From the Somigliana waves to the evanescent waves
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SumMaRY. — The Rayleigh equation has real coeflicients; therefore,
also the case of complex conjugated roots may be explained physically.
The Author proves that the Somigliana waves may be formed for Poisson
ratio values until 0.30543; for gradually less rigid media, they are missing
altogether and degenerate into evanescent waves.

R1assuNTo. — A causa dell'omogeneita delle equazioni del moto ed
essendo I’equazione di Rayleigh a coefficienti reali, anche il caso delle radici
complesse coniugate puo essere fisicamente interpretato. Viene provato che
le onde di Somigliana possono insorgere per valori del rapporto di Poisson
fino a 0.30543; mentre nel campo di variabilita

0.30543 < ¢ < 0.5,

cio¢ in mezzi sempre pitt incompressibili, le onde di Somigliana (possibili
solo per incidenza trasversale) degenerano in onde evanescenti.

1. In some previous notes (! 2 3. 4) T have dealt with the physical
interpretation of the roots of the Rayleigh equation which are above
the unit, for the values of the ¢ coefficient of Poisson to which cor-
respond three real roots for the Rayleigh equation. And I have proved
that those roots have an exact physical meaning: they permit the
theoretical interpretation of sizable groups of seismic oscillations which
I named waves of Somigliana. I found then the limits within which
the Somigliana waves originate, within the real roots above the unit,
and I emphasized how interesting it was to include the study of such
waves into the research of stratifications building up the Earth’s crust.

(*) Istituto Nazionale di Geofisica. Roma.



However, as was already noted by Somigliana in this third con-
tribution to the propagation of seismic waves (®), due to the homo-
geneity of equations of motion and to the fact that the Rayleigh equa-
tion has real coefficients, also the case of complex, conjugated roots
may be explained physically with the separation of the real from the
imaginary part of roots.

This is what I am undertaking as follows.

2. First of all, let us try to find analytically the value of o sepa-
rating the real field from the complex field for roots above the unit.
This value has already been obtained empirically in the previous
note (4).

As is known, the Rayleigh equation is expressed in its most known
form with the usual meaning of symbols (?):

from which, after having made (1)

32 = b4
follows
. V02 1—2¢
Remembering that o = o 1—o) we put
L 1
- T 21—
whence [1] becomes
P —8y2+8(1 4+ 2e)y—16e=0 . [2]

Let us see how the roots of this equation vary when o varies between

0 and —, that is for

a )

Now we free [2] from the second degree term in y. To this end we put



FROM THE SOMIGLIANA WAVES TO TIHIE EVANESCENT WAVES 473

Equation [2] changes then into

3 16 2
Pt g (Be—5)d+ (53——92) =0.
We make
16 /. 28 |

3 6e—38)=p ,
thus obtaining

B +po+qg=0.

If p and ¢ are real, we know from the mathematical analysis that
the condition for the three roots of [3] to be real is expressed in the
relation

P?
27

-
-— 4 <0.

4

C'onsidering the values of p and ¢, we have in our case

13 |
Lt = — — 28)2 12 ¢ — 10)3).
T o7 36 (45 ¢ 8)2 + (12 ¢ )I
For the roots to be real, we must have
Ag) = (45 —28)2 + (12 —10)2 < 0. [3]

It is easily found that the value of ¢ which annulls A(e) is

e = 0,6785
And since
o=1 L 1
o e

it follows
g = 0,26308,

which practically coincides with the wvalue previously obtained
(¢ = 0,26305). It is in correspondence to this value that the two
roots above the unit of the Rayleigh equation coincide; in fact one
obtains v, . = 3,5754 (4).

Therefore, in order to have a real root above the unit and two
complex conjugated roots, it must be
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to which corresponds for o the field of variability:
0,26305 < o < 0,5.

3. There remained now to calculate a series of complex, conjugated
root couples for ¢ values within the above limits.

Calculations have been made for the following o values: 0,265;
0,27; 0,30; 0,305; 0,35; 0,40; 0,50.

The Rayleigh equations pertinent to the above o values are:

for o = 0,265 3,1277 43 — 25,022 2 + 59,065 y — 34,043 = 0,
for 0 = 0,27 3,1739 4* — 25,391 4% + 60,174 y — 34,782 = 0,
for ¢ = 0,3 3,60 43 —28,0 424 68,0 x—40,0 =0,
for ¢ = 0,305 3,564 x3 — 28,512 4% + 69,536 y — 41,024 = 0,
for ¢ = 0,35 4,333 »* — 34,66 »* 4 88,0 yx—53,33 =0,
for o = 0,4 3 P—24 2464 g—40 =0,
for ¢ = 0,5 r—8 2%+ 24 ¥ — 16 =

The corresponding roots are:

TABLE 1
4 7z
0,265 0,8498 3,5752 + 1 0,16221
0,27 0,85125 3,5743 - 70,3120
0,3 0,86009 3,5714 - 10,7284
0,305 0,86154 3,5690 + ¢ 0,7896
0,35 0,8740 3,5625 + ¢ 1,1791
0,4 0,8877 3,5562 + ¢ 1,5406
0,5 0,9128 3,5436 + 12,2302

4. T asked myself whether all ¢ values in the interval 0,26305 = 0,5,
were leading to roots to which correspond Somigliana waves.
Those roots are complex and conjugated and some of their values
have been given under 3. They are complex, hence also the values
of (I %),

v

= x—1, tang?e =y
U1~

Vs = V2 \/ ;, tang? e; = 1. (4]

Let us indicate a general complex root as follows

Yes =71 +ic.
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The formulas [10] will then be written

2 2
T2 2=

2 . U2 . . P
tang2e; = » o 1-+2¢ P tang-e: =r —1 2d-ic, 3 =124 0+ 1c¢C.
- -

The relation
R+iC=4+r+ic,

allows to obtain

»— [ 4e —+r )’/z o= (__\/1'3 + e —r '/

After the value of o, ineluded in the above interval, has been
assigned, the Rayleigh equation furnishes the corresponding couple
of complex, conjugated roots. Thus r and ¢ are obtained and thence
tang e, tang e: and vs pertaining to the chosen ¢ value.

After separating the real part from the imaginary one, we can
thus arrive at the real values of e, (if existing), of ¢2 and of va. lLet us

indicate the latter
3 =2 R
while putting

T3 = T2 C,

where the negative value for C is being taken.
On the basis of the r and ¢ values talken from the previous table 1
we obtain by varving ¢ as follows:

TABLE 2

a 202 tang? e, e, tang? e, e, R
0,265 0,31973 0,14310 20045%,25 | 2,5752 | 58°04’,25 11,8913
0,27 0,31507 0,12615 19033’ 2.5743 | 58°047 1,8924
0,3 0,2857 0,02035 8°07" 2,5714 | 58903’ 1,8995
0,305 0,2805 0,0011045 10517 2,5690 | 58002’ 1,9006
0,35 0,23077 |—0,1779 — 2,5625 | 589007 1,125
0,4 0,16667 |—0,4073 — 2,5562 | 57°58',5 1,9277
0,5 0 —1 — 2,5436 | 537°55" 1,99605

It follows from the analysis of the table 2 that the Somigliana
waves may vary for ¢ values until 0,31; for gradually less rigid medium
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they are missing altogether and degenerate into ordinary transversal
waves. The values of efficient angles, for longitudinal incidence, pre-
suppose incidences nearing rapidly the right angle. So far as trans-
versal incidence is concerned, the efficient angles increase slightly
as the rigidity of the medium decreases and reach a limit angle of
incidence of about 32° to which corresponds the total reflection.

(‘onsidering as well the complex conjugated roots of the Rayleigh
equation, the efficient angles bringing about Somigliana waves are
the ones corresponding to the roots for the following field of variability
of a:

0 <o <031,

although, practically (%), this is reducing to
0,20 <o < 0,31.

Anyhow, the use of complex conjugated roots indicates an en-
largement and the limit of the field of variability of the Poisson coef-
ficient.

Concerning the propagation velocity of the Somigliana waves (if
existing), it is noted that it increases as o increases (that is as rigidity
decreases) and reaches the maximum value

v's = 1,9006 -0

for the limit value of ¢ = 0,305.
If in the expressions of ui, ue, w1, w: (4) we put @ (r — vst) under
power form
D(e—uv3t) = eip(‘”_’“’at),

and observing that v; = v'3 + 1 v3, we will have
D [a: —_— (’Us' —+ 1:113) t] = c'ip(w—v’at) . gp""at’

where p indicates the pulsation of the oscillation and »s is a negative
constant which may be considered as the extinection coefficient of
the oscillation in time.

For ¢ = 0,265, for instance, »s = — 0,043012- vz, and for ¢ = 0,27,
vs = — 0,08277 -v2; whereas for ¢ — 0,305, we have v3 = — 0,2076 - v..
Therefore, at equal frequencies the propagation of the Somigliana
wave is extinguished more quickly as rigidity decreases.
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5. Let us have a closer look how the Somigliana waves change
when their propagation is in elastic media whose o coefficient shows
a trend toward the value of 0,30543.

Let us consider the case of transversal incidence, where we have

1
tang e; = —(7 - —1) 'z , tang e, = (z—- 1) /2.
If &(y —wst) is not periodical, here applies the relation (%)
1o ve? '
1w T //(X 1’1’_1)2 .
L (2 —y)
12
1, + kl - 1)

« always differs from 2.
The following table 3 is valid:

TABLE 3
L0\
7 (Z v,? )

0,26305 0,3868 1,6048
0,265 0,3783 1,60475
0,27 0,3552 1,60445
0,3 0,14265 1,60355
0,305 0,033235 1,6028
0,30543 0,0 1,6028
0,4 imaginary 1,5988

As o tends toward the value 0,30543, a; is thus tending toward the
infinite. Now, in the expressions of wu., w, [see [1] of (%)], a1, the quan-
tity characterizing the longitudinal component, acts as a denominator
in the relative terms. Therefore, these annull each other, namely
the contribution of the longitudinal wave in the formation of the
Somigliana wave falls away, and this degenerates into a trasversal wave.

However for ¢ = 0,30543, the efficient angle of incidence of the
transversal waves, is 31°57',4, which coincides with the angle of total
reflection of the incident transversal wave. In fact is:
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so that

Sin iy = — == 0,d2927,
1
which gives for /. the above value.

Therefore, the efficient angle for transversal waves incident at
the interswrface with the outer stratitication, approximates in less
rigid media the angle of incidence to which corresponds the total
reflection, which is reached, as could be seen, for ¢ = 0,30543. Ience,
in the field where ¢ varies from 0,30543 to 0,5 there arc no Somigliana
waves, since for them the total reflection of the incident transversal
waves takes place.

The formation of SBomigliana waves requires a physically finite
medium beyond the surface which is hit by the wave coming from
an indefinite medium (*). When the longitudinal reflected wave vani-
shes as progressive ordinary wave, for satisfving the conditions at
the intersurface it is necessary to introduce an evanescent wave. If
we indicate the transversal reflected wave (oscillating, of course, in
the principal plane) by

Y = e sin (ot — ax)

we will have

W=—-=—aecos(wl —ar); w= %1:) = ke"sm(wt —ax),
where » and ¢ are the horizontal and vertical motion components.
The resultant of these movements, however, is the socalled eva-
neseent wave which — as the Rayleigh waves — foreces the reached
particle to deseribe an elliptical motion [(3) pages 300-304]. In the
variability field
4 0,30543 <o <€ 0,5,

which means that in always more incompressible media the Somi-
gliana waves (possible only by transversal incidence) degenerate into
evanescent waves.

In conformity to what happens in the propagation of the light,
the wvelocity of evanescent waves in the second medium is ve/sinds,
where 42 is the angle of incidence. Practically it coincides, therefore,
with Rve where R is to be taken from the table 2. In case of the
limit angle of incidence (i = 31058"), is in fact vs/sini> = 1,8894 s,
equal — at lower than 1/1000 — to the value of ¢'s.
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Fig. 1 — Examples of Co,; (T = 68sab.), Ci2 (T = 34sab.) and Ca,3 (T = 23sah.) waves— by the author generically indicate as

Somigliana waves — record at Somplago (on the Cavazzo Lake) by a seismograph, with free period of about 120% and optical

magnification, in occasion of Alaska earthquake of July 30, 1972 (57°,0N - 1359,9W: /I = 21.45.11,1 GMT: I -- 10 km:

M = 7,8) at an epicentral distance of about 8350 kms. For large earthquake (as this Alaska earthquake) (%p,; waves can

affect the outer layver of mantle, from the top of the astenosphere (low-velocity channel) to the Earth's surface (thickness
of about 70 kms).
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