ANNALS OF GEOPHYSICS, 54, 5, 2011; doi: 10.4401/ag-5342

Special Issue: V3-LAVA PROJECT

Scalable multi-GPU implementation of the MAGFLOW simulator

Eugenio Rustico"”, Giuseppe Bilottal?, Alexis Hérault??, Ciro Del Negro?, Giovanni Gallo'

! Universita di Catania, Dipartimento di Matematica e Informatica, Catania, Italy

% Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Osservatorio Etneo, Catania, Italy

3 Conservatoire des Arts et Métiers, Département Ingénierie Mathématique, Paris, France

Article history
Received November 23, 2010; accepted July 15, 2011.
Subject classification:

Computational geophysics, General purpose GPU modeling, HPC, Parallel programming, GPU, Multi-GPU, Hazard, Lava.

ABSTRACT

We have developed a robust and scalable multi-GPU (Graphics Processing
Unit) version of the cellular-automaton-based MAGFLOW lava simulator.
The cellular automaton is partitioned into strips that are assigned to
different GPUs, with minimal overlapping. For each GPU, a host thread is
launched to manage allocation, deallocation, data transfer and kernel
launches; the main host thread coordinates all of the GPUs, to ensure
temporal coherence and data integrity. The overlapping borders and
maximum temporal step need to be exchanged among the GPUs at the
beginning of every evolution of the cellular automaton; data transfers are
asynchronous with respect to the computations, to cover the introduced
overhead. It is not required to have GPUs of the same speed or capacity;
the system runs flawlessly on homogeneous and heterogeneous hardware.
The speed-up factor differs from that which is ideal (#GPUsX) only for a
constant overhead loss of about 4E~2 - T - #GPUs, with T as the total

simulation time.

1. Introduction

Numerical problems that expose a high degree of
intrinsic parallelism can often be mapped to more than one
level of parallelism. If it is possible to model a problem as a
set of pseudo-independent subproblems, then it is possible
to split the set of computations needed to solve it into two or
more partitions that can be executed separately. Very few
numerical problems have completely inter-dependent
subproblems, such as astrophysical n-body simulations;
sometimes it is nevertheless possible to parallelize such
problems by means of numerical approximations or by
adding specific constraints to the model. Cellular automaton
methods are by definition made up of quasi-independent
subproblems: the state of every cell of the automaton
depends only on the previous state of the same cell and on
the state of the neighbor cells. Given a cell and its
neighborhood, we can compute its next state in parallel and
with almost no knowledge about the other cells. The same
reasoning applies to sets of cells that are in turn independent

592

from other sets, except for their neighborhood. In the general
case, it is possible to exploit a two-level parallelism and to
split an already parallel cellular automaton simulation into
parts to be executed on different devices, which can include a
graphics processing unit (GPU) card, a central processing
unit (CPU) core, the node of a cluster, or even a computer in
a network. The real feasibility and the benefit of this
theoretical possibility are, however, to be evaluated case by
case, as there may be model peculiarities that require specific
adaptations or that conflict with the technical limitations of
the underlying architecture. The most limiting factors are
typically the latency and/or the bandwidth of the inter-
device communication channel, which is usually orders of
magnitude slower than any intra-device communication.

The MAGFLOW lava simulation model [Vicari et al.
2007] is the cellular automaton developed by the Sezione di
Catania of the Istituto Nazionale di Geofisica e Vulcanologia
(INGV), and it represents the peak of the evolution of cell-
based models for lava-flow simulations. The conversion of
the MAGFLOW cellular automaton from serial single-CPU
code to a parallel, GPU-based implementation is discussed
in Bilotta et al. [2011] in this volume; here, we show how we
exploited a second level of parallelism by running a
simulation on two or more GPUs simultaneously.

There are at least two ways to exploit a two-levels
parallelism in the evolution of a cellular automaton. The
simplest and most intuitive is to spatially partition the
automaton into disjointed areas and to assign each area to a
separate device. As we need to operate locally and read
information about the neighboring cells, these areas can never
be truly disjointed,; it is therefore more correct to refer to them
as subsets rather than partitions. We could instead operate the
division in the domain of computations, thus realizing a
pipeline: each device is assigned to all of the cells in the domain,
but elaborates only for a specific phase of the evolution.
Unfortunately, this approach presents three major drawbacks:

RUSTICO ET AL.

1. It is not possible to scale to an arbitrary number of
devices.

2. It is not trivial to balance the computational load
among the devices.

3. It requires the complete domain to be constantly
transferred from one device to another, to keep every device
of the system updated about the current automaton status.

For these reasons, we chose the former division and
we focus on how the automaton can be split in the spatial
domain.

2. The Compute Unified Device Architecture architecture
A GPU is a specialized microprocessor that is
traditionally used to offload and accelerate graphic rendering
pipelines from a CPU. While the market of videogames has
been more and more demanding of computational power,
GPUs have evolved to include on-board microchips with
direct hardware support for common two-dimensional (2D)
and 3D graphics primitives. They have become incredibly
faster than CPUs in parallel, arithmetic-intensive tasks, like
matrix manipulations and coordinate projections. In 2001,
NVIDIA released the first chip capable of programmable
shading, i.e. a chip that it was possible to program with a
customized arithmetic pipeline for very sophisticated surface
renderers. As GPUs became programmable and really fast in
matrix and vector operations, engineers and scientists started
to use them for non-graphical calculations, by mapping a
non-graphic problem to a graphic one, and letting a GPU
compute it. In 2007, NVIDIA released the Compute Unified
Device Architecture (CUDA), a hardware and software
architecture that has explicit support for general purpose
programmability. CUDA has enabled programmers to
implement generic algorithms on NVIDIA GPUs using an
extension of the C programming language. Soon after, the
main competitor of NVIDIA, ATI, also released a general
purpose GPU architecture called Stream, which has a slightly
different access interface (an assembly-like language).

A third, architecture-independent, parallel computing
platform, OpenCL, was proposed by Apple in 2008 and
released in 2009, as the result of a collaboration with AMD,
IBM, Intel and NVIDIA. OpenCL offers an abstraction layer
between the application and the parallel computing
hardware, which allows an application to be transparently
executed on multicore CPUs as well as on GPUs; fine-tuning
of the OpenCL code is, however, more complex, due to the
wider variety of platforms on which it can run.

We started porting MAGFLOW to GPUs in 2007, when
CUDA was the only platform that allowed the use of
standard C language to write kernels. Since the OpenCL
interface is similar to the low-lever CUDA C API, we are
considering the possibility to port the MAGFLOW simulator
also to OpenCL.

A modern GPU hosts a set of Single Instruction

593

Multiple Data (SIMD) multicore processors, with a few
hundred total cores. From the perspective of a programmer,
a GPU can be seen as a coupled, external computer: it has its
own RAM and processors, and the typical workflow consists
of sending the data to the GPU, asynchronously requesting
a computation, and finally transferring back the resulting
output. A sequence of instructions compiled to be executed
on a GPU is called a kernel. Kernels are instantiated in parallel
threads, which for the convenience of the programmer, are
grouped into 1D, 2D or 3D blocks; the thread blocks
themselves can be organized into 1D or 2D grids.

With a slight change in the programming logic,
numerical problems that expose a high level of parallelism
can achieve speed-ups of two orders of magnitude with
respect to the correspondent CPU implementations. The
main breakthrough of this phenomenon, however, is the high
cost effectiveness of GPU-based solutions. A workstation with
a modern GPU easily reaches the theoretical speed of 1.4
TFlops (102 floating-point operations per second) with an
expense of less than €1,000 and a power consumption of
about 600 W. Even dedicated hardware like the NVIDIA Tesla
cards, which share the computing hardware with consumer-
level GPUs, is still a very cost-effective solution. It is therefore
not surprising that in May, 2010, a hybrid CUDA-enabled
Chinese supercomputer, called Nebulae, reached the
theoretical peak performance of 2.98 PFlops, ranking it first
in the list of the most powerful commercial systems in the
World [Meuer et al. 2010]. Although CUDA is still young and
continuously evolving, it is nowadays a de-facto standard
among low-end and medium-end parallel computing
platforms.

3. MAGFLOW on single GPUs

In this section, we present only a concise summary of
the implementation of the MAGFLOW numerical model on
CUDA GPUgs, as a necessary basis to understand the multi-
GPU structure and the additional problems that arise in the
exploitation of a second level of parallelism. For a more
detailed description, please refer to Bilotta et al. [2011], in
this volume.

The MAGFLOW cellular automaton consists of a two-
dimensional grid of cells, each of which is described by five
scalar quantities: ground elevation, lava thickness, heat
quantity, temperature, and amount of solidified lava. The
ground elevation is initialized once, and it remains constant
throughout the simulation. We compute the state of a cell at
time t from the state of the cell and its immediate neighbors
at time t — 1. The lava thickness varies according to the lava
emission of the vents on the cell, if any, and to the amount
of cross-cell lava flux, between the cell and its immediate
neighbors (eight neighbors for square of cells). The flux
depends on the height difference, and is computed using a
steady-state solution for the 1D Navier-Stokes equations for

MULTI-GPU IMPLEMENTATION OF MAGFLOW

a fluid with Bingham rheology. The actual amount of lava
gained or lost by a cell at the end of each iteration of the
automaton is given by the total flux of the cell (vent
emissions plus cross-cell flux) multiplied by the time-step dt
for that iteration. The higher the dt, the smaller the number
of iterations we need to complete the simulation. However,
the time-step is upper-bounded by a numerical constraint, to
prevent nonphysical solutions. At each iteration, we are thus
interested in computing the maximum time-step value
allowed by each cell. We choose as the global time-step the
minimum of these values, thus ensuring both adherence to
reality and the minimal number of iterations to be
computed.

Each iteration is made up of the following steps:

1. For each cell, compute the eruption flux if the cell is
a vent cell.

2. For each cell, compute the flux transfer with the
neighboring cells and the maximum allowed time-step.

3. Find the global minimum time-step among the
computed maximums.

4. For each cell, update the lava thickness and the other
fields (i.e. solidification, radiation loss), according to the
chosen time-step.

It is straightforward to implement these steps in four
dedicated CUDA kernels. Steps 1, 2 and 4 are written from
scratch, while step 3 is provided by a well-known, highly
optimized, array-scan library [Sengupta et al. 2008]. The first
level of parallelism is represented by the "for each" at the
beginning of the statements: one thread on the GPU
computes the evolution of a single cell of the automaton,
with a 1:1 mapping. Note that only in steps 1 and 4 are the
cells fully independent of each other: step 2 requires access
to the neighboring cells, and step 3 requires a global selection
algorithm. This consideration is particularly important when
designing a multi-device structure: additional subproblem
dependencies amplify the inter-device communication
latencies, and can bring the overall performance down if an
appropriate synchronization strategy is not implemented.

4. MAGFLOW on multiple GPUs

We now analyze how the cross-cell dependencies in
steps 2 and 3 affect the structure of the multi-GPU
MAGFLOW, and why it is nontrivial to synchronize the
available devices efficiently.

The 2D arrays holding the automaton-cell data are
stored in row-major order, following the C convention. This
structure must be taken into account for the optimization of
memory transfers, as accessing a burst of consecutive
addresses is faster than accessing the same amount of data
sparsely distributed. As a consequence, we only split the
domain horizontally, so that the synchronization involves
transfers of row segments. In special cases of very narrow,
rectangular domains, we can load transposed data,

594

depending on which choice leads to shorter rows.

Let D be the number of available GPU devices on a
machine. On a workstation, we usually have 1 < D =< 3, while
on a dedicated rack, we migh have up to eight devices per
PCI domain. Also, let R be the number of rows and C the
number of columns of the automaton. We split our RxC
grid in horizontal strips, and we assign bordering strips to
consecutive GPU indices; we will refer to these strips as
subdomains. If we split the domain into equal parts,
assuming for simplicity that R is a multiple of D, the device
of index d will be assigned to zero-based rows (R/D) * d, to
(R/D)*(@d+1)—1.

However, to compute cross-cell lava fluxes of row
(R/D) * d, device d also needs to read the cells in row (R/D) *
(d + 1) — 1; i.e. the last row of device d — 1. The same
reasoning applies to row (R/D) * (d + 1) — 1, which requires
reading access to row (R/D) # (d + 1). Devicesd — 1 and d + 1
need in turn to read the first and the last rows assigned to
device d, respectively; the minimum overlapping between
contiguous subdomains is therefore two rows high. We call
rows (R/D) = d to (R/D) % (d + 1) — 1 internal rows for device
d, while rows (R/D) = d —1 and (R/D) * (d + 1) are external
rows for the same device.

Every device computes and writes the status of all of its
internal rows; the external rows are just copies accessed for
reading only. Figure 1 is a visual representation of this
scheme. Steps 1 and 4 can be computed in parallel, with no
communication at all among the devices; no significant
changes are required with respect to the single-GPU code.
Step 2 can be computed independently in different devices,
up to a minimal overlapping border. Step 3 is easily extended
from 1 to D devices: each device provides its own subdomain

=

0 <

(rows/D)*d-1
(rows/D)*d

B4

1<

(rows/D)*(d+1)-1
(rows/D)*(d+1)

h N4

2 <

L (rows/D)*(d+2)-1
Figure 1. Representation of subdomain overlapping. The internal rows of
the strip assigned to device d = 1 are green, the external rows (i.e. one
internal to device d = 0 and one internal to d = 2) are light red.

RUSTICO ET AL.

CPU Scheduler

* launch GPU Threads

= while running

» [TEI) threads <
» select minimum dt

>

edge synchronization

» compute optimal split

* plan memory transfers

(IFEREE to wake threads

| 3

« final asynch. memory dump “

GPU Thread |
(one per GPU)

» + init CUDA subsystem

» while running

» Launch GPU kernels:
1 Erupt
2 Compute Flux
3 Downl. int. borders, dt
"
5 Upload ext. borders, dt
s Update lava heights

N signal, wait Sl

» fulfil pending memory requests

* CUDA subsystem shutdown

Figure 2. Overall structure of the simulator. The main thread launches and synchronizes one GPUThread per device.

minimum, the CPU quickly finds the smallest of the D local
values and the global minimum value is passed back to the
GPUs, to be used in step 4. This requires a barrier in the
iteration: after having found the local minimum, all of the
GPUs must communicate this value and wait for the global
one. The barrier consists of a device flushing call
(cudaThreadsynchronize) followed by a CPU thread
barrier (pthread barrier wait).

Let us use a CPU-centered nomenclature and call a
download any transfer of data from the GPU to the CPU, and
an upload any transfer in the opposite direction. At the end
of each iteration, after step 4, every device downloads its
first and last internal rows to a shared CPU buffer and
uploads from this the external rows, which have just been
downloaded by the neighboring devices; another break is
required as a synchronizing barrier between the download
and the upload, to ensure that each device reads up-to-date
values.

So far, every device has to stop two times for each
iteration: once to obtain the global time-step and once to
wait for downloads to complete. With a little design change,
however, we can make every GPU stop only once, therefore
speeding up the whole process. The "trick" consists of
exchanging the amount of flux at the end of step 2 instead of
the lava thickness at the end of step 4; this exploits the barrier
needed for the time-step selection; the fluxes are already
computed when the devices wait for the time-step, and they
can be updated later when the time-step is available. Figure
2 represents the sequence of operations that every device
executes according to the new logic. This was an important
breakthrough, as stopping twice was the main source of
latency in our early prototypes.

595

5. Implementation details

The CUDA parts of the MAGFLOW implementation
have undergone almost no changes since the single-GPU
version; the rest of the simulator, on the other hand, has
been completely redesigned.

In the multi-GPU implementation, we introduced the
class GPUThread, which encapsulates all of the pointers and
primitives that are needed to handle a GPU; one GPUThread
per device is allocated. Every GPUThread starts a dedicated
thread in constant communication with the associated
device. The wait mechanism is based on the barrier
primitives of the NTPL pthread implementation [Drepper
and Molnar 20057; as an alternative, it is possible to choose a
busy-wait mechanism, which is more responsive, but far
more CPU-consuming.

The main thread has a flux exchange buffer to enable
the GPUs to download and upload their internal and external
rows; this is double buffered to keep data consistency over
consecutive iterations. The main thread manages the split,
balances the workload, tracks the simulation time, and
periodically requests a state dump from the GPUs according
to a user-defined save frequency. An optional auxiliary thread
periodically checks the status of the whole system, for
debugging purposes.

It is possible to specify at the command line several
options, like the input files, the possibility to disable
asynchronous data transfers, the list of devices to be used,
and so on; the devices can be heterogeneous and can even
belong to different generations (e.g. Fermi and Tesla). It is
possible to specify a device more than once: this causes two
or more GPUThreads to use the same physical device, thus
emulating a multi-GPU behavior on a single-GPU machine.

MULTI-GPU IMPLEMENTATION OF MAGFLOW

The data is not multi-GPU aware: it is possible to save the
state of a single-GPU simulation and to load it into a multi-
GPU environment, and vice-versa. The transfer times for the
exchanges of updated overlapping borders are covered by
exchanging the internal borders as soon as they are ready,
while the rest of the cells are still being processed. Thus, the
system scales on any number of CUDA-enabled devices with
compute capability 1.1 or higher, as capability 1.0 does not
support concurrent memory transfers and kernel execution.

The execution time of each iteration is lower bounded
by the slowest device; a dynamic load balancing is necessary
to limit the relative time differences and to avoid undesired
bottlenecks.

A space domain subdivision is currently performed and
dynamically updated as the bounding box grows; the domain
is distributed proportionally to the of
multiprocessors in each active device.

number

While this approach works reasonably well, there also
many unpredictable, run-time factors that can influence the
performance of a device (thread scheduling order,
optimization of the CUDA run-time in kernel executions,
PCI bus conflicts, lava flow topology, etc.). The only way to
take these factors into account is to distribute the computing
load according to the execution times of the previous
iterations.

We are currently implementing a smart balancing policy
that analyzes the fluctuations of the execution times in
relation to the subdomain sizes, which takes into account all
of the explicit and implicit factors in an a-posteriori analysis
(i.e. based on the effective execution times for assigned
subdomains). However, due to the scattered nature of these
timings and the risk of balancing oscillations in local minima,
such an analysis is far from trivial to design, and it requires
the use of advanced signal-processing techniques.

Another approach to dynamic load balancing relies on
overriding the CUDA run-time scheduler policies with a
constantly running custom kernel [Chen et al. 2010]. This
approach is especially useful when the problem modeled has
a large number of small, heterogeneous, independent tasks,
at the price of additional design complexity and the reduced
possibility for a-posteriori balancing.

6. Interface

The system can provide a graphical display of the state
of the simulation (Figure 3). This display is not aimed at
being a realistic representation of the phenomenon, but at
showing the course of the simulation in a concise and
immediate way.

Basic status information are shown, including the GPUs
being used and the corresponding subdomain split. It is possible
to draw the subdomain limits and/ or the minimum bounding
box that contains all of the cells with non-zero amounts of lava.

The window is optimally zoomed to fit onto the

596

Figure 3. Screenshot of the simulator interface while running a 4-GPUs
simulation.

monitor with any automaton resolution. It is possible to
draw the topography and the lava heights produced, with an
adaptive palette related to the thickness of fluid or solid lava.

7. Preliminary performance analysis

The main bottleneck of multi-device set-ups is the inter-
device communication latency. Although code refactoring
has brought several improvements that are not specific to
multi-GPUs, like the ability to save state files asynchronously
with respect to computations, we needed to exploit all of the
advanced techniques offered by CUDA to overcome the
communication overhead that arose to maintain continuous
synchronization.

Figure 4 shows the average execution times of each
step of the automaton evolution during a single-GPU
simulation, in milliseconds. As expected, computing the
cross-cell fluxes is the most expensive step in terms of
computational time, which takes 0.106 ms (68%), as well as
the only step that changes significantly during the

RUSTICO ET AL.

B Erupt- 0.008 ms
M Flux-0.106 ms

B Minimum scan - 0.025 ms
B Update - 0.018 ms
TOT: 0.157 ms

Figure 4. Average execution times of each step during a single-GPU
simulation, 5 m DEM.

computation (see also Figure 5); finding the minimum time-
step takes 0.025 ms; computing the lava heights from the flux
takes 0.018 ms, while eruption requires only 0.008 ms. It is
more interesting, however, to analyze how these times vary
in relation to the number of active cells in the automaton (i.e.
the number of threads running on the GPU), as is plotted in
Figure 5. Two steps basically take constant times: the eruption
and the minimum scan. The time for updating the cells
increases linearly with the number of cells, with very slow
growth (0.02 ms from 1 to 60,000 cells). We do not expect to
have any performance gain with the distribution of the work
of these steps to more than one device. Computing fluxes
follow a more interesting trend. Their execution time is
almost constant until about 6,000 cells, where there is a

sudden increase, and it grows linearly afterwards. When an
increase in the number of active cells does not lead to a higher
execution time, we are not effectively using all of the cores
of the GPU; the sudden increase corresponds to the hardware
saturation point, from which point on we expect a positive
linear relationship between the number of threads on the
device and the execution time.

Splitting the automaton before the saturation of all of
the active devices would therefore give us no speed-up. Our
multi-GPU implementation enables one GPU at a time, as
long as all of the already active devices are saturated. The
profiling of the application with CUDA Visual Profiler
showed that a device should not be considered saturated
before at least one order of magnitude more blocks are
assigned than the number of its multiprocessors. Every time
anew device is activated, the domain is split again according
to the (i.e. number of
multiprocessors) of active GPUs.

estimated power ratios

8. Multi-GPU execution times

When the automaton has been distributed over two or
more GPUs, we observe an important change in the
proportion of execution times. Figure 6 shows the average
timings over 5,000 iterations of a 5-m simulation just after
the automaton has been split in half.

Computing the flux and updating the cells take almost
half the time, while the eruption and minimum scan are
basically unchanged, as expected. However, the total time is
only 10% smaller, because we have to take into account the
downloading and uploading of the overlapping rows, and
together, these transfers take more than 20% the new total

0.25 T
+ T ErE
. — Flux
02 T - - s o
. Minimum scan
- {4 T Update
0 i
E 0.15]
' =1
Q]
E 0.1 -
-]
0.05 _J
0 T 1
0e+00 le+04 2e+04 3e+04 4e+04 5e+04 6e+04

of active cells

Figure 5. Execution times for each step, with respect to the number of active cells in the domain, 5 m DEM.

597

MULTI-GPU IMPLEMENTATION OF MAGFLOW

time. Making this overhead negligible is the main challenge
of any multi-GPU system where continuous inter-device
communication is needed. We have covered these latencies
almost completely by the transfer of the overlapping borders
simultaneously with the computation of the internal cells,
with the results shown in Table 1.

Our test-bed was the simulation of lava eruptions on
Etna volcano in the year 2001, on DEMs with 2 m and 5 m
resolution, loading from a 20% complete state, where the
active box had already reached its maximum extension.
This was simulated on a TYAN-FT72 rack mounting a dual-
Xeon processor, 16 Gb RAM and 6xXGTX480 cards. All of
the tests have been numerically validated, and the time
comparison refers to the same simulation with the same
options (e.g. the stated dumping frequency), as computed
by the single-GPU code.

The execution times obtained differ from the ideal times
only for a constant overhead loss of about 4E~2 - T - #GPUss,
with T being the total simulation time. Figure 7 shows the
real execution times, the ideal times, and the differences
between the two. In this specific example, splitting the
simulation across more than 5 GPUs is not convenient, as the
cost becomes comparable with the simulation time.

In general, the maximum number of GPUs across which
itis convenient to distribute the computation depends on the
total extent of the simulated flow, i.e. on the number of active
cells, as well as on the additional cost mentioned above. For
example, the same eruption simulated on a 5 m DEM can
benefit at most from being distribute across 3 GPUs.

The linear cost is mainly due to the lack of an a-posteriori
balancing policy: a lava flow topology can cause two equally

16000
14000

12000

= Real (s)

-~ |deal (s)

-+ Cost (s)
(R-1)

10000

8000

6000

4000

2000

0.157 ms
0.139 ms

[Bord. upload - 0.013 ms

O Bord. download - 0.014 ms
Bl Update - 0.013 ms

B Minimum scan - 0.027 ms
M Flux - 0.065 ms

[Erupt - 0.007 ms

Single-GPU 2 GPUs

Figure 6. Average execution times of each step before and after splitting
the domain, 5 m DEM resolution.

1GPU 2GPU 3GPU 4GPU 5GPU 6 GPU

Real time (s) 14377 7737 5813 4993 4562 4500

Ideal time (s) 14377 7189 4792 3594 2875 2396

Realcost(2) O 549 1021 1399 1687 2104

Table 1. Execution times and cost in seconds, for 1 to 6 devices, and 2 m
DEM computed by the single-GPU code.

shaped subdomains to require slightly different amounts of
computations (due, e.g., to different numbers of cells with
the actual flow, different memory access patterns, etc.).

+

et

e

2 GPU

1 GPU

3 GPU

4 GPU 5 GPU 6 GPU

Figure 7. Plot of the execution times (~18 h of simulated time; DEM, 2 m), ideal times and linear cost, for 1 to 6 devices.

RUSTICO ET AL.

9. Conclusions and future work

We have presented here a CUDA-based multi-GPU
implementation of the MAGFLOW cellular automaton
that transparently scales on an arbitrary number of
homogeneous or heterogeneous GPUs. Although running a
physics-adherent simulation on GPUs is already faster than
real-time, even faster simulations might open new use
scenarios and bring higher levels of flexibility in model
validation and scenario forecasting.

The speed-up obtained differs from the ideal one by a
cost function that is linear with the number of GPUs, which
is due to the slightly different execution times of equally
shaped areas with different numbers of cells containing lava
and different flow topologies.

It is still possible to improve upon these results, both for
the model and for the technical implementation sides. We
are currently performing further tests to shortly complete a
system that has automatic fine-tuning of the execution
parameters, to fully exploit the hardware computational
power. By interlacing array data, memory transfers can be
merged into a single transfer per iteration. Although CUDA
Toolkit 3.2 is far more mature than the first release, some
features still need to be completed, and some of them are
not well documented yet. Above all, a more advanced
profiling tool that can obtain absolute execution times of
GPU operations is essential, to get accurate information
about the real overlap among GPU transfers and
computations, which is currently not possible with the
standard profiling tools delivered with CUDA.

The recent release of CUDA 4.0 has introduced new
multi-GPU-specific features, like device-to-device transfers
and a unified address space for both CPU and GPU
memories. While inter-device transfer costs are already
almost completely covered, we plan to test these new
features in the very near future.

Finally, we will use the techniques and know-how
developed to date in other computationally expensive
numerical problems, such as mesh-free fluidodynamics and
more generic task-driven multi-GPU schedulers.

References

Bilotta, G., E. Rustico, A. Hérault, A. Vicari, G. Russo, C. Del
Negro and G. Gallo (2011). Porting and optimizing
MAGFLOW on CUDA, Annals of Geophysics, 54 (5),
580-591 ; doi: 10.4401/ag-5341 (this issue).

Chen, L., O. Villa, S. Krishnamoorthy and G.R. Gao (2010).
Dynamic load balancing on single- and multi-GPU sys-
tems, In: Paralle]l & Distributed Processing (IPDPS), 2010
IEEE International Symposium, 1-12; doi: 10.1109/IPDPS.
2010.5470413.

Drepper, U. and I. Molnar (2005). The Native POSIX Thread
Library for Linux, February 21, 2005, 17 pp.; URL:
http://people.redhat.com/drepper/nptl-design.pdf.

599

Meuer, H., E. Strohmaier, J. Dongarra and H. Simon (2010).
The TOP500 Project; URL: http:/ / www.top500.org/ lists/
2010/06.

Sengupta, S., M. Harris and M. Garland (2008). Efficient par-
allel scan algorithms for GPUs, NVIDIA Technical Report
NVR-2008-003, Dec. 2008, 17 pp.; URL: http:/ /mgarland.
org/files/papers/nvr-2008-003.pdf

Vicari, A., A. Hérault, C. Del Negro, M. Coltelli, M. Marsella
and C. Proietti (2007). Modeling of the 2001 lava flow at
Etna volcano by a celluar automata approach, Environ.
Modell. Softw., 22, 1465-1471.

*Corresponding author: Eugenio Rustico,
Universita di Catania, Dipartimento di Matematica e Informatica,
Catania, Italy; email: rustico@dmi.unict.it.

© 2011 by the Istituto Nazionale di Geofisica e Vulcanologia. All rights
reserved.

