Evaluation of the aerothermodynamic field produced by a
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StnMARY. — The differential equations valid after the shock are first
given in curvilinear coordinates; the chosen unknowns are the two velocity
components and the entropy and enthalpy. A function of entropy and
enthalpy is then determined, by means of which all the thermodynamic
variables of the fluir are * coherently * approximated. Later on, the density
and all the other kinematic and thermodynamic variables are calculated
immediately after the shock, taking the angle o as a parameter. The shape
of the body is now taken into account and a convenient shape of the shock
wave is given.

The differential equations are then integrated with a step-by-step
procedure, until the stagnation entropy is reached on the body.

Finally the pressure and the temperature on the body are given. A
sonie-to-stagnation pressure of 0.6 is the result, instead of 0.523 for a perfect

gas.

RiassuNToO. --- Sono prima ricavate dalla teoria dello strato d’urto sot-
tile. le equazioni valide dietro I'onda d’urto prodotta da un corpo non ap-
puntito viaggiante a veloceitd ipersonica in atmosfera parzialmente dissociata
che si suppone in equilibrio termodinamico. Come esempio si ¢ considerata
Ia capsula Mercury nella fase di rientro alla quota di 60 Km ed alla velocita
di 7500 m/sec. (Mo = 22,6) con la parte frontale in prossimita dell’asse,
completamente sferica.

Prima di iniziare lo studio del campo aerotermodinamico dietro 'onda
d’urto con '« Inverse Problem », sono determinati 1 coeflicienti di una fun-
zione dell’entropia ed entalpia da cui dipendono tutte le grandezze interes-
santi il fluido, funzione che tiene conto della dissociazione del gas.

Di poi viene caleolata la densiti nei punti immmediatamente dietro
Fonda per varii valori dell’angolo che la tangente alla stessa forma con l'as-

(*) Nota presentata al 20 Congresso Internazionale Tecnico Ncientifico
dello Spazio. Roma. 19-23 Giugno 1962.



324 . CUNSOLO — S. A GELUCCI

se del corpo, adoperando un metodo di approssimazioni successive, senza
agsegnare ancora la forma dell’onda d’urto.

Dal caleolo delle densitd sono note velocita, entropia ed entalpia dietro
I'urto. Assegnando ora un’onda probabile si inizia il caleolo del campo
dietro 'urto con le equazioni in forma adimensionale mediante un procedi-
mento al passo, fino a giungere alla forma del corpo corrispondente all’'onda
d’urto data.

T ultimo passo del procedimento di calcolo fornisce temperature e pres-
sioni sul corpo. Calcolato cosi il campo subsonico dietro I'onda d’urto fino
ed oltre la linea sonica, il campo supersonico potra, da questo punto, essere
studiato col metodo delle caratteristiche.

Nymbols
P = Pressure
o = Reference pressure (atmospheric pressure at sea level)
0 = Density
T = Temperature in °K
T, = Reference temperature = 273.16°K
Vo = Reference density = po/R,T,
- . ~ ~ 2 I‘
R, = Gas constant referred to one Kg. of air = 6.886 X 107° Kol
(I N

R = Gas constant referred to one Kgr.mole
h = Enthalpy
S = Entropy
¥ = p/po
‘.r' = 0/oo
] = TIT,

h
7 = 300
! KT,
3 = - — 4%
¢ o
a = Shock wave angle

T
a = - —
9

o = Curvilinear coordinate parallel to the shock wave
Y = Coordinate orthogonal to the shock wave
r;z = Cylindrical coordinates
K(z) or K(¢") = Local curvature of the shock wave (y = 0)
H = 1 — Ky Correction factor for the curvature of the other coor-

dinate lines (y = const.)
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u = Sound velocity
o = 332 m/sec. = Reference velocity = Sound velocity at T,
v = Cp/Cy = 1.4
v = Flow velocity
u; v = Components of T" along & and y

- hd ’

= 1T _cose =V _senoc

. _ - N _ - S ’
v, =V, _seno=V_coso
M = Mach number
w; by e = Coefficients of the function £ (&; )
Z = Dissociation coefficient
Indexes
o = Reference conditions
o = Free stream conditions
s = Stagnation conditions

d(oru d0 hyd
(ru)y = -- ) Lo = oy Fe=
1O

Ly le= Denvative of F' with respect to n at constant
n's

I — INTRODUCTION.

The hypersonic flow introduces new problems in aerodynamics,
which complicate the solutions in this fleld of applied physics.

We are interested in very high stagnation temperatures, and then
chemical phenomena are present; the bow shock connected with a blunt
body, as necessary in re-entry problems, gives such high entropy gradients
that the classical potential approach is obviously completely wrong.

The relaxation times in the physical and chemical transformations of
the molecular species can modify the flow properties between two extreme
cases, namely the equilibrium flow and the completely frozen flow.

These are some of the difficulties encountered in hypersonic problems;
other difficulties arise from consideration of the boundary layer and the
local mean free path of the molecules.

We are dealing with the particular case of the continuous flow of
a real gas in equilibrium, in a thin layer between shock and body. Vis-
cous effeets are not considered; the inverse method is used. The thin
shock layer theory, developed in order to caleulate with a good degree



326 . CUNSOLO — S. ANGLELUCCI

of approximation the flow field produced by a blunt body at a very
high Mach number, warrants the supposition that the shock shape is
very similar to the body shape because of the small stand-oif distance
between the shock and the body. The intrinsic weakness of the inverse
method — small changes in shock shape correspond to bigger changes in
body shape — is much less important at high than at low Mach numbers.

With a given shock shape, the corresponding body found does not
coincide exactly with the desired body but it does correspond to a unitorm
stream before the shock.

Many authors have considered the problem of the blunt body in
supersonie and hypersonic flow during the last few years. Van Dyke (%)
and Van Dyke and Gordon (}) make the caleulations for a family of
shock waves of conical shape; this gives, as Van Dyke shows, similar
body shapes, at least up to the sonic point.  These authors are dealing
with a perfect gas.

Some modifications to Van Dyke’s method are suggested by Vinokur
and Sanders (21) in order to account for different shock shapes: for en-
thalpy they propose the formula:

y—1l o
where y and 4 are constants, but dilterent before and after the shock.

Vaglio-Laurin and Ferri (1), also for a pertect gas, make the numeri-
2l caleulation of the subsonic region before an arbitrary axisymmetrical
body. They introduce two new independent variables, one of which is
related to the stream function. The stream lines, the shock line and
the body are known in the plane of the new variables. At the end, the
results are reduced to the physical plane.

Vaglio-Laurin (), on the same basis, takes into account the P.L.K.
perturbation method, consisting in stretehing the coordinates in order
that an already known solution overlaps the field of a body having a
slightly different profile.

Vaglio-Laurin and Trella (3) carried out the calculations for many
bodies, in various re-entry conditions, for a perfect gas or cquilibrium
gas; equilibrimm equations are given in a polynomial form ot the entropy
in function of enthalpy and pressure. In the shock jump they express
enthalpy in terms of pressure and density
r P
h = — :

F—1 o

with [ slightlv varying along the shock.
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Our aim is to approximate the Mollier diagrany in terms of a func-
tion f (£;9) of entropy and enthalpy, by which function all the thermo-
dynamic quantities are expressed.

A pseudospheric body with a 20° conie afterbody, as the ¢ Mercury
Project 7, is taken as an example.

II — EQUATIONS OF MOTION DOWNSTREAM OF THE SHOCK.

Let @ and y be the curvilinear coordinates on the shock (Fig. 1).

Fig. 1

Let y = 0 be the equation of the shock wave and A(z) its local
curvature:
1

&= pw a0

“Loe 2
& being the curvilinear abscissa along the shock wave. The definition of

the coordinates is completed stating that the line
T = const.

is a straight line perpendicular to the local shock wave direction, and that
the y coordinate of a point P is the distance of P from the shock wave
along the line # = const.
The curvature of the line y = const is:
R (-‘v;— y 1 —]L.uml)f @ =@ @) =
with:
He: y) =1 — y Kx) (3]
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An elementary arc is given by:

ds- = PP* |+ PP}?

or:
dst = H? dr- + dy? [4]
We now need the distance PQ = r from the symmetry axis. It
is easy to see that:
ro= [ sin g dr — y cos ¢ [5]
0
and:
or .
T = — 08O [6]
oY
or . -
— = H sin g {7]
X

with the help of [1].
The equations of motion are:

Continuity:
(rou), + (Hrov), —0 [8]
Momentum:
wUuz; + Heu,— Kuy=——~ p, 9]
0
. H
uv: + Hvo, + K v = — Dy [10]
Entropy:
8 N
o S U N (11]
oY v dx

We choose S and & as thermodynamic variables; so we wish to
eliminate p and o from [8], [9] and [10].
From the known formula:

dp

TdS =dh [12
we have:
1 p dh o ON
0o ox 0 dx
but:
u? 2
h + -+ ——=const [13]
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Then:

and [9] becomes:

H
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Iy du dv NS
,,,,,, — o ——- r /s
dx dx + dx + dx
du . T T 38
— = Ku '
Y ox v 0

(14]

Instead of equation [10], the energy equation [13] in closed form is

preferred.
transformed into:

w H sing du u g g €080 ot
. _ o
r dx o d=x r oY
? 00
—Kr+H-—-— =0
Q N
taking into account [6] and [7].
From [12]:
dh /S
Further:
(' dp
_) dh )5 ) 0
Ly
dh S \bh S
or:
0 a-
Now:
1 Do 1 42 o8 do ok
o |38 Dz dh Dz
and:
1 2o do0 AN 1/ Ddu dv
- — -, -+
0o dx A8 dx a: da dx

using [17] and [13].
In the same wa

o

We now use [8] to get dvfoy.

+ ¢can obtain:

do N [ du 0
. u :
8 dy Y

4{_

Equation [8] can be easily

(15]

[16]

(17]

[19]
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It we introduce [18] and [19] into [15], the terms containing the
entropv vanish by virtue of [11] and we get:

\ du A
Mg
] dx az ) @\ dy T dz
. usineg — v coso
Kv+ H =0
. du .
We express the term H 5+ diven by [14]:
-\ ou u
(1 — 7;) -+ H (1 S - e - -7
«* | dx a*} du a? dx a d.r
u? % Sin g — ¢ (oS ¢
— (1 4 ';;) Ke 4+ H =0 [20]
«?

On the symmetry axis:

w SN G — ¥ COS ¢ .
lim \ H ' — Kv [21]

r dx

Note that equations [11] and [14] could be obtained divectly from
Croceo’s theorem, written in curvilinear coordinates. Equations [14],
[21], [11] and [13] contain wu; ¢; S and & as unknowns; in an adimensional
form:

gt _ e v o 0 [22]
G oY Uy U, o, X v Jx
u v
2 D’*' - n
L ® e "1 ‘) o N u:: o 0 u a,:- D&
a ] dz al dy a dx Y (o, * dx
u o, v
— {1 N + H sing — — cosal/r =0 [23]
a* 1y ty of
2 u v
N+ 2 [24]
5 aq « ¥
D w & B
Lo [25]

U, Y ty X
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III — DETERMINATION OF THE FUNCTION f(&: %)
For a perfect gas we have, from [12]:

lp = odh — |
dp o dh P,

( oy _ b
N )h - I,
and, after integration:
I e " f ) [26]
Do
But:
dp *
(57,
and, dividing:
1) P s om 71
0
Then:
f )y = h3s
for v = 1.4
The result is that, for a perfect gas:
5 —Se
ro_ (_"_’)“-5 TR [27]
Do o

It we introduce adimensional quantities:

b _p = (bo + b, ';7)“'5(:—Q [28]
Do
where 5 and & ave the adimensional enthalpy and entropy differences
evaluated from a given state.
For the real case of air in thermodynamic equilibrium we put, in
analogy with [26]:

Cri—0g3?

F =10 (f (&5 )] [29]

where ('g: (3 C, and n are constants.
For function f(&; ) we assume, in analogy with [28]:

FEm) = go (&) — g (&) + 9. (8) [30]
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Functions ¢ (£) are given in order to approximate the Mollier dia-
gram for equilibrium air [22] in the field:

h
2 —- < 360
< ko, <%
(31]
In this field f (&5 %) has been evaluated from [29], [33] and
F  plpo L. LT f&:in)
G 0/oo T, nf, (&)
Dropping very few terms, this gives:
F&n) =0+ 08+ (b + by & + b;
and:
n = 8.2192
= — 0.00416
b, = 0.0032706 [32]

= 0.0000723
b, = 0.98.10~

The valne of » is determined so as to give f(o; 9) a linear expression
in 7
flo;m) =1 + 0.0032706 3

as is the case in a perfect gas, for any &, from [28].
Writing [16] in adimensional form, we now obtain from [29]:

= Con 107 T p g [33]

[~

o on

The speed of sound is given by [17], or

R To ¢ 1 (3G\  (dgG
a- ya- G ,_E—_\ RE7} )

and:

i

IR _1 i - P
e U T e T @)

‘We must now express the temperature.

[34
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From [12], we get:

0y \VDS I
T — ] = — -
38 Iy {dp
0h s
or:
VF DF
o0& 28
I="% = G
o
and from [33] and [29]:
b= I (C+2CHFEn) — &)l

Note that from [33], we can get:

1 oR, T GO dlg F
Z P F V&

or, from [29]:

1 nfe (&5 m)
T — 92.302585 (C 20,6 — 2
5 = 2:302585 (G, + 2C. 8) (&)

The validity of [38] for = 0 and:

18 < & <« b2
gives:
y ¢, = 0.2675
| ¢, = — 0.000922

The constant €, is given by [29]:

¢y = F (0: 0) = 0.5217

333

[35]

(36]

(37]

(38]

(39]

(0]

Equation [29] is then completely specified. Equations [33], [36] and
[34] give the density, the temperature and the velocity of sound. Equa-
tions [36] and [34] will be used in the field; equations [29] and [33] will be
used on the shock, to get initial conditions. Formulae [29], [33], [36]
and [34] have been controlled for values of £ and # other than those used
for calculating coefficients: the agreement is within 2-3 percent. It could
be increased by taking into account a third order term #3, in [30].
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IV — INITIAL CONDITIONS ON THE SHOCIK.

On the shock (v. Fig. 2 below), we have:

’ [41]
.
poo= b, T o0, v, (L—8) [42]
1,
h =0, + v, (1— [43]
[44]

Fig. 2

Putting ¢, = 17 sin ¢ and noting {#] that at an altitude of 60 km

T, =Toorf, = 1:
= [45]
F=F, +1416G, M. (1 — ¢ sin’¢ [46]
y o= 0.7, (1 — &)sin’o — 296.5 [47]
; I
[ & [48]
nfy (&) 7
G = G (&) [49]
o 50
¢ (&) 120}
with:
= F, = 3.5.10"
' M, = 22.6 900 > 5 > 600
? v, = 7,500 m/sec (5]
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Equations [45] to [30] are iterated until we get ¢ =

below).

ETC.

335

& (v. Fig. 3

IMig. 3
Table no. 1

a’ I3 7 3 'y v/a,

0o 0 0604011 59 727650 3 7321361 0 1 364483
lo 0 0604070 59 618930 3 7282209 0 394202 1 364277
20 0 0604246 59 292750 3 7164604 0 788403 1 364181
30 0 0604539 58 749670 3 GY687T4) 1 182379 1 363804
40 0 0604951 57 990230 3 6694715 1 575900 1 363272
50 0 0605481 57 015410 3 6342657 1 968885 1 362599
6o 0 0606131 55 826350 3 5912786 2 361370 1 361766
70 0 0606901 54 424600 3 5403367 2 753090 1 360795
8o 0 0607792 52 811740 3 4820692 3 143900 1 359660
9o 0 0608805 50 989850 3 4159125 3 533810 1 358371
100 0 0609942 48 961110 3 3421087 3 922820 1 356946
1io 0 0611205 46 727950 3 2067018 4 310470 1 355359
120 0 0612595 44 203180 3 1717462 4 696760 1 353427
130 0 0614112 41 659690 3 0752968 5 081701 1 351747
140 0 0615762 38 830740 2 9714196 5 465060 1 349715
150 0 0617544 35 809770 2 8GUIS24 5 846837 1 347525
160 0 0619463 32 600450 2 7416635 G 226807 1 345177
170 0 0621523 29 206690 2 G139485 G 604743 1 342686
18¢ 0 062372: 25 632640 2 4831201 6 980873 1 340056
190 0 0626071 21 88269 2 3432865 7 354743 1 337265
200 0 0628568 17 961380 2 1965430 7 726355 1 334320
2]0 0 0631219 13 873460 2 0433010 8 095707 1 331235
220 0 0634030 9 623940 1 8828080 8 402375 1 327997
230 0 0637003 3 218020 1 7160652 8 826731 1 324611
240 0 0640146 0 661080 1 5429261 9 188403 1 321096
250 0 0643466 4 041360 1 3635380 9 547138 1 317424
260 0 0646968 -— 8 883560 1 1780605 9 902936 1 313607
270 0 0630660 | - 13 859630 0 9866639 10 255798 1 309664
280 0 0654549 18 963480 0 7895265 10 605490 1 305570
290 0 0658645 — 24 188910 0 3868409 10 962033 1 301349
300 0 0662957 |— 29 5290540 0 3788113 11 295180 1 297000
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Two simple formulae are used instead of the graphical method
illustrated in Fig. 3:

Starting from ¢, = 0.06 and g, = 0.07, four or five iterations are
sufficient for six-figure result. Equation [53] yields &, as an average
between the starting value of the previous iteration of formula [45] and
the resulting value of formula [50], with a weight given by [52]: note that:

When the true value of ¢ is obtained, we get:

Vv = ¢gw. = ¢gVy_singo .
[ — w =7V, cos (o4
o w =V _coso
. . . . 7T .
Table I contains the results in funetion of ¢ = — — 0. Fig. 4

shows ¢, &, 17 along the shock.
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Y — THE SHAPE OF THE SHOCK.

Corresponding to the body shape in Figure 5 below, a shock shape
is chosen so as to give a fairly constant curvature near the axis, followed
by an inflection of about 1.4 radians at z ~ 1.

zone |——
of [ I
fairly \ I
const. —_
curvat,

Ihg. 5

The type of function representing the curvature is then:

1
K (z) = 55
(z) 3—3baxt+baxt [55]
which has a maximum just at ¢ ='v1.5 ~ 1.1. The condition that
the total inflection be about 1.4 radians implies b = 1.25 (Fig. 6). From
[65] we then get:

/K @ dz = o

By reversal of this formula @ is determined as a function of ¢ or ¢’
Table II and Fig. 7 show x and K.
The shape of the shock is then given by (v. Fig. 1):

,

x g

. ddo’
r o= /smodw = /('os o
K (d")
0 0

o
., dd
= Jcosocdx = /smo o,
K (d")

0 0
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I S g ‘ | SHOCK WAVE
| T | | CURVATURE
- ’ l ) yyEer b
- ’
i _/' K(X)Ox o 1345 = {4
i’_ \—4‘ —’_'_T'-" ' j —
— —_— ' S
[ I L
|
. B -
|
] - |
| ]
- . |
— T
Table no. 2
o’ X K (') o’ X K (')
0 0 00 0 333333 16 0 760713 0 530544
1 0 05236 0 333336 17 0 792204 0 582585
2 0 104716 0 333383 18 0 820678 0 642483
3 0 156967 0 333383 19 0 846574 0 712626
4 0 209419 O 333413 20 0 869741 0 791277
5 0 261565 0 335295 2] 0 890746 0 881625
6 0 313515 0 337411 22 0 909424 0 980279
7 0 364956 0 340852 23 0 926411 1 092132
8 0 415808 0 346165 24 0 941471 1 211032
9 0 465671 0 354281 25 0 95528 1 344798
10 0 514263 0 364453 26 0 967502 1 483055
11 0 561300 0 378859 27 0 978849 1 638133
12 0 606286 (0 397503 28 0 988874 1 793741
13 0 649008 0 421324 29 0 998330 1 968372
14 0 689069 0 450494 30 1 006661 2 138292
15 0 726414 0 487209
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| SHOCK WAVE CURVATURE
AND CURVILINEAR COOR- |
DINATE IN FUNCTION OF &-|

VI — EVALUATION OF THE FIELD BEHIND THE SHOCK.

The evaluation of the aerothermodynamic field is done by a step-
by-step procedure.

Consider equations [22] to [25].

If we suppose all variables along the line to be known, it is possible
to calculate the three a-derivatives as:

(e

!
¥ dg’

dufdas . (dujas
5e )= #1557
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Y ox 00 4

To improve numerical accuracy this calculation has been made by
the least squares method.
For a given function f(t) the values of which are known at the points:

I, = — 2h; i, = — I to = 0
'Y t, = 2h
let: f1 = f @)
and: f& = f (ts)
We now approximate f(t) by a second order parabola
fit) = a + ;1 + a,t- [57]

where the coefficients arve determined so as to minimize the expression:
o + ayty + wxte — fif (58]

Then from [56] we get:

f = a
i = a + 2ah

fo = ¢ + 1, h
or:
26 4+ f — 1 —2f
o= o {34 — 3f —20f, — 171, + 6/} [60]

f = o {8, — 137, — 40, — 271, + 26 f,} [61]

We took 31 points on the shock at ¢ = 09; 19; 20, .., 300. The «
derivatives ave evaluated, as in [36], by means of ¢'-derivatives, which
are given by [59], for ordinary points, and by [60] [61] for the last two
points. This has the effect of slightly smoothing the process as the ti-
nite difference scheme is based on minimizing the error of the locally
approximating parabola. The step in y was Ay = 0.005 for ) <y <
0.08 and 4y = 0.002 for 0.08 < y < 0.12 near the body.

A second smoothing procedure was necessary along y = 0.04 and
Iater on y = 0.08 and y = 0.10.
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This smoothing procedure was carried out by means of [57], that is:

[fo]smuuth — o
[fl]smoulh — (o + (4 h ~+ d, h2

[fz]smouth ~ oo + 2 h + da l?

or:
[fo]smoolh = {—' 3f2 _II— 12]‘1 T ]Tfo _II— 12 f—n_)} [62]

v 10'13'10" 5f.~3 53
Lfl]smooth = 3r {L fo +13fi + 12f0 + 6f, =5/, f—z} [63]

1 . L . = . .
[fz:'smouth = ;g {'31 f2 + 9 ,fl —3 fo - Of—1 + 3 f—o} [04]
Fig, 8

Fig. 8, Fig. 9 and Fig. 10 show the two velocity components and

the entropy in the field. Fig. 11 shows the Mach number: the sonic
line is given by an intersection M = 1. Fig. 11 is made up with the
help of [34]. Fig. 12 and 13 give the shape of the body: ¢ = 0 on the
axis and & = £, along o’ — const > 0. In the same Fig. 13 we find

the stream lines as constant-&-lines. Fig. 14 gives the body shape.
In curvilinear coordinates the value of y varies, but very little, from
.125 on the axis to .128 at the sonic point.

Figures 15 and 16 give pressure and temperature on the body.



342

D. CUXNSOLO — S.

ANGELUCCI

NORMAL VELOCITY
IN FUNCTION OF

y-0.00

©ob2

004

006

g
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Figure 17 and 18 represent them in funetion of 7. The integration of
the pressure gives a drag coefficient of:

(p = 1.71 [65]

Pig. 12
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Fig. 13

The temperature varies from 632001 to 6390°A at the sonic point.

d v V&
VII — DIVISION BY ZERO INX COMPUTING S AND b; .
Y .
If we consider equation [23], we see that if:
T = 4+ « [66]

]

v,
the coefficient of S Is zevo.
Y

This question does not arise in the subsonic region where, by de-
finition:
A 4+ < «a
Condition [66] can be true only in supersonic regions. The same
conclusion is reached by Van Dyke (8). The analogous term in Van

0
. : . =N .
Dyke’s work is the coefficient of —=, namely term D.

Figure 19 below, reproduced from Van Dyke’s study, shows line
D = 0.
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Van Dyke in his study seeks an explanation as to whether line D = 0

|
|
|
|
|
|
|
|
|

l !

J ]

As the equation for - is obtained bv introducing a stream func-
0
-
ion in order to satisfy the continuity ation and by eliminating the
t ler t tisfy tl tinuity equation and by el ting tl
pressure from the equations of motion, we may infer that condition

D = 0 is equivalent to:
(1 ——)=0 [67]

.

L. . 0T, .. . e s
which is the coefficient of Y in the continuity equation [23]. If this is
Y
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$0, we may say that the D = 0 line has, but not completely, a physical
significance: it would be a line along which one of the velocity compo-
nents equals the velocity of sound [67]. Equation [67] is not an invariable
one in a change of coordinate system. The only physically significant
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Fig. 16

thing we can infer is that the line in question lies entirely within the
supersonic region.

We can conclude that this difficulty arises only when we are well in
the supersonic region, where the method of the characteristics must be
applied. Moreover, in the case of a very blunt shock shape chosen in
order to get a sharp-ended blunt body, as in Fig. 5, the body profile
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runs about parallel to the shock profile and component v is about zero
along the body.

This condition, on the contrary, is negative if solving equation [25]
for entropy. Component » is indeed the coefficient of d&/ow: when it
-anisches, there is a singularity for £, We must necessarily infer that at
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1
|
|
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Fig. 18

the same station the term d3&/dx vanishes too and the singularity is purely
mathematical. If we consider the quoted work of Van Dyke, we see
something analogous, the “ bad’ coefficient being:

o S0 [68]
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where o is related to the stream function y: @ = —— and £ is a curvi-
linear coordinate.

Van Dyke states that the quantity [68] cannot vanish, except in
points such as A (Fig. 20 below) internal to the body profile.

Only there do we have:
> 0
lw < 0
On the nose N we have o = wg = 0, and in the region of the stag-
nation point & Van Dyke’s study present some difficulty. In our case,
however, these difficulties are found all along the body profile and the
same would hold true when applying Van Dyke’s method: in the case
of Fig. 20 (reproduced from Van Dyke’s work), in which the lines
n = const come out from the body, we are certain to have:

e > 0

all along the body and no difficulty arises except in ¥, In a case like
that of the present study, in which the body profile is very near to a
coordinate line, we should get:

m ~ 0

along the body, and necessarily, if the » = 0 line is also an 1 — const
line:
me ~ 0
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s0 that [68] would vanish very near the body profile (Note that [68] is
nothing but ye/£). Nothing has been done in our study to avoid this
difficulty; we have smoothed the solution by means of [62], [63] and [64]

w}?o

]w <0

Fig. 20

till 4 = 0.122 and then extrapolated the results to the body. We are
studyving the possibility of ¢ leading” funetion &, (x,;y) (x: fixed) to
-anish at that particular value of ¥ where v(zy; v) vanishes.

VIII - COXCLUSIONS.

A method of getting a ¢ united approximation ’* of all the thermo-
dynamic functions is given. The velocity components and the entropy
are taken as unknowns, thus preparing the study of an axisymmetrical
body at an angle of attack where neither the potential flow nor the
stream function can be considered. Two ¢ divisions by zero ”’ are illus-
trated and it is shown that one of them certainly cannot occur in the
subsonic field: it is then of no importance in connection with this study
or similar ones. A way of avoiding the second division by zero is also
indicated.
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A least squares method is used for differentiating the functions; a
similar method is used three times for a smoothing process.

A wider field of Mollier diagram should be approximated in order
to dispose of some external points at each step of integration to enable
us to employ centered formulae only, such as [59].

The present restriction has led to some instability, and a smoothing
Process was necessary.

A “polar curvilinear 7 system of coordinates might be useful in
order to avoid such difficulties: this will be the object of a further study.
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