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Neural analysis of seismic data:
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ABSTRACT

The computing techniques currently available for the seismic monitor-
ing allow advanced analysis. However, the correct event classification re-
mains a critical aspect for the reliability of  real time automatic analysis.
Among the existing methods, neural networks may be considered effi-
cient tools for detection and discrimination, and may be integrated into
intelligent systems for the automatic classification of  seismic events. In
this work we apply an unsupervised technique for analysis and classifi-
cation of  seismic signals recorded in the Mt. Vesuvius area in order to im-
prove the automatic event detection. The examined dataset contains
about 1500 records divided into four typologies of  events: earthquakes,
landslides, artificial explosions, and “other” (any other signals not in-
cluded in the previous classes). First, the Linear Predictive Coding (LPC)
and a waveform parametrization have been applied to achieve a signifi-
cant and compact data encoding. Then, the clustering is obtained using
a Self-Organizing Map (SOM) neural network which does not require an
a-priori classification of  the seismic signals, groups those with similar
structures, providing a simple framework for understanding the rela-
tionships between them. The resulting SOM map is separated into dif-
ferent areas, each one containing the events of  a defined type. This means
that the SOM discriminates well the four classes of  seismic signals.
Moreover, the system will classify a new input pattern depending on its
position on the SOM map. The proposed approach can be an efficient in-
strument for the real time automatic analysis of  seismic data, especially
in the case of  possible volcanic unrest.

1. Introduction
Mt. Vesuvius is one of  the highest risk volcanoes in

the world because of  its high population density. The
seismic activity is an important indicator of  the state of
the volcano. Thus, its variations may indicate changes
in the physical state of  the system and therefore can be
used as tool to improve the comprehension of  the dy-
namics of  the volcano and to forecast possible erup-
tions [Iannaccone et al. 2001, D’Auria et al. 2013]. 

Currently, the seismic monitoring of  the volcano is
realized by a dense network of  18 stations (Figure 1),

ranging from short-period, single-component, analog
stations to broadband three-components digital ones.
The data acquisition and transmission to the Osserva-
torio Vesuviano Monitoring Center is realized through
different systems such as UHF, Wi-Fi radio links, and
TCP/IP client-server applications [Giudicepietro et al.
2010, Orazi et al. 2013].

The signals usually recorded by the seismic network
are earthquakes, landslides and transient signals pro-
duced by artificial explosions in quarry and undersea.
Other types of  signals, such as regional and teleseismic
earthquakes, are also recorded, but in this work we take
into account only the local seismicity. A new class of  sig-
nals, defined as “other”, has been added in our analysis.
It includes all the events, such as thunders, that do not
fall in the previous classes but which is still important to
recognize, to improve the monitoring of  Mt. Vesuvius.

Generally, the detection and discrimination of  the
recorded events is performed by human experts through
procedures based on the visual analysis of  their spec-
tral and temporal features [Masiello et al. 2005, Esposi-
to et al. 2007]. To automate this process and reduce the
false detection of  events generated by natural and artifi-
cial sources, we propose an unsupervised approach based
on neural networks that should allow the discovery of
the intrinsic structure of  data and group similar events.

Neural networks are computational models inspired
to the human brain functioning and, like it, are able to
learn from examples adapting themselves to changes in
the external environment. They have been widely applied
in different fields from engineering sciences to medicine,
biology and economics. Good results have also been ob-
tained in volcanic seismology: for classifying different seis-
mic signals, such as rockfalls, hybrids, long-period events,
VT events, and regional events, recorded at Soufrière
Hills [Langer et al. 2006]; for estimating the activity state
of  the volcano Etna by identifying different character-
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istics in the continuous background signal [Langer et
al. 2009]; for monitoring long-term variations and
short-term transients at Mount Merapi volcano [Köhler
et al. 2010]. Neural networks have also been applied to
realize an automatic system for the discrimination and
detection of  the landslides recorded on Stromboli vol-
cano [Esposito et al. 2006, 2011].

In addition to neural networks, other approaches
are available in literature for the discrimination of  seis-
mic signals. For example, Hammer et al. [2012] suggest
a classification procedure based on Hidden Markov
Models (HMMs) for volcano rapid-response systems ap-
plied to a dataset recorded at Soufrière Hills volcano.

Neural networks are mainly classified on the basis
of  the learning process as supervised or unsupervised.
In the first case, a previously labeled dataset is neces-
sary to train the net, where to each input pattern is as-
sociated the correct expected answer. In Scarpetta et al.
[2005], a supervised discrimination system based on a
Multilayer Perceptron (MLP) [Bishop 1995] has been
proposed. However, an unsupervised procedure based
on a SOM net [Kohonen 1995] could be more effective
when no a-priori data classification is available but it is
required that the neural algorithm applies a similarity
measure to cluster the data [Masiello et al. 2005, Giu-
dicepietro et al. 2008]. In addition, as we shall see, the
unsupervised system is able to classify new input sig-
nals on the basis of  their position on the SOM map. 

In the following, we describe the Mt. Vesuvius data-
set and the applied preprocessing techniques. Then we
introduce the SOM technique and illustrate its results. 

2. The Mt. Vesuvius dataset
The examined dataset consists of  1499 files classi-

fied by the expert seismologists into four typologies of
events:
– 259 earthquakes,
– 545 landslides,
– 412 artificial explosions (quarry and sea),
– 283 events of  the class “other”.

The signal files have been extracted from the seis-
mological database of  the Osservatorio Vesuviano (Isti-
tuto Nazionale di Geofisica e Vulcanologia) [D’Auria et
al. 2008]. The temporal range covered by the events runs
from January 1, 2007, to December 31, 2011. We have
considered in particular the seismic data of  the BKE sta-
tion (vertical component) (Figure 1) which is located
very close to Mt. Vesuvius crater, thus recording even
the smallest and shallowest earthquakes [Giudicepietro
et al. 2010, D’Auria et al. 2013]. In our analysis, we have
not considered recordings showing evident anomalies
such as spikes, double events, clipped waveforms. 

In Figure 2 the 22s time windows showing the seis-
mograms (top panels) and the corresponding spectro-
grams (bottom panels) of  some events representative
of  the four classes are depicted. All the events of  the
earthquake class (Figure 2A) have a magnitude higher
than 0.9 and they are indicated as volcano-tectonic
(VT). For this class the signal shows an impulsive onset
and the typical frequency range content of  a local VT
earthquake, with a peak at about 15 Hz. The signals as-
sociated to small landslides and rockslides (Figure 2B),
occurring mostly within the Vesuvius crater, have usu-
ally a spectral content in the range of  5-20 Hz. 

The class of  artificial events includes both quarry
blast and undersea explosions in the Gulf  of  Naples. The
signal associated to a quarry blast (Figure 2C) is charac-
terized by a broad spectrum between 5 and 25 Hz. The
spectrum of  an undersea explosion (Figure 2D) presents,
instead, two distinct spectral components: the initial part
of  the signal, related to the seismic component, has a
spectral content in range of  10-20 Hz; while the second
one, associated to the hydroacoustic component of  the
wavefield, shows a spectral content mostly below 10 Hz. 

Finally, the class “other” contains all the other events
recorded by the monitoring network in the Mt. Vesuvius
area which do not belong to the previous classes. For this
class, the transient in Figure 2E is characterized mainly
by a spectral peak at about 15 Hz, superimposed to a
background signal with a spectrum mostly below 5 Hz.
The signal in Figure 2F shows a spectral content of  an
another type of  signal belonging to the same class. This
last was subsequently identified as a thunder signal and
is characterized by a spectrum mostly limited to the
range 12-18 Hz. 
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Figure 1. Map of  the monitoring seismic network of  Mt. Vesuvius.
The position of  the BKE station, whose data have been used in this
work, is shown by the red cross.
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To perform the unsupervised analysis we have
used records of  2200 samples (i.e. 22s with a sampling
rate of  100 Hz). The event onset has been detected
using a manual picking for all the signals of  the four
classes. Each seismogram contains a 1s-long pre-event
with respect to the onset.

3. Dataset preprocessing
To obtain a good clustering, methods of  extraction

of  the information most significant and representative of
the events have been applied to the dataset. In our case
the Linear Predictive Coding (LPC) technique [Makhoul
1975] and a discrete waveform parametrization were used

to extract the spectral features and to preserve the tem-
poral information respectively. Moreover, in this way a
reduction of  the size of  the patterns has been realized
providing a compact representation of  the seismic signals.

The LPC algorithm works by modeling each signal
sample sn as a linear combination of  its previous p val-
ues as described below:

where ck are the prediction coefficients and G is the
gain. The parameter p represents the model order and
it is problem-dependent. An optimization procedure
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Figure 2. The 22s time windows show the seismograms (top panels) and the corresponding spectrograms (bottom panels) of  the signals rep-
resentative of  the four classes of  events: an earthquake (A), a landslide (B), a quarry blast (C), an undersea explosion (D), a not classified event
(E) and a thunder signal (F), both belonging to the class “other”.
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evaluates the ck estimation minimizing the error be-
tween the true value of  the signal sample and its LPC
estimate. The prediction coefficients efficiently encode
the signal frequency features.

In our case, each record was processed dividing it
in 15 analysis windows of  2.56s duration and 1.28s over-
lapping, and extracting p = 10 LPC coefficients from
each of  them plus the gain, as a good compromise in
maximizing the representation compression and mini-
mizing the corresponding error.

The temporal characteristics of  the signals are pro-
vided through a discrete waveform parametrization cal-
culated as the properly normalized difference between
the maximum and the minimum signal amplitude in a
1s long analysis window and added to the data repre-
sentation. In Figure 3 the envelopes of  all signals for the
four classes are plotted: green for earthquakes, red for
landslides, blue for the artificial explosions and cyan for
the events of  the class “other”. Observing these images,
it is possible to note how the temporal information con-
tributes significantly in discriminating between the
earthquakes, the landslides and the artificial explosions,
while between the landslides and the events of  the class
“other” there is a less sharp separation.

At the end of  the preprocessing, each initial signal
file of  2200 samples is encoded by a vector of  187 fea-
tures (165 spectral coefficients and 22 time compo-

nents). As final step, the variance of  the resulting vec-
tors was normalized to one since this improves the SOM
clustering [Esposito et al. 2007].

4. The SOM technique
Among the available unsupervised methods of

cluster analysis [Everitt et al. 2001], the SOM technique
[Kohonen 1995, Kohonen et al. 1996] has been exploited
in many works [Masiello et al. 2005, Esposito et al. 2006,
Esposito et al. 2007, Esposito et al. 2008, Langer et al.
2009, Köhler et al. 2010]. It has many advantages: 1) it
does not have strong dependencies by its parameters;
2) it does not require assumptions about the similarity
measure to be taken into account to group the data be-
cause it is able to detect isolate patterns and structures
in the data; and 3) it allows an easy visualization and in-
terpretation of  the results. 

A SOM network is composed by a set of  neurons
or nodes organized on a grid, usually bi-dimensional.
A weight vector, called prototype vector or codebook
vector, with size equal to that of  the input vector, is as-
sociated to each neuron. The neurons are connected to
adjacent ones by a neighbourhood relationship that
characterizes the map topology or structure. This latter
provides information about the local lattice structure
(which can be rectangular or hexagonal), and the global
map shape (sheet, cylinder or toroid). The number of
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Figure 3. Envelopes in the time domain for all the signals of  each of  the four classes of  events: green for earthquakes, red for landslides, blue
for artificial explosions and cyan for events of  the class “other”.
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neurons, which also corresponds to the number of  pro-
totypes and that defines the size of  the grid, is usually
chosen as big as possible in order to preserve the smooth-
ness and generalization of  the mapping. However, at
the same time, it is necessary to consider that the train-
ing phase with a large number of  neurons becomes
computationally unmanageable for many applications.
In our case the SOM parameter values were chosen ac-
cording to Kohonen et al. [1996] and the SOM Tool-
box for Matlab (http://www.cis.hut.fi/somtoolbox/).
Thus, we used the default number of  neurons equal to
5 * sqrt(n) where n is the number of  training samples,
while the map grid sidelengths are determined by the
ratio between eigenvalues of  the training data. Before
the training the prototypes are initialized with small
random values (initialization step). Other kinds of  ini-
tializations are possible, as suggested in Kohonen et al.
[1996], but the random initialization was originally se-
lected to prove the self-organizing capability of  the
SOM also when starting from an unordered condition.

Therefore, the SOM algorithm [Kohonen 1997]
performs a non-linear mapping from an high-dimen-
sional input space into a bi-dimensional grid of  pro-
cessing units. Through a competitive learning, at each
iteration it identifies the winning node for each input,
i.e. the unit whose connection weights are the closest to
the input pattern in terms of  Euclidean distance. Then
it updates its weights and those of  the adjacent nodes
(for mathematical details refer to Kohonen [1995]). In
this way the resulting map preserves a local spatial or-
dering of  original data such that similar inputs fall in
topographically close nodes. 

Thus, the SOM can be applied as a clustering and
projection method since it provides a good representa-
tion of  the cluster structure, showing on the map both
the data density and the Euclidean distances among
prototypes, and permits a simple and immediate com-
prehension of  the results.

5. The SOM results
The SOM map obtained for the considered dataset

is illustrated in Figure 4. It has 16 × 12 = 192 units and
presents a local hexagonal structure and a global
toroidal shape, where the sides of  the map (upper and
lower and the lateral ones) are connected to each other
in order to avoid the problem of  the border effects [An-
dreu et al. 1996]. The toroidal shape is however shown
as sheet to better visualize the clusters and to facilitate
the interpretation of  the results. 

Each node of  the map, depicted as a yellow hexa-
gon, represents a cluster of  data and its size indicates
the number of  signals that fall into that node, i.e. the
density. The separation between the clusters is given

by the Euclidean distance represented on the map as
gray hexagons using a gray level scale [Kohonen 1995,
Kohonen et al. 1996]. In this way dark gray color cor-
responds to large distances between the prototypes,
meaning that they and the associated feature vectors
are very different.

As preliminary post-processing analysis, to achieve
a first validation of  the SOM results that highlights a
possible relationship between the examined classes of
signals and the obtained unsupervised clustering, we
have plotted on the initial map of  the Figure 4 the la-
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Figure 4. The toroid SOM map with 192 (16 × 12) nodes obtained
for the Vesuvius dataset: each yellow hexagon indicates a cluster of
data and its size represents the number of  signals which fall in it.
The gray hexagons specify the Euclidean distances between the pro-
totypes and so between the feature vectors according to the gray
level scale shown on the right. The toroidal shape, in which the
lower and upper edges and the left and right sides are joined, is dis-
played as sheet to facilitate the cluster visualization.

Figure 5. The toroid SOM map with the labeling of  the events re-
alized by the experts: green for the earthquake class, red for the
landslide class, blue for the artificial explosion class and cyan for the
class “other”. The hexagons with color overlap indicate the nodes in
which fall signals belonging to different classes.



beling of  the events made by the human experts, achiev-
ing the Figure 5. The different colors of  the hexagons
indicate the four different classes of  events: green for
earthquakes, red for landslides, blue for artificial ex-
plosions and cyan for signals of  the class “other”.
Color overlaps mean that different types of  signals be-
longing to different classes fall in the same node. How-
ever, despite the possible overlaps, we can assert that
each class of  events is mainly clustered in a specific re-
gion of  the map. This is more clear observing Figure
6 where the individual SOM maps with the labelling
of  the experts for each of  the four classes are plotted
separately on the initial SOM map displayed in Figure
4. Thus, earthquakes (green) are placed on the upper
and lower region of  the SOM; artificial explosions
(blue) are on the left and right edges; the landslides
(red) are instead localized mainly in the central area
of  the map; finally, the signals of  the class “other”
(cyan) are distributed in a complementary way with
respect to landslides.

About the performance of  the proposed method,
while for the supervised MLP network applied by
Scarpetta et al. [2005] a percentage of  correct classifi-
cation is defined to evaluate the quality of  the results,
generally for the SOM network this latter is not de-
fined and only a post-processing analysis can provide
information on the effectiveness of  the technique. For
example, the human expert knowledge can be used to
interpret the results and reveal which cluster corre-
sponds to a particular class [Köhler et al. 2010]. How-
ever, the advantage of  an unsupervised technique as
the SOM is to allow to deal with large datasets also
not previously labeled by the experts. Furthermore,
the network training is entirely data-driven, no target
vectors for the input patterns are required and finally
it enables to group the input data finding their intrin-
sic features.

Finally, we can affirm that in our case the cluster-
ing performed by the SOM separates well enough the
four classes of  signals defined by the experts.
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Figure 6. The individual SOM maps with the labeling of  the experts for each of  the four classes are displayed: green for the earthquake class,
red for the landslide class, blue for the artificial explosion class and cyan for the class “other”. It is possible to note the different positions on
the map of  the four types of  examined events.
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6. Conclusions
In the previous section the SOM network has been

applied on a dataset of  seismic events recorded in the
Mt. Vesuvius area and represented through a 187-fea-
ture vectors encoding both spectral and time informa-
tion. The aim was to realize an unsupervised clustering
of  these signals using a projection technique able to
identify and visualize at the same time on a bi-dimen-
sional plane the hidden structure of  the data. This can
be helpful to the experts for the automatic detection
and classification of  the events under examination. In
particular, being unsupervised, the neural system al-
lows to identify a position on the map for each new

input signal which corresponds to one of  the prede-
fined classes and therefore to provide a possible classi-
fication of  this event. 

For this purpose, Figure 7 shows the seismograms
of  some events and their positions in different regions
of  the map corresponding to the four classes of  signals.
The purple hexagon indicates each time the examined
signal: in A it refers to an earthquake and its position
falls in the green area of  the earthquakes class; in B it in-
dicates a landslide and it lies in the red region of  the
landslides class; in C it is a quarry explosion and its lo-
cation is in the blue zone of  the artificial explosions
class; finally, in D it represents an event of  the class
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Figure 7. Seismograms of  some signals of  the dataset and their position on the SOM map. The purple hexagon indicates each time the dif-
ferent examined event: an earthquake in A, a landslide in B, a quarry explosion in C, and finally an event of  the class “other” in D. Its posi-
tion lies each time in a different region of  the map which corresponds one of  the four classes: earthquakes (green), landslides (red), artificial
explosions (blue) and “other” (cyan).



“other” and it is located in the cyan area of  that class.
About the class of  the artificial explosions in quarry and
undersea, we can observe that there is not a clear dis-
tinction between these two types of  events on the map
(Figure 7, blue area), although their spectrogram and
waveform appear quite different (see Figure 2C,D).
Even if  the discrimination between these two subsets
of  the same class is outside from the aims of  this work,
we can assume that this probably happens because
there is not a sufficiently representative number of  sam-
ple patterns for them.

Although our work takes into account only events
related to the local seismicity of  Mt. Vesuvius, new
types of  events and then new classes of  signals may be
added dynamically to the SOM for a real-time analysis.
Thus, the advantage of  the unsupervised neural system
is that it can give an answer also for unknown event
types indicating the specific class where they fall on the
basis of  their position on the map and so allowing their
classification. This system has shown also a high poten-
tial for real-time applications devoted to the discrimina-
tion of  automatically detected signals. Moreover, it
could also provide a valuable tool for the automatic clas-
sification of  seismo-volcanic signals (long-period events,
volcanic tremor, etc.) which usually are characterized
by a variety of  waveforms.
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