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SUMMARY, - We develop on equation of state for the atum based on
the elasticity formalism which extends, ilhe validity of the Thomas-Fermi
model to pressures of geoplysical interest. The model is checked with
shock waves data, with the Bireh-Murnaghan equations and with the Earth’s
core equation of stale,

RrassunTo. — 8i sviluppa un'equazione di stato per D'atomo basata
sul formalismo dell’elasticith che estende la validith del modello di Thomas-
Fermi a pressioni di interesse geofisico, 31 fanno paragoni con 1 dati basati
sulle onde d'urto, con le equazioni di Bireli-Muraghan e con Pequazivne
di stato del nuclev terrestre.

GENERAL REMARKS ON THOMAS-FERMI MODEL.

The Thomas-Fermi (33} approximation was used originally for
caleulating the electron distribution in a heavy atom:. The most
important advantage of the Thomas-Fermi model is that it reguires
the solution of o total ditferential equation, subjeet to initial and boun-
dary conditions, rather than partiul dilferential equation subject to
boundary conditions implying eigenvalues of constants of the motion
for many electrons, as in Sehrodinger equation. Thus it constitutes
essentially an approxinmate method of solution of the many-electron
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problem, anglogous to the Debye-Huckel theory (14) of ionie solutions.
The method has been applied to the approximate ealeulation of many
atomic properties. The basic idea of the Thomas-Fermi approxima-
tion ig to consider the electrons clussically provided that they satisfy
the exelusion principle. Then the electron density can be caleulated
by means of the Poisson equation. The atom is divided into cells
small enongh so that tlie potential is essentially constant, but large
enough so that the electrons in a cell ocenpy a region of phase space
large comparcd with #*. At 09 the Fermi-Dirac statisties implics
that the electron density in the phase space i85 2/h% at all points cor-
responding to an energy less than the Fermi energy, and is zero at
points corresponding to an energy larger than the Fermi energy. At
& given point of the configuration space, those points of the momen-
tum space within a sphere of rading corresponding to the maximuom
momentum permitted by the Fermi energy, are occupied by clectrons,
and those outside the sphere are unoccupicd. The total number of
electrons within the sphere deftermines the electron density which is
to substitute in Poisson's equation and, by solving this equation, one
finds the potential and the cleetron distribution seclf-consistently.
Besides the statistical approach, it is also possible to derive the Thomas-
Fermi maodel as the semiclassical limit of the MHartree equations for the
maodel of a self-consistent central field (5.7). Since the sublevels of
angular momentum are averaged, it 18 possible to describe only those
properties of the atom which are independent or little dependent of
the shell strueture. At high pressure such strncture must be largely
destroyed, so that the equation of state at the highest compressions
should be accurate.

From an opposite point of view, we must recall also that the Tho-
mas-Formi model has some defects and we review the most inferesting
trial corrections available np today.

The electron density becomes infinite as 1/#¥: at the nueleus and
vanishes as 1/#% at large distances; this is in eontradiction with the
behaviowr of the wave mechanical electron density whieh is constant
at the nuclens and vanishes exponentially at large distance from the
nuelens.  Also the binding energies, as caleulated from Thomas-Fermi
theory, are 10-30%, lower than the empirical values.

Many suthors have ¢orrected the original moedel using more exuct
forms for the potentianl and the kinetic energy. To eliminate the
self-interaction of the electrons from the electrostatic coulomb inter-
action, the only one tuke into account in the origingl model, Fermi gl
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Amaldi (8) have subtracted from the potential of the atom the .mean
potential V./Z, of one electron, where V. is the potential of the complete
clectron clond and Z the atomie number. This correction gives nu
good approximation at the border of the atom and improves the elee-
tron distributions in this region.

Moreover Dirac (?) took into account the exehange interaction
between electrons deterinining a fundamental c¢hange of the boundary
electron distribution: the radii of the atoms become finite, ie. the
electron density vanishes on the border.

Another eorrection comnes from considering (1¢.12.22) thie correlation
chergy resulting from the interaction corrvelation of the electrons. This
is smuller than tlie other two corrections mentioned above and plays
an important role only in the border of the atom.

Various eorrections for the kinefic energy are also considered.
First is the so-called Welzsacker (%) correction, by whieh the singularity
of the electron density at the nuelens and the 1/r¢ fulling ofl of it at
infinity disappear. Ilowever tle agreement with the empirical data
is not so good: the energies of the model are 20-259 higher than the
experimental values. Morcover this model cannot be dedueced in a
completely satisfactory manner (15.18,17),

The most satisfactory correction is due to Plaskett (%) obtained
starting from the Sechrodinger equation.

However, concluding those general considerations, it appears, as
pointed out by Gombas (1), that one of the most important problems
in the statistical theory of atoms is the completely satisfactory deduct-
ion of the kinetic energy correction. A furfher task wonld be the
deduction from wave mechanies of a general relation between electron
density and potential which would ineclnde the kinetic energy correction
in a natural way, and would hold even for the lightest atoms. Strietly
speaking, this would not simply mean a further development of the
atatistical theory itself, but, rather, the deduction of this general wave-
mechanical relation in an adequate approximation. The point is just
the “adequate approximation™. The exact relation is extremely
involved; the point would really be to deduee a useful approximation
from the general exact relation, which would satisfy the plysical
conditions.

The present work is concerned exclusively with the application
of Thomas-Fermi model to the caleulation of an equation of state at
ligh pressure.  For other applications, to atoms and to nuelei, the
works of Gombas (12.1%) ean be consulted.
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II. — THE DOMAIN OF APPLICABILITY.

An eguation of state inferred from the statistical atom model
becomes more accurate the larger the atomic number # and the higher
is the pressure P. The first condition follows from the requirement
that the number of electvrons be large enough in a eell in the abom, for
which the potential is relatively constant over an electron wavelenght,
so that the corresponding region oecupied in phase space be large 1ela-
tive to k3. The second condition is & consequence, on the basis of the
assumptions of the model, since it corresponds to the condition under
which the detailed strueture of the energy levels ean be ignored. Ho-
wever, we musgt remember that at low pressure, the effects of ehemigal
binding and lattice structure of the solid are ignored in the statistical
atom model. These effeets account for binding in the solid state at
normal pressure, and the procedure of viewing the cftect of the lattice
merely as a perturbation of properties inferred from the statistieal
model is valid only at high pressure.

It was emphasized by Feynman, Metropolis and Teller (') that
the equation of state inferred from the statistical atom model are likely
to be wvalid only for pressures exceeding about 10 Mb. Elsasser (*0)
has sugeested a few million megabars, beginning at somewhat higher
pressures for the lighter elements and somewhat lower for the heavier
elements.

This guestion of the critical pressure can now be examined on
the Dbasis of measurements of shock waves in metals. The original
measurements by Walgsh and Christian (2} {for aluminium, eopper,
and zinc for shock pressures up to about 500 kb were extended by
MeGQueen and Marsh {21) to many elements up to a pressure of 2 Mb.
In subsequent work by Alfsehuler ef al (22}, the upper limit of pressure
has reached 5 Mb, The data for pressure versus density of Altschuler
and al. and of MeQueen and Marsh liave independently been redueed
to zero absolute femperature by Takeuchi and Kanameori ()} and com-
pared with the predictions of the Thomas-Fermi Thrae theory. They
find that the Thomas-Fermi model yields densities that are too low
at 10 Mb, but extrapolation of the experimental results indicates that
the actual equation of state is well represented by the model at pres-
sures slightly higher than 100 Mb. The conclusion applies fo Ag,
An, Cd, Cu, Fe, Pb, and Zn, involving extrapolations in pressure by a
factor 20 to 50, in general. On the basis of the results of Takeuchi
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and Kanamori, a critieal pressure of about 100 Mb, independent of
atomic number, seems the most reasonable.

Until the advent of the data from measurements on shock waves,
luboratory determinations of equations of state could be carried out
to pressure of only 0.1 Mb as an upper limit, by the technigues of
Bridgman {28). The procedure of interpolating the egquuation of stafe
at intermediate pressures from the eomputation of the statistical
model at high pressure and the measurements of Bridgman at low
pressure has been used for geophysical purposes by Elsasser (20), Bul-
len {26), Bireh (27) to infer the chemieal composition of the core. Never-
theless data from shoek-wave measurements now extend to 5 Mb, in
excess of the pressure (3-6 Mb) at the Barth’s Center, this method, has
its merits as pointed out by Gilvarry (28), in spite of obviouy defieiences.
The Elsasser’s conclusion that the core is composed of iron with a
possible mixture of nickel and the deduetion by Knopell and Mae-
Brongld (2% that the iron of the core is probably alloyed with silicon,
abiained with use of this interpolation procedure, have not been revers-
el by the direet experimental data obtained from the shock-wave
mensurements.

Only with nse of such an interpolation scheme the equation of
state from the statistical atom model cun be applied with any validity
to the planets of the solar system, sinee the maximum pressure in the
interior (for Jupiter) is only about 30 Mb, less than the critical pressure
100 Mb adopted above, However, pressures considerably higher than
this eritical value occur in the interiors of white dwart sfars. Thus the
equation of state from the statistical atom model can be applied in the
determination of the mass-radius relation and the limiting maximuom
mass for white dwarf stars (Chandrasekhar (20)),

As an example of the application of results from the statistical
atom model to a question in planetary science, the problem of predieting
the pressures and temperatures arising in explosive impact of large
meteorites on the surface of the Moon and Barth can he discussed for
astronomic meteorite velocities, This was treated by Gilvarry and
Hill {313,

Tt iz desiderable to indicate schematically the domuin of applica-
bility of the statistical wtom model in the field of the variables, tempe-
rature T {ubsolute) and pressure P. This is done in Figure 1, adapted
from @ corresponding diagram of Wares (38) in terms of temperaturo
and density by Gilvarry (2¢) and witl correction to the atomic number
of iron in the non-relativistic case and with addition of regions corres-
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ponding to condensed phases. The plane of the diagram is separated
into two disjoint regions by the locus corresponding to the degeneracy
temperature; for temperatures below this eurve, Fermi-Dirae statistics
must be used to characterize the electrons while, for Lemperatures above,
the Fermi-Dirac¢ statisties reduce to the usual Maxwell-Boltzmann forn.
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Fignre 1. — Sehematic representalion of the domain of applicability of the

statistical atom madel in the fields of variables, temperature T (absolute)
and pressure P, The statistical atom model is approximately valid at ten-
peratures below Lhe degencracy lemperature, at pressures helow that where
relativistic effects hecome important, and at pressures above a limit of about
100 Mh necessary for the assumptions of the model to bo valid; the correspondd-
ing region of the variables is shown cross-hatehed. The lines for the degene-
racy temperature and the fusion enrve (at higher pressures) as shown corres-
pond roughly to iron, and in general should be represented by bands fur a
range of atomic number. The rectaugle indicatos ithe coordinate point for
Lthe Earth’s., Adapted from Wares (for the relativistic case) with modifi-
cationk audd additions for the non-relativistic region by Gilvarry.
ferratum: The line that represents the fusion eurve docs unol cross the
statislical atom domain.

The statistical alom model to be deseribed in what follows applies to
temperatures below the degeneracy locus, at pressures above the crifical
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pressure of about 100 MDb discussed above but below the pressure at
which relativistic effeets become fmportant. The degeneracy tempe-
rature appearing is approximately that for iron, and the corresponding
domain of validity of the siatistical atom model is shown eross-hatched.
This region is cut infe two parts by the fusion curve, separaling the
regions of existence of the liguid and solid phases. The melling line
as drawn for the higher pressures corresponds roughly to iron. Tor
coordinate points below this curve, corrections to ihermodynamic
functions as inferred from the statistical atom model are neeessary [or
the effect of the lattice. One notes that the fusion curve does not fall
far from the degeneracy locus; thus the domain of validity of the non-
relativistic statistical model to be deseribed is roughly coextensive
with the region of the solid phase. Aefually the degeneracy transition
from Fermi-Dirae to Maxwell-Boltzmann statisties is continuous but
not sharp and this, as well as the other boundaries of region in Figure 1,
corresponds to ranges of afomic number, Thus, all lines of demarea-
tion in Figure 1 should be drawn as bands, henee the corresponding
numbers appearing on the coordinate axes are indieative of orders of
magnitude only. I} should be noted that the degeneracy criterion
specified applies only the eleetrons, while the heavy atomie particles
(protons, neutrons and nuelel) follow fhe classieal Maxwell-Boltzmann
statisties over essentially the entire field of the diagram.

The coordinate point corresponding to the BEarth’s core is shown
in Figure 1 hy a rectangle whose height represents roughly the uncer-
tainty in the temperaturc as inferred by Gilvarry (33:34.35). Normal
pressure is ndiecated by a vertical broken line. It should be noted
that the free electrons in a metal are strongly degencrate under con-
ditions of normal pressure and temperature.

The purpose of this work is to modily the Thomas-Termi equation
of state to extend its validity to the range of pressures of geophysical
interest. This will be made by considering the atom, in suech a range
of pressures, formally as an elastie body.

III., — THRE EQUATION OF STATE.

The central question is the determination of the equation of stafie
of materials at extremo conditions is the calculation of the electronic
configuration of the system. In the Thomas-Fermi theory each atom
of the material occupies an independent spherical cell, and the electron
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distribution is determined to a first approximation about a nuecleus
fixed in the center of the cell. Az already mentioned, the slectrons are
assumed to be free Fermi-Dirac particles, all other details of the quan-
tum mechanies of atoms are ignored and the distribution of the eleetron
cloud is related to the electrostatic potential by Poisson’s equation.
Im this manner the main effects of Coulomh interactions are included
self-consistently to all orders in the eleetric charge. Then, by classical
kinetic theory, neglecting the (small} contribution of the nuclear mo-
tion to the thermodynamics of the system, it is possible to derive the
equation of state.

Tn the case of neutral spherically atoms, there is no electric field
at the atomic boundary. All of the momentum ecarried across the
surface of the atom is due to the kinetic energy eleectrons. On the basis
of the kinetic theory of a free electron gas, we can write:

pirs) = 7 cog'h (r) [1]

with

3h [ 3\
T 10m \8x

Co

where ¢ is the eleetron density, p the pressure and r, the atomie radius.
Caleulating ¢ from the Thomas-Fermi equation, it is possible to obtain
the equation of state.

Now let us assume that [1] is valid for all the values of

o1 0 K7 LH(p = 0)
i.e. lek:

p0) = 5 oo () [2]

give the behaviour of the pressure in the interior of the atom. Then
let ns write the following relation formally derived from classical theory
of elasticity:

t=41 3]

where T has the meaning of an external perturbation (applied pressure),
A is the reaction (internal pressnre) to the exiernal perturbation and A
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is the dilatation. Then assuming p(r) -= A{r) the surface displacement
is given by

P2
| 702 ] () r %T [+]

we can derive the following equation of state:

o

. — fo 3 F orrdrd
=g S h
o1 g pr) | ]

¥o®

(2]
where g, is the initial density and p; is the density after first compres-
gion 71. If the atom undergoes other subsequent compressions we
can write generally

On — Pn-1 ] 3 [ d‘?'.i
e (. ‘ pir) |

(]

(Tu — T'rr—l} ' [6]

In the equations [5] and [6], p(r}, given by [2], has the following explicit
form:

o

ala A
S T e
4 10 pd 7

nir) = 4 (2)

oblained from Thomas-Fermi model. In the equation [7] Z is the
atomic number, @ is the Thomas-Termi funetion, ¢ is the electron charge,
@ is a dimensionless variable:

e #=088-a Z'cm

where a, is the Bohr radius for hydrogen.
Bubstituting [7] in [6] and putting:

A pigi= l 'I_I gy o [8]
i

wa obtain

Fot } Ta « [9]
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Using the input parameters given by Table 1, we hoave developed num-
erieal calenlation for Fe, Cn, Zn, Ag, Cd, Au, 1'D considering two snh-
sequent compressions (the former, from 0 to 102 dynes/ems?, the latter
from 1012 to 4-102 dynes/em?) and the results are shown by dashed
curves, in PFigg. 3-8,

Table 1. — INPUT PARAMETERS FOR NUMERICAL CALCULATIONS {Royee (39)),

Metal 7z (g,r'l’_'hllll“) (jf)
Te 21; 7.806G .G
tu 24 5.0 1.41
Zn 30 T.14 1.54
A 47 10.49 1. GO
il 48 5.4 1.7
An T 14,24 1.3
1I'h 82 11.34 1.03

COMPARISONS WITIT SHGCOK WAVES DATA.

Altshuler et al. (2*} have measnred the compressibility of several me-
tals to o pressure of the order of +-10M% denesfem? nusing the technique
of shock waves. The equation of state so determined must be reduced
Lo a reference temporature (02 K) in order to make proper interpretat-
ions of the experimental results. This has been made in two different
mgnners by Kunopoff and MaeDonald (2¢), and by Takenchi and Ka-
namori (M), Fige. 2-8 show the results of Tokeuchi and Kanamori
for Fe, Cu, Zn, Ag, Cd, Au, Pbh compared with Thomas-Fermi Dirac
equation of state, with [9] and with the Bireh-Murnaghan (27) equation
of state for three values of the parameter & The resnlis of Knopofl
and MacDonald fur Fo, Cu, are represented in Fig. 9 and compared
with [9], the Thomas-Fermi equations of state, and the p-1" relation of
LEarth’s interior. From these considerations we can conclude that
out muodel constitntes aun improvement of the equations of stato deriv-
ed from the Thomas-Fermi model of the atom and that the formal use
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of clasticily in atomie seale is justified from the experimmental resnlts.
However wo wuanl to note that the present results are only estimates
and that in o next work we shall report a4 more rigorous development
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Figure 8. . [sotherme of Lead at 00K based on shoek wave data reduced

Iy Takenehi and Kanamoeri (31), Biveh-Murnaghan model and Thomas-Fermi
model,  The dashed curve represents our model.

and more preeise resullts.  The ternperature perturbation also shall be
taken into account.,
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pared with those oblained from ihe Thomas-Ferini theory (fnll eciveles),

Bullen *s density distribulion is shown for comparison (triangles), Our resuliz
are indicated by dashed lines.

GEOPHYSICAL IMPLICATIONS

Our results for iron are compared with the Iarth’s core equation
of state. For this purpose we use the pressure-density relation of
the Barth’s interior given by Rullen’s model (A} (3%) reported in
Table 2.

We must note first that it is very siguificant that the theoretical
curve of iron almost colneides with the laboratory experiments (Fig, 2).
It is also significant that our theoretical cnrve of iron is muel closer
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to the Earth’s pressure-density relation than the former theoretical
models. Also the thermodinamic eorrections should be at most 89
for temperature of the core of about 10! 9K. This correction brings
the theoretical results closer to the pressure-density relation of the
Earth’s core, but it is not sufficient to bring them toghether.

Table 2. — VaLuns oF p, 1¥ BULLEN'S M0pEL {d}) ().
Ifl(;l:h}; {gs/enr) {1012 llyges}cm“)
33 3.32 0,009
200 3.36 0.0064
400 3.1 0.132
00 4.0l {0, 204
1000 B ] {1.383
1400 4.9 .57
1800 5.12 0.77
23iM} 5.33 .98
2600 O.a4 1.20
2700 5.54 1.26
2883 5.08 1.37
2883 9.70 1.37
3001} 9.07 1.40
3500 10,65 1.09
4000 11.19 2.45
4500} 11.60 2. 451
4142 11.4%4 3.15
$H371 12.22 3.55

Therefore the equation of state introduced in this paper, when
compared with the pressure-density relation for the Earth’s interior,
can suggest anomalies which are of physieal significance.

For instance,



APPROXIMATE EQUATION OF STATE O SOME METALS, ETC. 173

if we accept the hypothesis of a core made of iron and silicates whose
representative atomic number iz 23, then the relative composition
should be 809% iron aud 209 silicates.

14 9
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12f &
4
nr 3
2
10 1
9 P
01 2 567
pressure 10
Figure 10. — Comparison of lensity curves for iron with those for the Earth’s

core.  Density distribntion is that of Bullen’s model A. Our resultz are
represented by dashed lines.
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