL L

vy =0 iy =0.

Since In L(g,f) (where In stands for the natural logarithm) attains
its maximum for the same values of « and g as L(a, p) itself, it is
the function In L(a, ) which is commonly maximized. 1t follows
from equations [6] and [7] that the likelihood funection in the present
problem is

7 t,._ﬁélt* A
L((l,ﬂ) - n ( ,-Z\Tt! i)

1B AN P
I La, f) = S In| 2" L) et DAy

i=1 IV'i!

from which one obtains

k k k
In L,y =na 2 Ny—fp X N:Int: + T NelnAt*
i-1 i1

i=1

—; k
——a Xt A1 — 2 In N4!

The maximum likelihood estimates of « and f are obtained by solving
the equations

31 ’ 1 k ko
L N PR Wy L

\ da L i=1 i=1
L (a E b
/(lvﬂ) = —%X NInt, + «a }:tt f'A ’;(» Int; == 0
J ﬂ =1 i=]
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1.e.,

k ko
SNi—aXt, ﬁAt:‘ 2 0
i=1 t=1 "

S Nimt—aSt "t s =0

i=] i=1

Equations [8] are the normal equations in the maximum likelihood
method. From them one obtains,

k k
XN X Nt
Xt A Eri—ﬁAr? In #;

= ﬁ N: X tf“A t*Int,— EIJ Nelng; X tf’”zl t* = 0. [10]
i=1 i=1 . i=1 i=1
Equation [10] must be solved for 8, and then « can be obtained from [9].

A program has been written to solve equation [10] by the secant
method (25). The first approximation to the root of [10] and to the
estimate of « has been obtained by means of the least squares method
for the linearized model, according to formulas [3]. The estimates
u,, B, obtained by the least squares method, when compared with the
maximum likelihood estimates, give an idea on how statistically reliable
the least squares method is when the underlying assumptions are not met.

The numerical results for the 15 sequences are summarized in
Table ITI. From left to right, the colummns indicate the sequence
involved, the least square estimates «,, ,.,, and the maximum likelihood
estimates «, f. The parameter which characterizes a sequence is the
decay parameter f, which measures the rate of decay in time of
the frequency of aftershocks. Tt can be seen that differences between
f. and f are present but not very large. The decay parameter is
usually around unity.

Now, we proceed to check the validity of the time-frequency
law. TIf the expected value of the frequency n varies in time accord-
ing to equation [1], and using the approximation expressed by [5],
the mean and the variance of the Poisson-distributed number of shocks
are in each interval

EN)=1T(N)=ut) A t* = at P g
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and therefore the standard deviation of » is

i

al B

D(n) = |

Table 11l ESTIMATES OF TIIE PARAMETERS IN TIIE TIME-FREQUENCY LAW

Sequence Least square estimates Ma:"i'::t'il:lllili:f‘:glihOOd
n B “ B

(1) Alaska 76 824 1 097 77 547 1 085
(2) Aleutian T. 32 611 0 997 33 662 0 984
(3) Long Beach 10 956 1 302 11 731 1 301
(4) Desert Hot Sp. 9 303 1 075 9 970 1 042
(5) Kern County 36 484 1 150 39 047 1 154
(6) San I'rancisco 19 070 1 103 22 720 1 120
(7) Salinas 6 651 0 902 6 778 0 844
(8) Parkfield 20 622 0 981 23 424 0 998
(9) Chalkidike 47 918 I 448 45 392 1 355
(10) W. Thessaly 32 600 0 949 34 211 0 917
(11) Amorgos 150 139 1 882 151 694 1 830
(12) Magnesia 27 607 0 988 29 761 0 918
(13) Zante 20 176 1 063 19 565 0 970
(14) Cremasta 4 210 0 518 4 738 0 481
(15) Hawke’s Bay 8 639 0 907 11135 0 941

A general theorem which holds for an arbitrary distribution with
a second moment is Tchebychev’s theorem (21). It states that, it .\
is a random variable with mean K(X) and standard deviation D(X),
then the following inequality holds

1

PUX—EX | 2kDX)}<

where & is an arbitrary positive number. TIn other words, the prob-
ability that X assumes values outside the interval E(Y) 4 & D(X)is
less than 1/k-. Conversely, from the viewpoint of sampling, in the
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long run less than (100/k-)9% of the values assumed by X will fall
outside the interval.

The application of Tchebychev’s inequality to check the validity
of the time-frequency law has two limits, namely, it yields rather
weak conditions, and the sample size is small. Nevertheless it gives a
reasonably safe criterion for rejecting the validity of the law for se-
quences that show too wide fluctuations. Regarding the observed
values of n as the result of random sampling from a population whose
expected value varies with timme according to [1], and choosing & = 2,
Tehebychev's inequality takes the form

that is, in the long run less than 259, of the observed values n; should
fall outside the interval E(n) 4+ 2 D(n). TIf this condition is not sa-
tistied, the assumption regarding the variation with time of the expected
value n(¢) must be rejected.

In order to deternmine a confidence band according to Tchebychev’s
inequality, therefore, the quantities E(n) + 2 D(n), E(n) — 2 D(n)
have been computed at selected t:;, ¢ = 1, 2, ..., &, and compared
with the observed . Table IV gives the results, showing in the
columns from left to right the sequence, the total number of data
points, the number of points outside the confidence band, and their
percentage. Consequently, according to the selected criterion, se-
quences (10), (12), (13) and (14) do not follow the assumed tinle-
frequency law, inasmuch as the observed frequency cannot be explained
only in terms of random fluctuations from the law. The other 11
sequences appear to follow the law and the fit is generally fairly good.
All the sequences which show considerable departures from the assumed
law have occurred in the region of Greece; this fact might have some
geotectonic signilicance. However, there exists the possibility that
relatively poor instrumentation plays a part in some apparent ir-
regularities. Sequence (14) originated under peculiar conditions; the
frequency of aftershocks in it appears to be correlated to the variations
in the water loading of a nearby artificial lake (*2).

Figures 1 to 5 display on doubly logarithmic paper the results
for some of the 11 sequences which appear to decay according to the
postulated law. The dots represent the data points, the full line the
fitted n(t), and the broken lines the confidence limits.
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Table 1V — FLUCTUATIONS OF TIE OBSERVED FREQUENCIES IN THE DECAY
OF AFTERSHOCK ACTIVITY WITH TIME.

Sequence Total number Points outside % Points
of points confidence band outside
(1) Alaska 20 2 10 9
(2) Aleatian 1. 20 0 —
(3) Long Beach 13 0 —
(4) Desert Hot Sp. 10 0 —
(5) Kern County 20 0 —
(6) San Francisco 20 0 —
(7) Salinas 7 0 —
(8) Parkfield 20 0 —
(9) Chalkidike 18 1 5.69,
(10) W. Thessaly 10 3 30 9
(11) Amorgos 10 1 1o 9
(12) Magnesia 10 7 70 9%
(13) Zante 8 2 25 9,
(14) Cremasta 15 4 26.79,
(158) Hawke's Bay 10 1 10 2
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Ifig. 3. — Time distribution
of aftershocks: Kern County 1952.

nit
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Ifig. 4. — Time distribution
of aftershocks: San Iranciseo 1957,




Table V — CoMPARISON OF HYPERBOLIC AND EXPONENTIAL DECAY OF AFTERSHOCK ACTIVITY.

Sequence a, i) uy B
Alaska 76 824 1 097 0 016 18 295 0 051 0
Aleutian I. 32 611 0 997 0 027 9 575 0 050 0
Long Beach 10 956 1 302 0 031 5 917 0 211 0.
Desert Hot Sp. 9 303 1 075 0 078 2 529 0 055 0.
Kern County 36 484 1 150 0 025 8 570 0 056 0.
San I'rancisco 19 070 1 103 0 063 4 308 0 049 0.
Salinas 6 651 0 902 0 061 4 281 0 136 0.
Parkfield 20 622 0 981 0 038 5 751 0 046 0.
Chalkidike 47 918 1 448 0 075 5 093 0 060 0.
W. Thessaly 32 600 0 949 0 063 10 796 0 051 0.
Amorgos 150 139 1 882 0 035 112 473 0 482 0.
Magnesia 27 607 0 988 0 133 7 264 0 044 0.
Zante 20 176 1 063 0 076 8 346 0 103 0.
Cremasta 4 210 0 518 0119 1 468 0.016 0.
Hawke’s Bay 8 639 0 907 0 073 3 108 0.050 0.
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Its is interesting to note that most decay phenomena in physics
are exponential, whereas the decay of aftershock activity with time
appears to be hyperbolic. In order to check rapidly the possibility
of exponential decay, the model

n(it) = a, o Pt
has been linearized, and the parameters a, and §, have been estimated
by the least squares method. Then the mean square deviation
(standard error of estimate) of the data points from the fitted curve
has been calculated by the formula

1 k
$," = o :E {log i — (log a, — B, ti log €)]2
— 2 =1

(where & is the number of data points) and compared with the mean
square deviation from the fitted time-frequency law

n(t) = q
that is,

1 k
s; = T e 2 [log ni — (log a, — f, log t)]?

b -— S i=1
(where ¢, and . are the least square estimates). 1f 8] < s.” the assumed
time-frequency law represents a better fit, in the least square sense,
than the exponential decay. The results are summarized in Table V.
It can be seen that s7 < s;” in all but three cases, namely, sequences (7),

(10), and (13). It can be concluded that the frequency of aftershocks
usually decreases in time hyperbolically and not exponentially.

CONFIDENCE LIMITS ON THE DECAY PARAMETER.

The parameter g appearing in equation [1] is related to the rate
of decay of aftershock activity with time and is therefore an important
characteristic of the sequence under consideration. Consequently, it
would be interesting to see whether the differences in the computed
decay parameters for diflerent sequences are significant or not. Con-
fidence limits on f, however, cannot be calculated according to the
usual least square procedure, which assumes the fluctuations to have
a normal distribution.
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An approximate procedure for calculating confidence limits on g
can be based on the addition theorem for the Poisson distribution (-4).
Since in this procedure the parameter « is assumed to be known exactly,
it will yield no more than an indication of the range in which the real
value of f is likely to fall.

The addition theorem for the Poisson distribution states that,
it Ny i = 1.2, ...,k is a sequence of stochastically independent
and Poisson-distributed random variables with expected values Fy =

k
F(N:), then the sum X = X N¢ will be Poisson-distributed with
i=y
A k
expected value K(.X) — X FE:. In the present case, N: being the
i=1

number of shocks in the i-th time interval, the expected values are

Ei- at Par

and

EX)=aXt "d1.
i=1

The value of FK(X) for each of the 11 sequences which follow the
time-frequency law is such that the distribution of .\’ can be approxi-
mated by the normal distribution. Therefore the standardized va-
riable

«L

X )

is approximately normally distributed with E(X*) = 0, V(X*) = 1.
Therefore, the probability that A* assumes a value in the interval
(AL, A2) 1S

r { AL < XK )Lz} = D(t2) — D(Ly)
where @(.Y*) is the normal distribution function. In particular
1’{ —1.96 < X* <1.96 } = 0.95.

Then the approximate 959, confidence limits on the decay parameter
are obtained by solving for f the equations

X* = 4-1.96

that is, recalling the definition of .\'%,
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k ko
ENi—a it VAt
i=1 i=1

Naturally, the central value of X* is obtained when a, g are given
by the maximum likelihood estimates. Assuming the value of « to
be known exactly, the above equations take the form

k k . / .
Y Ni—u ¥ At — 196 Vaxst P10 <0
i=1 i=
‘ [L1]
k k
X Ni—au X
i~1 i=1

Iquations [11] have been solved by the secant method. The
results for the 11 sequences with time-frequency law of the form given
by [1] are shown in Table VI. It can be seen that the 95°; confidence
limits on the maximum likelihood estimate always contain the least
square estimate of f, which therefore appears to be a good approxi-
mation to the real value of the decay parameter.

Table VI — CONFIDENCE LIMITS ON THE DECAY PARAMETER.

Sequences 959, Confidence limits
(1) Alaska 1.033 << B8 1 139
(2) Aleutian I. 0.920 < g < 1 052
(3) Long Beach 1.009 < ¢ 1 650
(4) Desert Hot %p. 0.913  p 1185
(5) Kern County 1.072 <7 g << 1 242
(6) San Iranecisco 1.020 p 1 229
(7) Salinas 0.645 << g << 1 064
(8) Parkfield 0.919 << p < 1 082
(9) Chalkidike 1.254 p =l 1 464
(11) Amorgos 1.644 L 8 << 2 032
(15) Hawke’s Bay 0.829 <L g << 1 051
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The values listed in Table VI must not be considered as exact. The
limits rounded to the second decimal digit are probably fairly reliable.
Most g-values cluster around the 0.9-1.2 range. Sequence (11) stands
by itself, showing a very rapid decay in activity. Also sequence (9)
has a decay coeflicient somewhat higher than usual. This fact hints
at the possibility that sequences in Greece decay more rapidly; but
no conclusion can be reached with such a small sample size.

MAGNITUDE STABILITY IN TIME.

When the characteristics of aftershock sequences with respect to
magnitude are examined, two sources of error are added to the pos-
sibility of the incompleteness of data; namely, lack of accuracy in
magnitude determination, and confusion between different magnitude
scales. Unfortunately, authors sometimes do not specify which scale
they are using. When one single sequence is being examined, no
problems arise, because the data are consistent within the sequence;
if, however, results for different sequences are to be compared, the use
of different magnitude scales may affect the conclusions. In the sequel,
the various * local ”’ magnitude scales, for the purposes of comparison
of results among sequences, have been assimilated to M. Thus the
only distinction left is between M and m; the latter scale has been
used only in sequence (1).

Two aspects of the sequences have been examined in detail. na-
mely, the variation of aftershock magnitudes with time, and the magni-
tude-frequency distribution. TFor all sequences except (1), where
1 <t < 100 days, the data for ¢ < 100 days have been included in
the analysis. We first consider the distribution of magnitude with
respect to time.

The overall mean magnitude, M, has been calculated for each
sequences as

M = 11513:“1 M: , i=1,2,.. ., K
where K is the total number of aftershocks in the sequence. Then
the mean magnitude, M’, of each group of 10 successive aftershocks
is computed, thereby eliminating large individual fluctuations. In
almost all the sequences considered the mean magnitude M’ oscillates
about M during the whole length of the sequence and no appreciable
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decrease with time is detectable for ¢ < 100 days. When a sequence
lasts less than 100 days, the mean magnitude is stable throughout
the sequence. Sometimes higher values of M’ are observed in the
first few hours after the main shock, but this can almost certainly
be attributed to the fact that some shocks with M > M* are not de-
tected when the frequency is very large. Figure 6 gives an example.
The dotted line represents .

Fig. 6. — Magnitude stability in time: Aleutin Islands 1957.

Thus, the law of magnitude stability in aftershock sequences
(first proposed by Lomnitz (1)) is fully confirmed; during an after-
shock sequence the mean magnitude of the shocks is constant in time.

Table VII — OSCILLATIONS OF MEAN MAGNITUDE.

! _ , % Within

Sequence M Number of L M - 0.20
(1) Alaska 4.89 29 89.79%
(2) Aleutian T. 6.19 20 100 9
(3) Kern County 4.44 18 83.39,
(6) San Francisco 2.53 16 81.39,
(8) Parkfield 2.46 17 88.29%,
(10) W. Thessaly 3.83 29 89.%9
(11) Amorgos 3.92 40 65.59;
(12) Magnesia 3.43 29 72.49;
(18) Zante 3.87 13 100 9,
(14) Cremasta 3.75 10 100 9,




382 G. RANALLI

(‘onsequently, the decrease of seismic activity with time is solely due
to the decrease in aftershock frequency.

Moreover, the fluctuations of M’ about the overall mean magnitude
M are not very wide. Table VII summarizes the results for the
sequences with a larger number of shocks. From left to right, the
first column indicates the sequence, the second the overall mean magni-
tude, the third the number of calculated M;-points, and the fourth
the percentage of such points which fall within the interval M 4 0.20.
It is to be noted that also the sequences with a lesser number of after-
shocks and not included in the table show remarkable magnitude
stability. The only sequence in which M’ shows a decreasing trend
with time is sequence (11). Tn all the others, M’ shows only random
fluctuations from M and the law of magnitude stability in time is
satisfied.

MAGNITUDE-FREQUENCY DISTRIBUTION.

The frequency data for the 15 sequences of Table I are listed in
Table VIIT. The first column gives the centered value of magnitude
in the interval concerned (M 4 0.05); n(M) is the frequency; and
N(3) the cumulative frequency. For brevity, intervals in which the
frequency was zero have been omitted from the Table. The magnitudes
in sequence (1) are in the m-scale. The most commonly accepted
form for the magnitude-frequency distribution, in case of both in-
dependent seismic events and aftershock sequences, is

logn(M) =« —b M 112]

where log is the logarithm to the base 10 and n(M) is the number
of shocks with M - dM (%).

Equation [12] is to be regarded as expressing a statistical relation-
ship. Usually, the coefficients ¢ and » have been calculated according
to the least squares method. Suzuki (?) has pointed out that this
is not rigorous, because log n(M) is not symmetrically distributed
with uniform variance for each magnitude interval 423l.

In this section we shall define n(M) is such a way that log n(3) = a
not when M == 0, as in equation [12], but when M = M*, where
M* is the minimum detectable magnitude in the sequence. Then
the magnitude-frequency law takes the form

logn(M) = a —b (M — M%) , M > M*. [13]
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Table VIII ~ MAGNITUDE-FREQUENCY DISTRIBUTION.
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(onverting to natural logarithms one obtains

n w(M)y =« — b (M — M%) [14]
where
ITi b

f= ' = 15
" loge '’ b log e [15]

Therefore

W b (M ==L — (M — ’
H(Jl) - € ) = yc ) y ea = ¥y.

Normalizing, i.e., imposing the condition that

©0

' (MY dM =1

one has

Y 1% 4
’ ye dM = ’/
)

M

=1

i.e.,, ¥y = b'. Thus we assume that the probability distribution of A
takes the form

WMy = b e M > ME. [16]

A procedure for estimating the parameter b” in [16] can be deriv-
ed as follows. The mean of the distribution is

(M) = r;'ll w(MydM = M* Il,

h
Approximating the population mean by the sample mean I, given
by

1 K
M- % M,
i (T3]

where K is the total number of shoeks, one has

M= M*+ —
! [ X

i.e.,
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The above procedure is but a particular case of the time-honored
method of moments, introduced by K. Pearson and his school (-}).
Formula [17] was also proposed by Utsu at a meeting of the Seismo-
logical Society of Japan (reported by Aki (2)). The estimation of the
parameter b’ given by [17] has been proved by Aki (-¢) to be equivalent
to the maximum likelihood estimate, and therefore has several desir-
able statistical properties.

Tabhle 1X — ESTIMATION OF THE PARAMETER b
IN TIE MAGNITUDE-FREQUENCY LAW.

Requence M M* b’ b
(1) Alaska 1.89 145 2 273 0 987
(2) Aleutian I. 6.19 5 85 2 941 1 277
(3) Long Beach 1.40 3 85 1 818 0 790
(4) Desert Hot Sp. 3.38 2 95 2 326 1 010
(5) Kern County 4 44 3 95 2 041 0 886
(6) San Francisco 2 55 1 95 1 667 0 724
(7) Salinas 1 94 0 95 1 010 0 439
(8) Parkfield 2 16 1 95 1 961 0 852
(9) Chalkidike 113 3 35 I 282 0 557
(10) W. Thessaly 3 83 315 1 471 0 639
(11) Amorgos 3 92 3 45 2 128 0 924
(12) Magnesia 3 43 2 95 2 083 0 905
(13) Zante 3 87 3 55 3125 1 357
(14) Cremasta 375 3 35 2 500 1 086
(15) HNawke’s Bay 4 83 1 05 1 282 0 557

Table IX gives the results of calculations. From left to right,
the columns indicate sequence, sample mean A/, minimum magnitude
M* and the estimations of the parameters b’, b appearing in relations
[16] and [13] respectively. The estimate of b is given by [17], and
b is given by [15]. The minimum magnitude M* has been taken
to be 0.05 units less than the values given in Table VIII because the
value of M approximated to one decimal could actually come from
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anywhere in the interval M 4+ 0.05. It can be seen that b is usually
slightly less than unity.

The basic idea for examining the observed fluctuations from the
magnitude-frequency law is as in the case of the time distribution
of aftershocks. Suzuki (2), among others, has argued that the number
of shocks with M -+ d3[ must follow a Poisson distribution. Aeccord-
ingly, the problem is that of checking whether the observed deviation
can be explained in terms of random fluctuations from the law.

It is more convenient to consider the cumulative distribution
because individual large fluctuations in small intervals, possibly due
to inaccurate magnitude determination, are smoothed out in this
fashion, and moreover the normal approximation can be employed.
The basic idea of the method is due to Suzuki (3). Some minor modi-
fications have been introduced, and the normal approximation to the
Poisson distribution, instead of the Poisson distribution itself, has
been used.

From equation [16], it follows that the cumulative distribution
function of magnitude has the form

F(M) = 1 n(M) dM = ¢ V(="

M

Assuming that the total number of aftershocks in a sequence, I,
coincides with the theoretical value for M = M*, the expected valuo
of the cumulative frequency at various M > M* is given by

N(M) = K¢ V@40 [18]

which, when transformed by taking logarithms ou both sides, is a
straight line on semi-logarithmic paper, with slope equal to b if the
logarithms are to the base 10.

Now, to each magnitude range there corresponds a Poisson-
distributed number of shocks. The cumulative number of shocks at
a given magnitude M, therefore, is the summation of independent
samples taken from each of the Poisson distributions corresponding
to magnitudes greater or equal to M. According to the addition
theorem for the Poisson distribution, such a cumulative number will
also be Poisson-distributed. If the expected value is large enough,
say, N(M) = 10 for all intervals, the Poisson distribution can be ap-
proximated by the normal distribution with mean N(M) and standard
deviation +/ N(AM). 1t is then possible to calculate the fiducial in-
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terval beyond which fluctuations are expected with a probability

smaller than 5% (2.59% on each side). The limits of the interval
such that
Pl <N <k}~ 095

are, for the normal distribution, E (N) + 2 D (N); i.e., in the present
case, N(JM) + 2 N(I).
Accordingly, the above quantities have been calculated at

Mi=M* 4011 ,i=1,2, ...,k
Then, by joining all points of ordinates
NM) 424 NMy)  and  NOL)—24 NI,
respectively, one obtains a confidence band which should contain

approximately 95°; of the data points if they come from a population

Table X — VALIDITY OF THE MAGNITUDE-FREQUENCY LAW

seence Fofabuber gl e % bomts
conf. limits

(1) Alaska 15 + 26.7Y%
(2) Alentian I. 11 0 —
(3) Long Beach 12 2 16.79,
(4) Desert llot Sp. 9 4] —
(5) Kern County 15 0 —
(6) San Francisco 17 0 —
(7) salinas 16 0 —
(8) Parkfield 15 0

(9) Chalkidike 17 2 11.89,
(10) W. Thessaly 24 14 58.39,
(1) Amorgos 18 I 5.69,
(12) Magnesia 17 3 17.69,
(13) Zante 9 2 29,204
(14) Cremasta 10 0 —
(15) Hawke’s Bay 16 0 —
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whose expected value is given by the magnitude-frequency law
expressed by [18]. The rightmost interval (say, from M, to oco) ha
alwayvs be chosen in such a way that N(M) > 10.
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Table X gives the results. It follows that sequences (1), (3), (9),
(10), (12) and (13) do not appear to be governed by the assumed mag-
nitude-frequency law. When these sequences are examined one by one,
however, it is seen that several circumstances tend to decrease the
weight that must be assigned to their apparent irregularity. For

Iig. 11. — Magnitude-frequency distribution: Cremasta 19606.

=

sequence (1) the body— wave magnitudes as given by the U.S. Coast
and Geodetic Survey have been employed. Page (3) found them in-
accurate and moditied them on the basis of records of five selected
stations, thereby obtaining a better fit; however, no test on the fluc-
tuations was performed in his study. Of the sequences occurring in
Greece, it is worth noting that sequence (14), which was studied with
a network improved with respect to the others, appears to follow the
assumed law; this fact supports indirectly the conclusion that the
irregular behavior of its aftershock frequency is due to changing
local stress conditions. Sequences (10), (12) and (13) are also irregular
with respect to aftershock frequency in time. This fact points to the
likelihood that such irregularities are due to poor data, although no
definite statement can be made.

It can therefore be concluded that the magnitude-frequency
law [18] is statistically followed by the large majority of the sequences
under consideration. Figures 7 to 11 give some examples; the lo-
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garithmic ordinate represent the cumulative frequency, the linear
abscissa the magnitude.

CONFIDENCE LIMITS ON THE FREQUENCY PARAMETER.

Difterences between b-values may be significant or not. In order
to decide the question, confidence limits must be set on the estimated
value of the parameter. We shall follow in this matter a procedure
suggested by Aki (26).

Given a sample of K shocks with magnitudes M, i = 1, ..., A,
let y: and Y be defined by

d
Yi = ob In n(My)
K
Y=%X w
i=1

where n(M) is given by formula [16]. Clearly for all ¢,

= o — M + M*
Y X -+ M
and therefore
Bly) = l y (M) dM = 0
M
V(y) = | g2 (M) dM —
e

By the central limit theorem () the distribution of Y will be approxi-
mately normal if A is sufficiently large. Since

BY)y =0, V(Y=
it follows that the variable

VH — Y —E(Y) _ Y
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is approximately normally distributed with mean 0 and standard
deviation 1; therefore

r {— 1.96 << Y* 1.9(5} = 0.95.

Accordingly, the 959%, confidence limits on b are obtained by solving
the inequality

— 1.96 < b,,l < 1.96
JE
which gives
'K
196 < U (—1 — M.+ M*) < 1.96
VI = b /
ie.,
1—196 /K _ 1+ 1.96 /K
M—Mx M — M

Table XI — CONFIDENCE LIMITS ON THE FREQUENCY PARAMETER.

Sequence 959% Confidence limits
(2) Aleutian I. 1102 < b < 1.452
(4) Desert Hot Sp. 0.770 << b < 1.250
(8) Kern County 0.757 b < 1.015
(6) San Francisco 0.612 << b 0.836
(7) Salinas 0.312 << b 0.566
(8) Parkfield 0.725 b << 0.979
(11) Amorgos 0.833 < b 1.015
(14) (‘remasta 0.876 b 1.296
(15) Hawke's Bay 0.427 b 0.687

Table XI summarizes the results for the 9 sequences where the as-
sumed magnitude-frequency law appears to hold. According to usage,
the parameter b. instead of b, has been emploved. It can be seen
that the b-values cluster around the interval 0.8-1.0.
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Although sequence (2), which occurred along an active island
are, shows an anomalously high value of the frequency parameter,
the sample size is too small to support the contention that b has some
geotectonic significance.

(CONCLUSION.

The basic statistical laws describing the phenomenology of after-
shock sequences are confirmed by the present study. These laws
are as follows:

(1) Aftershock sequences are generally crustal events, although
deeper ones also occur;

(2) The frequency of aftershock occurrence within the same
sequence decays in time according to the law

wt) = at P t>100

where the decay parameter S is approximately equal to, or slightly
greater than, unity;

(3) The aftershock magnitudes, apart from individual fluctua-
tions, show stability in time to the end of the sequence;

(4) The frequency-distribution of magnitude in a sequence is
of exponential form

l\r( B[) N 0—1)’ (M—M*")

where the frequency parameter b = b’ log e is usually slightly less
than unity

The importance of the mode of grouping the data in a statistical
analysis makes it desirable to introduce a standardized procedure.
Furthermore, an appropriate statistical method must be employed,
and the hypotheses involved must be checked. A\ systematic treatment
of data greatly increases the reliability of the results.

It also turns out that the least squares method, when the observed
values are uncorrelated, yields rather satisfactory results even if the
conditions for its theoretical validity are not met.
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