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SUMMARY. — In that paper are analitically definied the geometrical-
structuristic index of the agglomerated materials -—• artificially builded — 
when they to the remarkable stresses are subject. That results to attain 
the best realizations of the thermo-piezo-mix, with a great yielding, can 
be gained. 

RIASSUNTO. — Vengono qui definite analiticamente le incidenze geo-
metrico-strutturistiche sulle ripercussioni meccaniche di resistenza dei ma-
teriali composti (artificialmente realizzati con mix-piezotermici), quando sono 
sollecitate da adeguate forze. 

Da qui l'opportunità d'avvalersi di questi risultati al fine di risalire, 
(per dati tipi standard di sollecitazioni meccaniche), a prassi d'agglomera-
zione costruttive di maggior efficienza, ferme restando le componenti chi-
mico-fisiche dei compositi isotropi. 

RÉSUMÉ. —- On a ici défini analytiquement les indices géometrique-
structuristiques des matériaux agglomérés artificiellement construits, lorsque 
ils sont assojettis à remarquables contraints. 

Il s'ensuit qu'on peut utiliser ces résultats, à fin d'arriver aux meil-
leurs possibles realisations de thermo-piezo-mix, à fort rendement. 

1. - The lining compounded with dry or wet fibre, granules, organic 
and inorganic dustes (various components, more or less accidentally 
oriented, mutually strenghtened, interweaved), appear isotrop with 
regard to their mechanical properties, the frictional ones included. 

The friction from the tip to the root /u2 is greater than the friction 
liy from the root to the tip. Is defined the " directional coefficient " 
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<5 = (/x2 — f.h)l(fi2 + /¿i), profoundly affected by the presence of liquids 
pH (acid and alkaline solutions). Increase d is a corresponding change 
in the " felting ", greater in acids and alkali than in neutral solutions. 

It is necessary to point out, though on the whole, specially in view 
of the making of brake-linings, deformations, performances, and some 
of the most important anisotropometrical aspects. It is valid the Hooke 
law (though partially), for the elastic fibres isorientated in the " post-
cure " mixtures. 
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Effect of reduction in feed dimensions on orientation of fibres. 
" A material with fibres heterogeneously distribued is made to flow 
through a straight channel, the tendency will be to straighten out or 
orientate the fibres parallel with the direction of flow ". 

Fig. la 

Impact Low 
Flexibility Low 
Unoriented 
Unstretclied 

Impact High 
Flexibility High 
Oriented 
Stretched 

Orientation by mechanical working of molecule chains of poly-
merized vinylidene cloride. 

It is valid the elastadesive property among elastically different 
ingredients, and are valid the rheological laws for components " po-
lymers ", organic and inorganic. All that requires complex distributions 
of stress in the manufactured material, according to the static load 
and those fluctuating applied, and the physic-chemical-mechanical 
geometrical structures of support. 
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Fig. 16 

An external load P, working on a vehicle brake-blocks, will place 
itself among the single members of the lining, proportionally to the 
elastic modules, to the bearing sections, with transferts of partial loads 
due to adhesivity: Aa.e elastic, in subordinate relation to the quantities: 

Ai 
FEPS (E1+1—ET) 

(S< E, + SI+1 X EI+1) 
[1] 

with fc coefficient, produced by the bearing areas: ST-8T+1, divided by 
the sum of such products by the relative elastic mod. 2 S iE i. The 
eventual " elastic inadhesivities " are made up for by the " chemical 
adhesivities ", " absorptions ", inner mechanisms " between the pha-
ses " . Only one type of organic polymer therefore will be able to alloy 
differently (bond degree) according to the visco-elastic heterogeneity 
of the matrix. 

" Fibrous materials " increase mechanical strength, stiffness, im-
pact resistance, dimensional stability, and are often one-bi-more-direc-
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tional properties (direction of the reinforcement). Fibres are flexibility 
and finesses (ultimate tensile strength of clirysotile fibres and various 
types of asbestos is approximately 50000 psi, with an extremely large 
surface area value-which is a very important property). 

Comparison of average tensile strengths of various materials, give 
155000 psi for carbon steel, against 100-2000 glass fibre, 80000 to 200000 
clirysotile asbestos, 10000 to 300 crocidolite, 1000 to 8000 tremolite 
asbestos. 

It must not be undervalued the " Heat resistance " on the strength 
of fibres, showing the clirysotile a " breaking strength " nearly steady 
up to 400°-500°, unlike other fibres (amianthus or glass fibres) more 
resistent up to the T = 200° (breaking temperature). 

Electron micrographs of the asbesto-fibres have indicated that 
they may exist as hollow tubes several hundred angstromes in diameter. 

Thereafter Ave should consider, post-cure, preferencial or principal 
directions of fibre-reinforced, substratificated ortotropic structures 
(balanced or not, following the number of the fibres, steady or not, 
in each direction). 

Anyway the elastic-plastic-resistent properties can differ, post-cure, 
in the various directions. 

Once fixed a load (static of fluctuating), working for the moment 
with a steady mean direction (viz. vertical), we want to find out how 
the mechanical reactions place themself on the slabs, isotrop and not, 
subject to stresses (fibrous anisotropy). 

The mod. of elasticity E, the shearing modulus G (in isotropic 
bodies), remain steady in any direction, and so " the stress a, the 
shearing stress r, caused constants strain e and y (e = A\E, y = T/G), 

and constant sT = VE (V = Poissons's ratio). 
With transverse strains (contraction or dilation), in anisotropic 

e.g. " orthotropic materials", occurs to reconstruct stress-strain di-
agrams, hence to find the elastic modulus in the longitudinal L in the 
trasversal T directions (EL, ET), the shearing modulus Glt associated 
with these directions; the Poissons's ratio vLt caused by transverse 
strain a stress in L direction, VLT idem in the T direction. So that the 
modulus at any intermediate angle is E1 (in function of a, EL, ET, GLT, 

vlt), and if ax is a stress applied in the 1-direction at an angle a with 
(Tt — L0°; T -> 90°—, we have the most simple case of anisotropy. 
This is a particularly important point: the fibrous layer is not undam-
aged, when it is subejected to a strain, by its mean orientation with 
regard to a fixed direction (viz. the direction of a static or fluctuating 
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agent load), it influences in fact the quantities relative to the mechanical 
deformations, though the sperimentai data EL, ET, 0LT remain un-
changed. 

As the " cure piezo-termics " affect the frictiograms, on the coef-
ficient [à and other mechanical (with the same combination of the pa-
cking's ingredients), thus the " cure " mix, extrusive, to which the 
fibrous layers are bound, affect the anisotropic pecularities of the lining, 
sometimes with remarkable incidences, as we can see afterwards. 

We relate in the meantime, as a proof of what we stated, some 
comparative graphics of the functional quantities: Ex I El ', Gu/Glt 

(functions of the angle between direction of stress and the longitudinal 
axis of the material). 

The mod. EL, ET are known, and therefore we have as a result 
of the graphic in Fig. 2, the unkown EX (a, EL); likewise, when the mod. 
GLT, VLT, VTL-Í are measured in the directions L (longitudinal) and T 

(transversal), we have as a result G12 e tc . . . 
The ratio EL/EL is made up of the sum of three terms: 

cos4 a (directional term), 

EL-sen4 A (mixed geometric-mechanical term), 

1/4 (EL/EX — 2 VLT) sen2 2A (mixed term). 

Therefore EJEL engages all the elastic terms relative to the fibres 
EL, ET, GLT, VLR, as well as the joined " directionalities " . 
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Angle a = 0° is longitudinal direction, angle a — 90° is transverse 
direction, aErjEL, read on the graphic of Fig. 2, allows to obtain the 
mod. E, mod. of elasticity in any reference direction. 

The ratio EJEL is symmetrical with regard to the ordinate cros-
sing angle a = 45° (Fig. 2), with " balanced ortliotropic material o.m.b. ", 
while for " unbalanced ortliotropic material", and for a = 90°, E1/EL 

a -> to asymptotic minimum (evident dissymmetry). 
Thus G12/GLT (GLT is the shearing modulus associated with L and 

T directions), is symmetrical to 45°, unlike E1/EL in the cases " o.m.b. " 
and " o.m.u. " (v. Fig. 2a). 

Two factores m,, m2 (caused by shear and direct stresses respectively) 
showing symmetrical but different behaviours, have been introduced. 

The ratio EL \EX depends on a, E, G, vr.T, as well as GLT/G12, 

VL2 depend on a, E, E, VLT, all quantities which can be measured in 
advance. 

In these considerations we have voluntarily left out " plastic states " 
of the material, so that the bending moment of the structure comes 
out to be higher even of the 50% with regard to the elastic limit 
moment: 

My (Mp = lcMy) ; h = 1,5 (for rectangular sections). 
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In a laminar solid, Fibreglass-Eu-Ee-Fillers, EL/ET = 10, where 
only Eu, ET (according to the hardness) can go down to 120-1300 psi; 
being EL = 5.106, ET = 0,5.106, GLT = 0,55.10° psi, VLT = v„ = 0,45, 
VTL = VMO = 0,045. 

Elastic core a. 
P las t i c core 

Fig. 3 

The tensile stress ar, acting on the small plate at the top, is 10J psi; 
the shear stress r12 = 4000 psi. 

The stress a„ applied in the 1-direction (Fig. 9) causes a strain 
ej = Oi/Ef A transverse strain e2 is caused by alt where e2 = —v12s. 

Unlike isotropic materials, stress â , when applied at any angle axcept 
0° and 90°, causes shear distortion and the shear strain y12 = — ml(71/EL, 

where m1 = m1 (a, vLT, EL, ET, GLT). 

A shearing stress r12 applied in 1-2 directions (v. Fig. 7) causes a 
shear strain y12 = r12/<?l2, where G12 = G12 (a, GLT, vLT, EL, ET, VLT)-

Consequently, strain caused by are £1; e2, y12; strain caused by 
r12 are e ', e ', y ' ; total strain being + e , e2 + e y2 + y'. 

The diagrams showed above (Fig. l and 2a), which join these me-
chanical quantities to the angle amu st be prepared each time according 
to the materials (EL, ET, GLT, VLT)-

Thanks to them we obtain the " strains " caused by au and the 
" strains " caused by r12, as we can see here following: 

I FFI £I = Oi/EI , E2 = 
I r12 -> e' = — m1112/EL , 

- v12 £i , y12 = — ctJEl 

e' = — m2 t J E l , y ' = r12/G12 

[2] 

The quantities El EL (a), Gj)T G12 (a), v12 (a), for small variations 
of the " stiffness factor EI " , " section modulus " for outermost fibre, 
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" bending and shear stress can lead to great differences in the results. 
As for the structures o.m.b. or u.m.b., the variations in the same 
stresses alt r12 (Aeu A tu, Ay12) are remarkably different. In both we can 
note negative minimum for E2 (a ~ 30°), and positive minimum for 
y12 (a ~ 30°). The deformation elf is max. for a = 45° o.m.b., while the 
u.m.b. always increases with a strong gradient, also after a = 30°, and 
has no max. 

The deformations elf due to traction (in the direction of cTj) in all 
cases, go constantly through either max. or other values, because the 
directional anisotropy increases according to the direction of the agent 
stress. The e2, compressives (usually at the direction ax), in all cases, 
they no reach max. too different from a order of quantity generally 
< £[. The shear deformations y12 reach minimum at 30°, and appear 
very like, either with o.m.b. or with u.m.b., both in their behaviour 
and in their absolute values. 

" Particular directionalities " appear mainly at 30° and 45°, in-
cluding our openings of lining (usually inferior to 80°). 

Superposing several thin plates, at crossed directions, those effect 
of fibrousity will be attenuated (pseudo-isotropy). 

2. - Fibrous glass or asbestos reinforced plastics may be " com-
posite and non-isotropic " . 

Composite structure: various layers may be oriented at different 
angles with respect to each other, in order to provide the best combi-
nation to resist loading condition. Outside loads applied result in " in-
ternal stresses ", different individual layers (meeting to the layer's 
iibrousity). Strains and stresses are induced in each layer: external 
stresses may result not only in internal stresses, but in internal shear 
stresses. External shear stresses may result in internal stresses as well 
as internal shear stresses. The " composite structure ", the most ele-
mentary, is the bi-layer. Internal stresses ola, alb, r12a, r12(l, can be 
found in order that the sums of the internal stresses in the 1 and 2 direc-
tions must equal the external stresses in these directions, and the strains 
must be the same in all layers. As the layers are firmly bonded together, 
the strains are the same in a and b layers, and are equal to the strains 
n the whole structure. Therefore the fundamental conditions (in which 

the hypothesis is traslated) are: 

[3] 
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where t = total thickness of the bi-layer = sum of t„ and t„, thiekncsses 
of the horizontal superposed a, b, of different ortliotropic materials 
oriented at arbitrary angles a and with respect to applied stresses 
crI( a2, r12 acting in direction 1; a2 in the lower layer — acting in direc-
tion 2). 

The " sandwich " is realized in the linings also under the " piezo-
cure " (specially with remarkable thicknesses), because of the " plastic 
working of non-metallic materials", which decreases exponentially 
with the depth in the bonded layer. 

The compressive stress between punch and die distorts the sheet 
and gives a stratigraphy (slip-plane movements). 

Materials a and b have respectively longitudinal La and Lb, and 
transverse directions Ta, Tb. The rational hypotesis done on the kind 
which we are studying (sandwich) impose: 

eI = Ela — b — / 1 (fin) a, -®2nj Lai v21rci ̂ 12al mla) 1 
£2 = e2a = e2ii = f2 (°1a.1 °2a> -®laj E2a, Elb, V12a, r12b, m2b) . 

Solutions of the foregoing " linear equations", leads the three 
simultaneous equations, give the unknown: ala, a2a, r12a. 

The linear equations with three unknown crla, a2a, t12u, can be more 
easily employed, also without solution: 

( ta t„lt (An ala+A12 o2a+Al3 T12a)=o1IElb—v21 cr2IE2b—mlb Tl2/ELb 

| ta tb/t (A2l ala+A22 a2„+A2 3 r12a)=—y12b a J En+a2\E2b—m2b r t 2[ELb 

(ta t j t [A31 ola+A32 cr2(t-f^33 r12a) = —mlb ax\EX3—m23 a2IELb+r12/G12b 

An=llE1Ja+llElbtb-,A22=llE2Ja+l/E2btb-,A,3=l/GiiJa+llG12btb-,l°i 

A21 = —v21a/E2a ta—v21b/E2b tb ; A13=A31= —m,la/ELa ta—mibjELb tb ; 

A23=A32= —m2a/ELa t,—m2b/ELb tb . 

In fact the coefficient An, An been known Ela, Elb, E2a, E2b, ELa, 

Gla, G2b can be reduced, and moreover: 

-121 = -^21 ) 4̂.31 = -<4-13 ) ^32 = -̂ -23 • 

We must use the diagrams of Fig. 2 and 2a etc. . . likewise we work 
over a layer, of course been known Ela, Elb, E2a, E2b which may, f. e., 
be equal to each other, and equal to EL (EL = ET) at the conditions 
a = 0°, hence the relations El/EL = 1, or they are equal to each other 
at the conditions 

Eqqo, E30O (Ela = Elb = E30O)', E2a = E2b = E60O; vlt/VTL = El/ET • 
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The other three equations for alb, a2b, r12b, come from: 

&lb tb — <Jit Oia ta ; (72b tb — O2 t &2ata j 1̂26 tb = 1̂2 t 1̂2a [6] 

3. - Fo r computing stresses, stiffness, for the "composite structures", 
some modifications of the standard formulas, which below we relate: 

ISOTROPIC MATER IALS 

Hi, 

t 

Moment of Inertia 

J = bd3/ 12 

A, 

% 
Fig- 4 

fi a 

¥ 

Stiffness Factor 

EI 2 jU Ei 

n.a.x. = 
2 At Ei Xi 

E Ai Ei 

Bending Stress 

a = 6 J\L / b d2 

for outermost 
fibre 

Shear Stress 

t = VQ/bJ 

for max. shear 
at the neutral 

axis. = V Ibd 
2 ' 

NON- ISOTROP IC MATER IALS 

Moment of Inertia j Stiffness Factor 

Ei, At, xt 

Cross sectiou 
composite beam 

It = b dt3 / 12 

are mod. of el., 
cross sectional 
area bdi = Ai and 
distance from the 
bottom of cross 
section, to the 
centre of gravity 
of any particular 

layer. 

Bending Stress Shear Stress 

the layer at y 
point. The max. 
bending stress 
not necessarily 
occur at the out-
ermost (bottom) 
fibre, as it does 
in isotropic mate-

rials. 

v is the total shear 
on the cross sec-
tion, r = shear 
stress intensity 
along some hor-
izontal plane, Q' 
is the weighted 
statical moment 
Ei At y' about the 
n.a. of the por-
tions of the c.s. 
between the hor-
izontal plane and 
the bot tom of 

the c.s. 
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A plane packing with " adherent and composite slab " : 

(X-

L-. M . 

V 
N 

lx ^ O.Zi / 

V E{ST = EA + EA --

EJE2 = 10 ; 

n.a.x. = 0,23 in . 
c 

Fig. 5 

For a unit bending moment M = 1 in-lb: 

P lane y 
Ey 

(noti ) 
<*v = V Ev ¡EI 

in-lb 
a 1 Oy in-lib M 

(a-a ) 0,77" 10.106 psi 7,7/0,45 = 1,7 (40000 psi)/ 1,7 = 2400 in-lb 

(b -b ) 0,27" 1.10" psi 0,27/0,45 = 0,6 (20000 psi)/0,6 = 33000 in-lb 

(c-c ) 0,23" 1.10« psi 0,23/0,45 = 0.5 (20000 psi)/0,5 = 40000 in-lb 

10 
—i— 

1 (in-lb. 105J 7" 

£, = 5-106 

£L = J- /O 6 

2 
<2, - 2,5-w4 

E,= r-ro6 ' 
tf5 = 

4- E4 = 7 • 106 

<3, = 0,5-ro4 

£j = 5- to6 

cc- 4-ro4 

f 6 = j./o* 

cr6 = 2,5-10" 

Fig. 6 
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Here appear a " critical plane" not " interstratified" but the 
bottom of the " bi-composite " . The " internal moment " or " moment 
of resistance " M = ET ¡It = E/B 2«,f/2, in the " isotrops ", is inversily 
proportional to the bending radius, in the " composites " is no more 
proportional " to the square of the depth, but to the 1.89 power of the 
depth ". In Fig. 6, we study the case of 6 layers horizontal superposed, 
with different elastic modulus, and different thickness, of which we 
have calculated the insistence's moments ay = Fy y/EI ; EI = 2 Ei It: 

(Fig. 6). 

Internal Moment. 

The length of the horizontal line (dash and point) gives the value 
of M in in-lb (max. 10.200 inl-b, min. 3500 in-lb) and we can note how 
the material is differently stresses inside. 

4. - Let us consider at last the situation of a plane superficial element 
of " lining " (Fig. 7), a real shape of which, with a given strain p, we 

have the " circumferential stress " <rL = p r0 and the " longitudinal 
stress " <T2 = 1/2 al that is half value. 

We can see different fibrous orientations, concerning the two super-
posed planes; the parallel to 1 (circumferential direction) —T a perpen-
dicular, Lb parallel to 2, T& normal, circumferential and axials direc-
tions 1,2 (intertwisted); or La at 45° with 1, Ta normal, Lb parallel un-
derlying to Ta, and Tb parallel to L„; being ta~tb in any case. The 
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angle a (LaX) can be anyone, and the angle (Lb, 1) (a fi) too. 
The calculus become easier as: 

Ela=Elb=E2a=E2b ; vlttt=v21a=v12b=v21b ; m1„=w l i ,=w2„=w2 i ,=0 
A12=A2X ; -413=^4-31=J4-32=J4.23 = 0 
Au=llEla ta + 1 ¡Elb tb ; An=A22 L'J 

A22=l/E2a ta + 1 \E2b tb 

values which must be introduced in the three fundamental equations 
hence these become: 

i -¿11 ffi« + ¿12 cr2a = , V (<?iIE lb — v12 a2/E2b) 

t [ « ] 
I ¿21 tfia + ^122 o2a = — (— f126 CTi/^jt, + cr2/E2b) ; J.33 r 1 2 = 0 

from where we get our unknowns: 

Oiu = (Tib = f i j — &2b = ° 2 j f l2a = T12b — " 

internal stresses, which become equal to the external strains, with no 
shear internal stresses, also for shear strains different from zero. 

The symmetry of the orientations of the fibres with regard to the 
main directions of the stresses 1-2, cause the internal stresses ala, cr16, 
o-2,„ a2b to be equal the external stresses imposed au a2 and annul the 
internal stress shear, although we impose external stresses shear. 

For: 

Eia = Elb = Ei0 o = E,00 = E2a = E2b 

Gx2 a = G12b ; V12a — 1*126 = ''300 = 6̂00 = Vila — ''216 j-Q-j 

m l a = m300 ; m l b = — m l 0 

= ^600 j ^26 " ' WZ>2b 

the fundamental equations will be different from the previous only 
in the 3td (the first two remain same, showing that the internal stresses 
are equal to those imposed) 

¿33 r12a = 7̂ 7- (— mlb aJElb — m2b a2/Elb). [10] 
la lb 

Therefore being ola = aib = ax ; a2a — a2b = a2, from the third eq-
uation we get r,2a ^ 0. Remarkable stresses shear appear when the 
layers are so oriented " even if there are no external shear stresses " . 
The shear stresses in layers b are oriented in the opposite direction 
to the shear stresses in layers a. 
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5. - We determine at this point the position of the max. pres-
sure and the distribution of the pressure on the lining (rigid shoe calcu-
lation). 

S (czntm of drag J 

Tu Fig. 8, there is the " centre of drag " , point where act the résul-
tant of the forces of the slioe on the drum s. The centre of the drum 

pDC Risult force 

Fig. 9 
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with radius r is remarked by 0; AB is the arch of contact of the shoe-
•[jackiruj; C\ is the centre point of the shoe pivot. 

We can also the max. pressure 7)Q1 " pressure distribution and 
resultant line of pressure OG ,̂ the angle of friction the brake force 
for shoe F,. 

Pig. 10 

More types of construction for " composites ", can be easily studied: 
layers a and b with the L and T direction laid in the circumferential 
and axial directions; the layers are laid at a = 10°, 20°, 30°, 45°, to the 
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axis of the cylinder, e.g. alternate 30° angles in left-hand and right-
hand spirals. For the position a = 0°, 45°, 90°, we have: 

J EJEL = 1 ; EJEL = 1 ; EJEL = 1 ; EJEL = 1 

| mla = mlb = m2a — m2b = 0 ; v12a — v21a = v12b = v21b = vLT , 

and therefore: 

G\a — — Ì °2a = °26 = °2 j X\2a = rl2b = « • 

[11] 

[ l i 

Fig. lOffl 

For the remaining a, we obtaine: 

Ì
ELA = ELB = E 30O = -B60O = = E 2B = EI 

(*12a = ^126 = Glt 

VLT = VTL • 

[13] 

The first two fundamental equations do not change, however: 

<?la = Olb = « 1 5 Cad = = [ 1 4 ] 

while the third becomes: 

r12a (1/Gi2„ tb + 1/G12b tb) = (— mlb ax\Ehb — m26 cr2/jE7z.6) , [15] 
la Ift 

from which 
Ti2a # 0 [16] 
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Therefore being a = 0°, a - 45°, a = 90°, the shear deformations 
disappear, while such shear deformations appear again being a = 10°, 
20°, 30°, 40°, 60°, 70°, 80°, 90°, with max. values for a = 25° and a = 05°. 

While reckoning the stresses internal to the fibrous or no packing, 
we must, of course, keep into consideration the variation of the loads 
(Pig. 9) which give the and r12 measurable or obtainable, and therefore, 
going away from the zone of max. pressure, also the joining affects pos-
sible fibrousities of the fibrous lining, with mono or multi-structure, 
will fade. We have studied then the main principal possible incidences 
(Pigg. 10-10«), keeping unchanged the constitutive formulas (qua-
litative and quantitative) of the ingredients and load-stress, on the 
deformations of the brake-lining (isotrop, anisotrop, fibrous and strati-
form structures). 




