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ABSTRACT

In recent years, several groups have installed high-frequency sampling
receivers in the southern middle and high latitude regions, to monitor
ionospheric scintillations and the total electron content (TEC) changes.
Taking advantage of the archive of continuous and systematic observa-
tions of the ionosphere on L-band by means of signals from the Global
Positioning System (GPS), we present the first attempt at ionospheric
scintillation and TEC mapping from Latin America to Antarctica. The
climatology of the area considered is derived through Ground-Based Scin-
tillation Climatology, a method that can identify ionospheric sectors in
which scintillations are more likely to occur. This study also introduces the
novel ionospheric scintillation 'hot-spot’ analysis. This analysis first iden-
tifies the crucial areas of the ionosphere in terms of enhanced probabil-
ity of scintillation occurrence, and then it studies the seasonal variation
of the main scintillation and TEC-related parameters. The results pro-
duced by this sophisticated analysis give significant indications of the
spatial/ temporal recurrences of plasma irregularities, which contributes
to the extending of current knowledge of the mechanisms that cause scin-
tillations, and consequently to the development of efficient tools to forecast

space-weather-related ionospheric events.

1. Introduction

Ionospheric scintillations are driven by ionospheric
irregularities. Ionospheric irregularities are commonly
indicated as regions of enhanced or depleted electron
density that can suddenly form in the ambient iono-
sphere in response to many phenomena, such as the
forcing of the solar wind. Such structures vary across a
very broad range of spatial scales: from hundreds of

kilometers down to centimeters. Under perturbed con-
ditions induced by the impact of solar storms on the
near-Earth environment, the ionosphere can become
highly turbulent, and the probability of the formation
of an irregularity can significantly increase.

As trans-ionospheric signals propagate through
such irregularities, they encounter gradients of electron
density, which results in two main effects: group delay
and phase advance, which give rise to refraction and dif-
fraction [e.g., Yeh and Liu 1982, Kintner et al. 2009].
Moreover, as the signal keeps propagating down to the
ground, small changes in the distance of propagation
along the scattered ray paths cause the signal to interfere
with itself. The overall effect is a sort of 'space multipath',
as the distortion of the original wave front, which gives
rise to a randomly modulated wave. When received at
the ground, the signal can undergo rapid, random vari-
ations of amplitude and phase that are commonly
known as 'ionospheric scintillation'.

When sufficiently strong, ionospheric scintillations
can bedevil Global Navigation Satellite Systems
(GNSS), because the intensity of the received signal
might drop below the tracking threshold (amplitude
scintillation) or the carrier phase might experience
rapid changes, causing cycle slips that affect the phase-
lock loop (phase scintillation). The resilience of GNSS
to space weather events is becoming one of the crucial
aspects of modern society, as many technologies and
social needs rely on the robustness and availability of
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precise positioning (see, e.g., Fisher and Kunches [2011]
and Committee on the Societal and Economic Impacts
of Severe Space Weather Events [2008]).

The features that characterize ionospheric scintil-
lation on radio waves are modulated by a variety of dif-
ferent factors, such as: operating frequency, local time,
season, magnetic activity, solar cycle and geographic lo-
cation. In particular, as a result of the morphology of
the Earth magnetic field, the magnetic poles and equa-
tor are more affected by the scintillations.

Irregularities in the high latitude region can result
from patches of plasma density, as large scale plasma
blobs and density troughs, the steep edges of which are
unstable, so that smaller scale density structures de-
velop along these edges. At high latitudes within the
auroral oval and cusp, precipitating energetic particles
produce enhanced electron densities. The fluxes of
these precipitating particles are structured in space and
time and create irregular structures in the ionosphere
that correspond to the boundaries of the auroral oval.
Within the polar cap, ionospheric irregularities are as-
sociated with patches, as discrete electron density en-
hancements in the F layer that are characterized by
horizontal scales from a few hundreds to a 1000 km,
and convecting anti-sunward (see, e.g., Tsunoda [1988],
and references therein). Polar patches are the main
driver of scintillation within the cap [De Franceschi et
al. 2008].

Atlow latitude, amplitude scintillations are stronger
with respect to other latitudes [Basu et al. 2002]. At the
magnetic equator, the B field is parallel to the Earth sur-
face and produces the so-called 'fountain effect: an
ionospheric plasma movement upwards and down-
wards, due to the interplay among ExB drift, gravity
and pressure gradients. This mechanism leads to the
formation of the Equatorial lonospheric Anomaly, with
the minimum F-region ionization density at the mag-
netic equator and the maxima at the two crests, which
are located roughly at 20° in magnetic latitude north-
ward and southward. At the local post-sunset hours, a
pre-reversal enhancement of the eastward electric field
leads to the formation of a Rayleigh—Taylor instability
[e.g., Jin et al. 2008]. In this time range, the equatorial
F layer rises up under the action of the enhanced
evening eastward electric field, and a bottom-side den-
sity gradient region develops, the equatorial spread-F,
which allows the formation of ionospheric irregulari-
ties. These are mainly large electron density depletions
that are elongated along the magnetic lines, and are
often called 'plasma bubbles' [see, e.g., Young et al.
1984]. Recently, the development of the equatorial
spread-F has been shown to also be driven by gravity
waves [Abdu et al. 2009, Cabrera et al. 2010].

The investigated sector is also characterized by
the South Atlantic Magnetic Anomaly (SAMA), which
is a large anomaly of the Earth magnetic field that is
characterized by the lowest values of the geomag-
netic field intensity at the Earth surface. The SAMA
allows a large particle radiation flux to come into the
atmosphere [Abdu et al. 2005]. Similarly, even if less
severely than in the cusp region at polar latitudes, par-
ticle precipitation in the SAMA is another source of
ionospheric turbulence that can lead to scintillation,
as it disturbs the thermospheric circulation in the at-
mosphere and alters the rates of production and re-
combination of the ionized species, mainly under
geomagnetic storms.

In this study, the main features of the high, mid
and low latitude ionosphere in response to the scintil-
lation phenomenon on global positioning system
(GPS) signals are depicted by analyzing data from a
network of GPS ionospheric scintillation and total
electron content (TEC) monitor (GISTM) receivers lo-
cated in the southern hemisphere, between South
America, the South Atlantic Ocean and Antarctica. In
particular, the similarities and differences in the mech-
anisms that lead to scintillation among the different
areas are highlighted by means of the climatological
representation given by the Ground-Based Scintillation
Climatology (GBSC) technique [Spogli et al. 2009,
2010, Alfonsi et al. 2011]. The novelty of this study is
also the seasonal characterization of the here-defined
ionospheric scintillation 'hot spots', which are pre-
sented for the first time. These hot spots are defined
using the GBSC representation as the crucial areas of
the ionosphere in which the probability of having scin-
tillation is enhanced.

2. Measurements and parameters adopted

We have analyzed the data from a network of nine
GISTM receivers that covers a very large area of the
southern hemisphere, from sub-equatorial Latin Amer-
ica to the South Pole, across the South Atlantic Ocean.
The GISTMs consist of NovAtel OEM4 dual-frequency
receivers with special firmware designed to compute in
near real-time the widely used amplitude (S,) and phase
(o) scintillation indices from the GPS L1 frequency sig-
nals, the ionospheric TEC and its changes (rate of TEC;
ROT) from the GPS L1 and L2 carrier-phase signals. In
this study, these quantities are evaluated using 50-Hz
sampling of the signals [Van Dierendonck et al. 1993],
with average values obtained every minute.

Scintillation indices are here projected to the ver-
tical, to account for varying geometrical effects on the
measurements made at different elevation angles, as in
the following formulae:
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where o3 and S are the indices that are directly pro-
vided by the receiver at a given elevation angle along the
slant path. In Equations (1) and (2), F(a,;,,) is the oblig-
uity factor, which is defined as [Mannucci et al. 1993]:

1
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where Ry, is the Earth radius, and Hp,, is the height of

the Ionospheric Piercing Point (IPP), which is assumed

to be 350 km. According to Rino [1979a, b] and Wernik
et al. [2003], and as discussed by Spogli et al. [2009] and
Alfonsi et al. [2011], the exponent a is assumed to be 0.5,
while b depends on the spectral index of the phase scin-
tillation spectrum p, and on the anisotropy of the irreg-
ularities. It is not possible to assume a value that is valid
for all of the ionospheric conditions that occur from
equatorial to polar latitudes, although, as the statistical
nature of the proposed study, different assumptions on
b do not meaningfully change the features depicted in
the Discussion and Results given in the present study.
For this reason, we use the values of Spogli et al. [2009]
and we assume p = 2.6, which corresponds to b = 0.9.
Figure 1 illustrates the locations of the stations that
constitute the network, while Table 1 gives the geo-

Location ID Owner Latitude Longitude
Mario Zucchelli Station BTNOS INGV 74.7°S 164.1°E
Concordia Station Dome C 0 DMCo0S INGV 75.1°S 123.3°E
Concordia Station Dome C 1 DMCI1S INGV/BATH 75.1°S 123.3°E
San Miguel de Tucuman TUCO0S INGV/UNT 26.8°S 65.20W
Gough Island GOGGS SANSA 40.4°S 9.9°W
Marion Island MARGS SANSA 46.9°S 37.9°E
Comandante Ferraz Station EACFO0 INPE 62.1°S 58.4°W
Radio Observatorio do Itapetinga ROIOS INPE 23.2°8 46.6°W
South Pole SPOLE BATH 90°S 0°E

Table 1. Summary of the receiver locations and their main features.
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Figure 1. Location of the receivers used in this study.
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Month TUCo0S BTNOS DMCoS DMCI1S EACFo0 ROIo0S GOGGS MARGS SPOLE
(%) (%) (%) (%) (%) (%) (%) (%) (%)
Jan 58 100 100 100 97 94 100 0 68
Feb 86 100 100 100 100 86 100 4 100
Mar 100 100 100 100 97 100 45 45 100
Apr 100 100 100 100 100 97 0 90 100
May 100 100 100 100 100 100 0 90 100
Jun 100 100 100 100 100 100 0 73 100
Jul 100 100 100 87 100 100 16 100 100
Aug 100 100 100 100 94 100 100 90 100
Sep 100 100 100 100 100 100 100 100 100
Oct 71 100 100 100 100 100 100 52 100
Nov 7 70 100 47 100 100 100 0 90
Dec 0 0 100 87 97 90 97 0 97

Table 2. Days of available data in each month and for each receiver, expressed as percentages.

graphic coordinates, the station identifiers (IDs), and the
owners. Data were acquired for all of 2011, during the
beginning of the rising phase of the approaching solar
maximum (minimum average sunspot number = 18.8;
maximum average sunspot number = 96.7). To show
the consistency of the data to be simultaneously ana-
lyzed over a whole year, Figure 2 shows the percentages
of days of available data for 2011 for each receiver. The
overall availability is good and is well above 70%, except
for the two stations located in the South Atlantic, Gough
Island (ID: GOGGS, 63%) and Marion Island (ID:
MARGS, 70%). As this study also presents an investiga-
tion dedicated to seasonal variations of the scintillation
features, it is important to identify whether data gaps
are present in particular months. Table 2 summarizes
the percentages of the days of available data in each
month and for each receiver. For MARGS, the main gaps
were from January to February and November to De-
cember, and for GOGGS, from April to July. Other
meaningful data gaps are the almost total lack of data
for Tucuman (ID: TUCOS, Argentina) from November
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Figure 2. Percentage of days of available data in 2011 for each re-
ceiver.

to December, and the total unavailability of the Mario
Zucchelli station (ID: BTNOS, Antarctica) in December.

To show the coverage of the network, Figure 3
presents the combined field of view, obtained by con-
sidering all of the available satellite passes and applying
an elevation angle threshold of 20°, which is a com-
monly accepted threshold to remove observations at
low angles at which the multipath of the rays from ter-
restrial structures can mimic ionospheric scintillation.
This threshold is hereafter applied to all of the data an-
alyzed. From Figure 3 it is evident that the network cov-
ers almost all of the geographic latitudes and longitudinal
sectors in the Latin America/ South Atlantic/ Antarc-
tica area. This is also confirmed by Figure 4, which
shows the distribution of the latitude by rejecting only
low elevation angles (Figure 4, red). The single receiver
sub-distributions are evident with 8 peaks, with only
Concordia station Dome C 0 (ID: DMCO0S) and Con-
cordia station Dome C 1 (ID: DMC1S) superimposed,
while they almost monotonically fade one into the
other with continuity. The blue distribution in Figure 4
is obtained by transforming the geographic coordinates
into altitude-adjusted corrected geomagnetic latitude
(AACGM, Mlat) [Baker and Wing 1989]: the altitude
considered is H;,, = 350 km, which is assumed to be
the IPP. This transformation 'shrinks' the distribution
into three main magnetic latitude regions:

(i) Low latitude region, from about —28°N to
—15°N Mlat, to which TUCOS station and Radio Ob-
servatorio do Itapetinga (ID: ROI0S) contribute;

(if) Mid latitude region, from about —58°N to
—38°N Mlat, to which GOGGS, MARGS and Coman-
dante Ferraz (ID: EACFO0) stations contribute;

(iii) High latitude region, from about —90°N to
—68°N Mlat, to which DMC0S, DMC1S, BTNO0S and
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Figure 3. Field of view spanned by the network, obtained by considering all of the data available and applying an elevation angle thresh-

old of 20°.

South Pole (ID: SPOLE) stations contribute.
The ranges of magnetic latitudes covered by each
receiver are summarized in Table 3.

3. Methods

The data were analyzed using the GBSC tech-
nique, which was recently developed by the Istituto
Nazionale di Geofisica e Vulcanologia (INGV). GBSC
has been shown to be very promising for the identifi-
cation of areas of the ionosphere in which scintillation
is more likely to occur [Spogli et al. 2009, 2010], and for
assessing the general recurrent features of the dynam-
ics and temporal evolution of ionospheric irregularities,
catching the correspondences with scintillation occur-
rence [Alfonsi et al. 2011].

This technique produces maps of the percentage
occurrence and/or mean and standard deviation of
scintillation indices, the TEC, the signal-to-noise ratio,
and other parameters that are defined in a bi-dimen-
sional coordinates system (geographic coordinates, ge-
omagnetic coordinates, horizontal coordinates, time),
each of which can be selected on demand.

The percentage occurrence O is evaluated in each
bin of the map and is defined as:

N r
0=x" (4)

tot

where N, is the number of data points that correspond
to the investigated quantity above the threshold, and N, ,

is the total number of data points in the selected bin. In
the present study, we considered the amplitude and
phase scintillation events as those for which S, and o,
were above 0.25 radians and 0.25 radians respectively,
which are considered as moderate/ strong scintillation
thresholds. To remove the contribution of bins with
poor statistics that might affect the occurrence estima-
tion, the selected accuracy is set at 5% (see Taylor [1997]
and Spogli et al. [2009] for the application to GBSC).
The climatological representation given by GBSC
is here supported by the newly introduced ionospheric
scintillation hot-spot analysis, which starts from the
outcomes of the GBSC, to define crucial areas of the
ionosphere from the scintillation point of view. After
the identification of these hot spots, the seasonal vari-
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Figure 4. Distribution of geographic latitude (red) and Altitude Ad-
justed Corrected Geomagnetic Latitude (AACGM) at the altitude
of 350 km (blue) for the considered period.
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Figure 5. Maps of S, (a) and o, (b) percentages of occurrence above the moderate/ strong scintillation threshold. The black curve is the mod-

eled Feldstein oval for IQ = 0.

ations of the scintillation indices and the ROT mean
and standard deviation are shown.

4. Results

4.1. Climatolgical representation through Ground-Based
Scintillation Climatology

Figure 5 shows the maps of the S, (a) and oy, (b)
percentages of occurrence in Mlat and magnetic local
time (MLT). We superimposed the position of the Feld-
stein auroral oval [Feldstein 1963, Holzworth and Meng
19757 for the lowest level of magnetic activity (IQ = 0)
onto the scintillation occurrence maps. We chose IQ =
0, which represents a quiet ionosphere, aware that it
could give only an average representation of the posi-
tion of the auroral oval boundaries, which could be lo-
cated more equator-wards under disturbed geomagnetic
conditions. Hereafter, we refer to this oval as the quiet
oval. Even if the AACGM latitudes are more suitable as
a framework for the high latitude ionosphere studies,
they also highlight the main features of scintillation at
mid and low latitudes, as it is evident in Figure 5. The
maps of Figure 5 show the differences in the impact of
scintillation at high, mid and low latitudes. Mid lati-
tudes are characterized by very small scintillation ac-
tivity, both in amplitude and phase, with occurrence
generally below 1% for all Mlats and MLTs. There are
some bins with enhanced probability only for phase
scintillation, which are mainly located along the pole-
ward boundaries of the mid latitude region. Moreover,
phase scintillation is present in almost all of the bins,
while amplitude scintillation is absent in several others.

Amplitude scintillation at high latitude is of the
same order of magnitude as at mid latitude (=1%),
while phase scintillation is enhanced near the bound-
aries of the auroral oval, at the cusp, and in the polar
cap (Mlat < —80°N).

At about —70°N, the phase scintillation occur-
rence is larger in the post-midnight sector than in the
pre-midnight sector, while due to the presence of the
polar patches, the scintillation in the polar cap is asym-
metric around midnight and favors the dawn sector.
The phase scintillation enhancement is in the dawn sec-
tor (Figure 5b); i.e., the opposite of what was found in
the northern hemisphere by Spogli et al. [2009], who
reported a pre-midnight enhancement of phase scintil-
lation occurrence induced by the polar cap patches.
This can be explained by the opposite circulation di-
rection of the convection cells inside the caps of the
northern and southern polar regions.

In Spogli et al. [2009], the asymmetry among pre-
midnight and post-midnight sectors at auroral latitudes
was claimed to be due to the TEC distribution that was
driven by the high latitude trough position around
noon in the northern hemisphere, which indicates the
presence of large gradients in the electron concentra-
tion. In the southern hemisphere, the asymmetry fa-
vors the post-midnight sector, which is vice versa with
respect to the northern hemisphere.

In the low latitude region (Figure 5), two main areas
show evidence of percentage occurrences of 6% to 10%.
One is well defined in the MLT range from 1900 to 0200,
which appears to be due to the ionospheric irregularities
that develop during the post-sunset local hours (at the
equator, magnetic and local time are not significantly dif-
ferent). The other is located in a band at around —23°N
and has only a small dependence on time. It is present
on both the amplitude and phase maps, even if it leads to
alarger occurrence in the phase maps. The concurrence
of amplitude and phase scintillation suggests that there
is a prevalence of irregularities that have a scale size
below the Fresnel scale (=250 m for L,). Moreover, the in-
dependence from time reinforces the idea of a source of
scintillation that is independent of the daily variability.
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Figure 6. Maps of mean (a) and standard deviation (b) of ROT. The black curve is the modeled Feldstein oval for IQ = 0.

A possible source of such irregularities would be the
structuring imposed on the ionosphere within the SAMA
by the precipitating particles.

To help with the understanding of the scale sizes
involved and their correspondence with scintillation
occurrence, maps of the ROT mean (<ROT>) and
standard deviation (ROT_SD), analogous to those in
Figure 5, are shown in Figure 6. Table 3 of Alfonsi et al.
[2011] reported the expected relationships between the
| <ROT>| and ROT_SD permutations, the associated
irregularities, scale sizes, and scintillation phase and/or
amplitude occurrence, which are useful also for the
purpose of this study. According to Table 3 of Alfonsi
et al. [2011], at low latitudes the narrow band of am-
plitude and phase scintillation corresponds to small
values of | <ROT>| and large values of ROT_SD, in-
dicating the presence of several scale sizes simultane-
ously induced by particle precipitation within the
SAMA. The same configuration of the SAMA is found
for post sunset scintillation: low | <ROT>| and large
ROT_SD, again providing evidence of the presence of
several scale sizes being active for scintillation, but here

D Ml::t min Mlaot max
(°N) (°N)
TUCO0S -24.5 -15.5
ROI0S -27 -17
GOGGS -47.5 -39
EACF0 -55.5 -44
MARGS -57.5 -48
SPOLE -81.5 -68.5
BTNOS -87 -73.5
DMCo -89.5 -82.5
DMC1 -89.5 -82.5

Table 3. Ranges of magnetic latitudes covered by each receiver.

concentrated in a well-defined time range.

The mid latitude region is mainly characterized by
low values of both | <ROT> | and ROT_SD, except for
a few bins equator-wards and polewards, that would
need an enlargement of the field of view to be inter-
preted. This ROT configuration does not allow the defi-
nition of a clear scintillation scenario.

In the high latitude region, the phase scintillation
occurrence follows the ROT_SD pattern, which indi-
cates larger values mainly near the cusp, the post-mid-
night polar cap, and corresponding to the boundaries
of the auroral oval, while the | <ROT>| values are
generally low. According to Table 3 of Alfonsi et al.
[2011], this situation is related to a possible presence of
all scales, but in our case, it leads only to phase scintil-
lation, which indicates the sole presence of scale sizes
above the Fresnel distance.

4.2. Ionospheric scintillation 'hot-spot’ analysis

The climatological picture given by the GBSC al-
lows a general and simultaneous overview of the cru-
cial areas of the ionosphere in which scintillation is
more likely to occur: the 'hot spots'. Moreover, the
choice of representing the occurrence as the AACGM
is effective in depicting it. Starting from this considera-
tion, we decided to introduce here a new analysis, in
which the scintillation hot spots are first identified and
defined, and then studied with respect to their seasonal
variation. The analysis moves towards a deeper under-
standing of the relationships between the scintillation
parameters and the structure and variability of the
ionospheric irregularities.

The starting point of the hot-spot analysis is the
map of the o, percentage of occurrence above the
weak scintillation threshold (0.1 radians), as reported in
Figure 7. The weak scintillation threshold is chosen
here to include every meaningful bin in the hot-spot
definition. The definition is based upon GBSC maps of
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Figure 7. Map of o, percentage of occurrence above the weak scin-
tillation threshold (0.1 radians). The black curve is the modeled
Feldstein oval for IQ = 0, while the black boxes define the ionos-
pheric hot spots.

0, percentages, because at low latitudes the scintilla-
tion patterns of S 4 and o, are similar, so the hot spots
there are the same. On the contrary, at high latitude,
the phase scintillation occurrence identifies larger areas
of enhanced scintillation probability with respect to the
S, maps. As a consequence, the hot spots defined
through phase scintillation occurrence allow us to take
into account areas that are not highlighted by ampli-
tude scintillation occurrence. In Figure 7, the quiet
Feldstein oval is still present and the black boxes define
the ionospheric hot spot, together with the following
four-letter identifiers:

— POST, in which the scintillation is supposed to
be mainly due to the post-sunset irregularities develop-
ment;

— SAMA, in which the scintillation is supposed to
be mainly due to irregularities induced by particle pre-
cipitation in the SAMA;

— CUSP, in which the scintillation is supposed to be
mainly due to irregularities induced by direct particle
precipitation at the cusp;

—TAIL, in which the scintillation is supposed to be
mainly due to irregularities induced by the reconnec-
tion from the magnetotail at around magnetic noon;

— PATC, in which the scintillation is supposed to
be mainly due to the TEC patches moving across the
polar cap.

The definition in terms of Mlat and MLT ranges,
together with the stations contributing to the analysis
of the given hot spot, is summarized in Table 4. In the
present study we decided not to include the mid lati-
tude region, as scintillation occurrence is scarce with
respect to the other regions.

The main outcome of the hot-spot analysis is
shown in Figure 8, where the percentage occurrence
above the moderate/ strong threshold for o, (Figure
8a) and S, (Figure 8b), and of the ROT mean (Figure
8¢) and standard deviation (Figure 8d) are plotted as
functions of the months of 2011, and are sorted for the
different hot spots. The seasonal variation also shows
evidence of both phase and amplitude scintillation at
low latitudes (POST, SAMA) which is of the same order
of magnitude or stronger than at other latitudes.

POST presents two enhancements: the weaker
one in March (=5%) and a higher one in November
(=30%). This confirms what is expected with the inten-
sification of pre-reversal at equinoxes, which is stronger
in the austral spring, and in the austral summer [e.g.,
Fejer et al. 1989, 1991]. The enhancement observed in
March was probably due to the sole equinoctial en-
hancement, but the peak in November was probably
due to a combined effect of the spring equinox and the
austral summer. The SAMA has a similar behavior, even
if the effect due to the equinoxes is less evident, which
possibly indicates a stronger seasonal dependence of
the effects during the winter/ summer.

As far as high latitude hot spots are concerned
(CUSP, PATC and TAIL), an expansion of part of Fig-

Tonospheric Phenomenon MLAT range MLT range Stations involved
hot-spot identifier (°N; °E) (h)
Post-sunset
POST . (-25;-15) (20;24) TUCoS, ROI0OS
at low latitudes
Particle precipitation ) )
SAMA e Lo SAMA (-24;-22) (0;24) TUCOS, ROIOS
CUSP Particle precipitation (-82;-74) (10;14) BTNOS, SPOLE
due to the polar cusp
TAIL Reconnection (-82;-68) (20;4) BTNOS, SPOLE
from the magnetotail
PATC Polar cap patches (-90;-82) (0;24) BTNOS, DMCO0S, DMC1S

Table 4. Ionospheric scintillation hot spots defined in terms of the MLT and Mlat ranges.
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Figure 8. Seasonal variation of the percentage occurrence above the moderate/ strong threshold for o, (a) and S, (b), and of the ROT mean
(¢) and standard deviation (d), sorted according to the different ionospheric scintillation hot spots.

ure 8a is shown in Figure 9. The main source of scin-
tillation at high latitudes is the direct particle precipita-
tion in the CUSP region, the peaks of which are in the
equinoxes (=2%). Also TAIL and PATC present en-
hancements at the equinoxes, and this is because during
the equinoxes the alignment between the geomagnetic
field at its contact region with the interplanetary mag-
netic field is optimal for the merging between helio-
magnetic field lines and geomagnetic field lines if they
are oriented in opposite directions. The Earth magne-
topause then has an optimum 'capture cross-section' to
connect with a southward-oriented interplanetary mag-
netic field. Under these conditions, plasma from the
solar wind can best enter the magnetopause and induce
particle precipitation from both the cusp and tail, and
can cause ionospheric irregularities.

With reference to the ROT features, Figure 8c
shows how the low latitude hot spots, POST and SAMA,
are characterized by negative values of <ROT>, while
the high latitude hot spots show positive <ROT>. This
confirms what is expected, because the low latitude ion-
osphere is characterized by the presence of plasma bub-
bles, which are large TEC depletions. The largest values
of <ROT> are found in POST at the equinox and aus-
tral summer. Besides POST, only CUSP and SAMA pres-

ent the same kind of seasonality at equinoxes, while
PATC and TAIL have a small enhancement in Decem-
ber (the austral summer). Figure 8d illustrates that the
larger values of the ROT standard deviation correspond
to the SAMA and POST regions. Two relative maxima
in March and September are present, together with an
increase in November and December. The ROT_SD
values are associated with the intrinsic variability of the
ROT: large values indicate that TEC gradients occur

SigmaPhi>0.25
25

A N

1 X

Occurrence (%)

Figure 9. Seasonal variation of the percentage occurrence above
the moderate/ strong threshold for o, sorted according to the
ionospheric hot spots at high latitudes.
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over a wide scale range. Combining the ROT mean and
standard deviation seasonality for POST and SAMA we
obtain those of both phase and amplitude scintillation.
Indeed, according to Table 3 of Alfonsi et al. [2011],
when both ROT and ROT_SD are large, irregularities
on all scales are active and produce phase and ampli-
tude scintillation: here it appears that the larger the
| <ROT>|, the larger the scintillation occurrence, re-
inforced by the ROT_SD behavior.

For high latitudes, in Table 3 of Alfonsi etal. [2011],
the S, cannot be predicted in two cases:

1. With high | <ROT>| and low ROT_SD, where
there is a predominance of kilometer-scale structures
that can cause only phase scintillation.

2. Withlow | <ROT> | and low ROT_SD, in which
no prediction can be made.

Case 2 is the case of PATC, and nothing can be in-
ferred from this variability, as it is the case in which the
information coming from ROT allows nothing to be in-
ferred about the related scintillation activity. The CUSP
case is Case 1, and indeed there is no meaningful am-
plitude scintillation, while the phase scintillation closely
follows the <ROT> seasonality. The case of TAIL is
characterized by low ROT_SD values and larger values
of <ROT> with respect to CUSP and PATC, but lower
with respect to SAMA and POST. This is an intermedi-
ate situation in which the table does not allow an un-
ambiguous interpretation.

5. Conclusions

By using the strength of the scientific collabora-
tion within the SCAR expert group known as GRAPE,
data from an extensive network of special GPS re-
ceivers for scintillation studies are analyzed here and
presented through a climatological representation.
The mapping covers a wide area of the southern hemi-
sphere, from Latin America to Antarctica, across the
South Atlantic Ocean.

The climatology of the GPS scintillation and TEC
data is derived through the GBSC, and for the first time,
the ionospheric scintillation hot-spot analysis is intro-
duced here. The hot spots are defined by means of the
GBSC representation of the phase scintillation patterns,
as the crucial areas of the ionosphere in which the prob-
ability of having scintillation is enhanced.

In particular, the similarities and differences in the
mechanisms leading to scintillation across the different
areas is highlighted through the correspondence be-
tween the TEC variability, expressed in term of the sta-
tistical parameters of ROT, and scintillation, in term of
percentage occurrence of S, and o above the moder-
ate/ strong scattering regime.

The GBSC maps in Mlats and MLT allow a picture
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to be drawn in which the stronger impact of scintilla-
tion, both in amplitude and phase, is found to be at
equatorial latitudes and driven by two phenomena: 1)
the Rayleigh—Taylor instability, which leads to plasma
bubbles in the local post-sunset; and 2) the irregulari-
ties induced by particle precipitation due to SAMA. The
two lead to similar occurrence of scintillation, but,
while the former occurs in a specific time interval, the
latter has almost no dependence on time. Mid latitudes
are characterized by very small phase and amplitude
scintillation activity, with very few regions character-
ized by enhanced probability of moderate to strong
scintillation. At high latitude, it has been found that
phase scintillation is enhanced along the boundaries of
the auroral oval, at the cusp, and in the polar cap, with
some asymmetries in the distribution due to the dy-
namics of the polar patches and to the average position
of the high latitude trough.

The corresponding maps of <ROT>and ROT_SD
allow the interpretation of scintillation occurrence in
terms of TEC variability, and consequently, ionospheric
irregularity scale sizes. The simultaneous presence of
different scale sizes helps in the explanation of the scin-
tillation patterns:

—The post-sunset at low latitudes is characterized
by low | <ROT> | and large ROT_SD, which indicates
the simultaneous presence of several scale sizes, either
below or above the Fresnel scale. This configuration leads
to both amplitude and phase scintillation, as shown in
the percentage occurrence maps.

—The same pattern of low latitude post-sunset (low

| <ROT>| and large ROT_SD) is found in a narrow lat-

itudinal band at around —23°N, which is characterized
by small dependence on time. This is explained in terms
of the same scale sizes active for scintillation, but here
concentrated in a well-defined Mlat range. This inde-
pendence might indicate a source of scintillation that is
independent of the daily variability. The most likely
source is the particle flux in the SAMA.

— The high latitude is characterized by phase scin-
tillation only, which follows the patterns of enhanced
ROT_SD quite closely. These patterns mainly high-
light three regions: the cusp, the post-midnight cap,
and the boundaries of the auroral oval (mainly around
magnetic midnight). The <ROT>/ROT_SD configu-
ration here indicates the possible presence of struc-
tures of all scales, but the lack of amplitude scintillation
suggests the absence of structures with scales below
the Frensel zone.

In this study, the ionospheric scintillation hot-spot
analysis is also introduced and used to derive the seasonal
variations of the scintillation parameters in specific areas
of the ionosphere in which the probability of signal
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degradation due to scintillation is large. The hot spots
are identified through the Mlat and MLT ranges, and are
termed as: POST, SAMA, CUSP, TAIL and PATC. This
analysis mainly shows the very different conditions of
the ROT parameters at high and low latitudes in driving
scintillation, and provides evidence of the seasonality in-
duced by equinoxes and the austral summer.

The GBSC is now a mature and robust technique
that provides significant indications of the spatial/ tem-
poral recurrences of plasma irregularities. The com-
plementary use of the GBSC and of the hot-spot
analysis is useful to extend our current knowledge of
the mechanisms that cause scintillations. An extension
of the network and the future inclusion of different
data sources in the GBSC would improve the coverage
of the maps in the 'transition regions' between the mid
to high latitudes and the mid to low latitudes, and (at
least partially) improve our understanding of the still-
open scientific questions that have emerged from the
study presented here.
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