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Rake rotation introduces ambiguity in the formulation
of slip-dependent constitutive models: slip modulus or slip path?

Andrea Bizzarri
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ABSTRACT

The linear slip–weakening (SW) law, predicting that the traction de-
creases for increasing fault slip, is one of  the most widely adopted gov-
erning models to describe the traction evolution and the stress release
processes occurring during coseismic slip failures. We will show that, con-
trary to other constitutive models, the SW law inherently poses the prob-
lem of  considering the Euclidean norm of  the slip vector or its cumulative
value along its path. In other words, it has the intrinsic problem of  its
analytical formulation, which does not have a solution a priori. By con-
sidering a fully dynamic, spontaneous, 3–D rupture problem, with rake
rotation allowed, in this paper we explore whether these two formula-
tions can lead to different results. We prove that, for homogeneous con-
figurations, the two formulations give the same results, with a normalized
difference less than 1%, which is comparable to the numerical error due
to grid dispersion. In particular, we show that the total slip, the resulting
seismic moment, the fracture energy density, the slip–weakening curve
and the energy flux at the rupture front are practically identical in the
two formulations. These findings contribute to reconcile the results pre-
sented in previous papers, where the two formulations have been differ-
ently employed. However, this coincidence is not the rule. Indeed, by
considering models with a highly heterogeneous initial shear stress dis-
tribution, where the rake variation is significant, we have also demon-
strated that the overall rupture history is quite different by assuming the
two formulations, as well as the fault striations, the traction evolution
and the scalar seismic moment. In this case the choice of  the analytical for-
mulation of  the governing law does really matter.

1. Introduction
It is well known that numerical experiments rep-

resent, in addition to theory and to laboratory experi-
ments, a suitable way to explore natural phenomena.
In seismology, due to the obvious impossibility to plan
direct experiments at the real world scale and due to
the intrinsic, technical limitations of  the laboratory ma-
chines, the numerical computations are extremely pow-
erful and useful tools to explore, reproduce and model,
in realistic conditions, the energy–dissipating processes

occurring during faulting [e.g., Bizzarri 2009]. 
In pioneering, self–similar, elliptical expanding

crack models [e.g., Burridge and Willis 1969] the slip is
assumed to be everywhere and always parallel to the
direction of  the initial shear stress (the pre–stress). On
the other hand, Madariaga [1976] shows that for a finite
circular crack the rupture process introduces a compo-
nent perpendicular to the direction of  the shear pre–
stress, which in general is quite small, but non zero. 

One of  the outcomes of  realistic numerical exper-
iments is that the direction of  the fault slip (namely, the
azimuth of  the fault slip vector) can vary during the dy-
namic propagation of  an earthquake rupture, even in ho-
mogeneous conditions. This phenomenon, also named
rake rotation, appears both in the time domain (in a
given fault node the slip direction changes as long as the
rupture dynamically propagates) and in the spatial do-
main (at a given time the slip direction is not the same
over the slipping portions of  the fault). This is a well–
known result after the 2–D mixed–mode models by An-
drews [1994] and the 3–D fault models by Bizzarri and
Cocco ([2005]; readers can refer to Section 2 of  Bizzarri
[2011] for a compendious summary of  the naming con-
ventions). As pointed out also by Guatteri and Spudich
[1998], the amount of  the rake rotation is inversely pro-
portional to the overall shear stress acting on the fault
surface, making it possible to discriminate between the
so–called high–stress and low–stress faults. Indeed, Biz-
zarri and Cocco [2005] show that, even if  the strength
parameter S is the same (namely, if  the ratio between
the strength excess and the dynamic stress drop is kept
constant), the rake rotation is smaller if  the absolute val-
ues of  the stress levels increase (see their Figure 13).

We emphasize here that the rake rotation is, by
definition, explicitly neglected in fault models where
the slip is not allowed in the direction perpendicular to
the direction of  the initial shear stress (far of  being ex-
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haustive, see for instance Aochi et al. [2000a, 2000b],
Fukuyama and Madariaga [2000], Madariaga et al. [1998],
Nielsen and Olsen [2000]). The same occurs in fault mod-
els where the governing law is written in a vectorial form
(i.e., it is written independently for each component of
the physical observables), but only one component is non
null [e.g., Olsen et al. 1997, Fukuyama and Madariaga
1998, Fukuyama et al. 2003].

Rake rotation is often connected to the phenome-
non of  fault striations [e.g., Etchecopar et al. 1981, Cash-
man and Ellis 1994, Otsuki et al. 1997, Haeussler et al.
2004] and it has been documented from the analysis of
geodetic and ground motions data [Ide et al. 1996, Wald
1996, Yoshida et al. 1996]. Moreover, it can be regarded
as a possible way to estimate the level of  shear stress
prior to a slip instability event [Spudich 1992]. 

When rake rotation occurs it is clear that there is
a difference between the slip modulus and the slip path.
At a given time, the first quantity simply represents the
actual magnitude of  the slip vector, while the second
one represents the fault slip cumulated during its evo-

lution up to the considered time. This situation is
clearly described in Figure 1 (see also Figure 2 of  Spu-
dich et al. [1998]) and can be written in analytical form
as it follows:

(1)
and

(2)

respectively (in Equation (2) v is the time derivative of
u). Equations (1) and (2) are written for a 3–D problem,
in which the solutions of  the elastodynamic equation
depend explicitly on two spatial coordinates (in the spe-
cial case of  a vertical, planar fault normal to the x2, as
such considered here, the axis x1 is along the strike and
the x3 axis is down the depth) and on the time t. 

Among the large class of  governing models pro-
posed in the literature to describe the chemical and
physical processes potentially taking place during fault-
ing (see Bizzarri [2011] for a review), only the slip–de-
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Figure 1. Schematic representation of  the difference between slip modulus and slip path stated by Equations (1) and (2). Thin vectors rep-
resent the fault slip vector u at 3 subsequent, hypothetical time levels (denoted by superscripts). Thick vectors indicate the vectors vDt. Fol-
lowing the standard explicit Euler scheme, the 1–component of  the fault slip is updated as u1

(m) = u1
(m−1) + y1

(m−1) Dt, as reported in the sketch.
(For the 3–component the situation is the same.) We have that u(mod)(m)

= ||u(m)||, while u(path)(m)
= ||u(1)|| ||v(n)||Dt. In the example displayed,

at time level 3, u(mod) is identified by the magnitude by the thin blue vector u(3), while u(path) is identified by the length of  the thick green line. In
the sketch it is also emphasized that, in general, u and v are not collinear; this is apparent from the difference of  the two azimuths {u and {v.
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pendent constitutive models suffer from the ambiguity
stated by Equations (1) and (2). In other words, the am-
biguity exists because the magnitude of  the shear stress,
T, can be function of  u(mod) or of  u(path). On the con-
trary, when T does not depend on the slip, but on the
slip rate (the fault slip velocity, v) the ambiguity auto-
matically disappears. 

Within the class of  the slip–dependent laws, the
linear slip–weakening law (SW thereinafter; see Equa-
tion (25) in Bizzarri [2011]) is probably one of  the most
popular (and widely employed) constitutive equation
applied in dynamic model of  faults, starting from the
pioneering works by Ida [1972] and Andrews [1976a,
1976b] where the concept of  slip–weakening mechanism
has been introduced and from the laboratory experi-
ments by Ohnaka and co–workers (see Ohnaka [2003]
for a comprehensive review). The wide use of  the SW

governing model is because of  its inherent simplicity
from a modeling point of  view (all the stress levels are
a priori defined) and from a computational point of
view (its numerical implementation is straightforward).
The body of  the literature here is immense, but the
most interesting point is that some authors adopt the
slip modulus (and hence the cumulated fault slip u is
given by Equation (1)), while others use the slip path
(Equation (2)). Just for example, Olsen et al. [1997], Biz-
zarri and Cocco [2005, 2006a, 2006b], Bizzarri and Be-
lardinelli [2008] and Bizzarri and Das [2012], fall in the
first category, while Day [1982], Day et al. [2005],
Dalguer and Day [2006], Bizzarri et al. [2010] and Zhang
et al. [2014] fall in the second category. 

The goal of  the present study is to explore whether
the two formulations (which are different from a math-
ematical, conceptual and geometrical point of  view) lead

SLIP MODULUS OR SLIP PATH?

Parameter

Value

Model A
SW

Model B
SW

Model C
SW + thermal pressurization

Lamé’s constants, m = G 35.9 GPa 35.9 GPa 35.9 GPa

S wave velocity, vS 3.464 km/s 3.464 km/s 3.464 km/s

P wave velocity, vP 6 km/s 6 km/s 6 km/s

Fault length, Lf 28 km 28 km 42 km

Fault width, Wf 11.6 km 11.6 km 11.6 km

Spatial grid size, Dx 25 m 25 m 25 m

Time step, Dt 2.5 × 10−3 s 2.5 × 10−3 s 2.5 × 10−3 s

Coordinates of  the
hypocenter, H ≡ (x1

H, x3
H)

(14,7) km (14,7) km (18,7) km

Magnitude of  the
effective normal stress, vn

eff 120 MPa 30 MPa 30 MPa

Magnitude of  the initial
shear stress (pre–stress), x0

73.8 MPa * 20 MPa *
Heterogeneous distribution;

see Figure 8

Static friction coefficient, nu 0.677 (↔ xu = 81.24 MPa) 0.8 (↔ xu = 24 MPa) 0.76683 (↔ xu = 23 MPa)

Dynamic friction coefficient, nf 0.46 (↔ xf = 55.20 MPa) 0.33333 (↔ xf = 10 MPa) 0.46666 (↔ xf = 14 MPa)

Resulting strength parameter, S 0.4 0.4 Heterogeneous distribution

Dynamic stress drop,
Dxd = x0 − xf

18.6 MPa 10 MPa Heterogeneous distribution

Characteristic slip–weakening
distance, d0

0.8 m 0.6 m 0.4 m

Table 1. Parameters adopted in the present study. * For models A and B only the x1–component of  the initial shear traction vector T is non zero.



to different results in terms of  rupture history, stress re-
lease, final (total) slip, seismic moment, etc. To properly
handle this question we will consider both homoge-
neous and heterogeneous configurations (see Sections
3 and 4, respectively). 

2. Statement of the problem and methodology
In the present paper we consider planar, vertical,

strike slip faults of  finite width. The ruptures start from
the imposed hypocenter ((x1

H, x3
H)) and then spread

spontaneously and obey the linear SW law. In models
with homogeneous initial shear stress during their early
stages the ruptures are forced to expand at a constant
speed in order to obtain the earthquake nucleation, as
described in Bizzarri [2010]. In the model discussed in
Section 4.2 the initial shear stress distribution contains
an asperity located in the imposed hypocenter which
guarantees the rupture propagation, as the shear stress
exceeds the maximum yield stress. All the parameters are
tabulated in Table 1. The borders of  the computational
domain have been selected in order to not interfere with
the supershear transition, which occurs in the homoge-
neous cases. We have deliberately chosen supershear rup-
tures (Models A and B) because in the supershear regime
the rake rotation is greater than for subshear ruptures
[Bizzarri and Cocco 2005; see also Bizzarri and Das 2012]
and therefore we maximize the possible differences be-
tween the two formulations (1) and (2).

As stated above, we consider a 3–D problem, which
is spontaneous after the nucleation and it is fully dy-
namic (the inertial term is always considered); the elas-
todynamic problem, neglecting body forces, is solved
numerically, by adopting the second order–accurate,
conventional grid, finite difference approach described
in Bizzarri and Cocco [2005]. 

3. Results for homogeneous faults 

3.1. Reference case 
In the present section we will consider the most

idealized configuration, in which the whole fault sur-
face is characterized by the parameters listed in Table 1,
Model A. More elaborated models, including spatial
heterogeneities of  the frictional parameters and initial
shear stress, will be discussed in Section 4. The slip at
t = 4.2 s resulting from the spontaneous rupture prop-
agation in the case of  formulation (1) is reported in Fig-
ure 2a. The result from the formulation (2) is visually
identical; in Figure 2b we report the normalized differ-
ence (misfit) between the developed slip from a numer-
ical experiments adopting Equation (1) with respect to
that from Equation (2). We can conclude that the vari-
ations are negligible, except near the bottom of  the

fault. The misfit between the developed fault slip re-
ported in Figure 2b is the same over the whole duration
of  the rupture and not peculiar to the selected time.
Small differences (of  the order of  a few percent) only
emerge near the bottom of  the fault; in this region the
end of  the traction–at–slip–node area is located and
therefore here the arrest mechanisms occur. The latter
cause the abrupt cessation of  fault slip (from a non null
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Figure 2. (a) Distribution of  the fault slip at time t = 4.2 s for a fault
with homogeneous properties (the parameters are listed in Table 1)
and in the case of  the formulation (1). (b) Corresponding normalized
difference between formulation (1) and formulation (2). In each fault
node (x1,x3) we plot the misfit (*). The locations of  the hypocenter
(H) and of  the fault received (R) are also indicated. Note that due to
the symmetry of  the problem only one half  of  the fault is reported.
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value down to zero) and this cause in turn rake rotation.
Incidentally, we note that the numerical method does not
influence these differences, since independingly on the
adopted numerical scheme and type of  fault implemen-
tation, at the end of  the computational domain an un-
breakable zone is usually imposed and therefore arrest
process will take place. Indeed, the scalar seismic mo-
ment and the corresponding magnitude of  the event are
practically the same for the two cases; in the case of  for-
mulation (1) we have: M0 = 5.014 × 1019 Nm (or equiva-
lently Mw = 7.067) and in the case of  formulation (2) we
have: M0 = 5.015 × 1019 Nm (the corresponding mo-
ment–magnitude is the same as in the previous case).

In Figure 3 we report the fault striation (i.e., the
time evolution of  u3 vs. u1) in a target fault receiver. We
select a fault node near the supershear rupture front,
where we know that the rake rotation (and the possible
differences between formulations (1) and (2)) is maxi-
mum [Bizzarri and Cocco 2005, Bizzarri and Das 2012].
Nevertheless, we can clearly see that the differences of
u between the two formulations are negligible (see
inset of  Figure 3a), in that the interval from 0 to d0 (re-
call that after d0 the magnitude of  the shear traction is
exactly at the residual level xf which is independent on
the fault slip and thus the distinction between formula-
tions (1) and (2) naturally disappears) the variations of
u3 are so small that, at each time, Equations (1) and (2)
give the same results. Note that u3 remains one order of
magnitude below u1; see inset in Figure 3a. Corre-
spondingly, the slip–weakening curves (Figure 3b) are
practically indistinguishable, so that the so–called local
fracture energy density EG is the same for the two nu-
merical simulations (EG = 10.45 MJ/m2). 

An useful indication of  the energy balance of  the

SLIP MODULUS OR SLIP PATH?

Figure 4. (a) Time evolution of  the energy flux F for the two models (F is computed from Equation (8) of  Bizzarri [2013]). As for Figure 3
the thick black lines refer to the formulation (1), while the thin gray lines refer to the formulation (2). (b) Normalized difference between F
from the two models; namely, in the ordinate axis we plot, for each time t, the misfit (*). In both the panels the vertical dashed gray line in-
dicates the first time when the supershear transition occurs.
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Figure 3. (a) Fault striation (i.e., time evolution of  u3 versus u1) in
the fault node (4.3, 3.125) km. In the inset panel we report a zoom
of  values up to the characteristic SW distance d0 (once the slip ex-
ceeds the formulations (1) and (2) are identical, since the magnitude
of  the shear traction x does not depend on the slip anymore). (b)
Traction versus slip curve, in the same fault node as in panel (a),
with inset panel reporting a zoom up to u1 = d0. Values of  the frac-
ture energy density EG are also indicated for the two numerical sim-
ulations (EG is computed from Equation (18) of  Bizzarri [2011]). In
all panels, thick black lines refer to the formulation (1), slip modu-
lus, while thin gray lines refer to the formulation (2), slip path. 
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two models arises from the computation of  the energy
flux F at the rupture tip (see Equation (8) of  Bizzarri
[2013] and references cited therein). This quantity is able
to concurrently capture the speed at which the rupture
front advances and the stress release occurring in the
process zone. Contrary to the EG which is a local estimate
(because it is computed at a given fault node), F takes into
account all the slipping fault nodes at a given time. The
time evolution of  the energy flux is reported in Figure 4a
and the misfits is plotted in Figure 4b. It is apparent that
as long as the rupture remain subshear (t < 1.57 s) the
solutions are identical. After the supershear transition
the differences only emerge in a late stage of  the rupture
(nearly from t = 2.1 s; see Figure 4b). The maximum nor-
malized variation of  F is less than 1%, which is compara-
ble to the numerical error due to grid dispersion.

3.2. Low initial stress case
In the model A presented in Section 3.1, the initial

shear stress is relatively high, compared to the dynamic
stress drop (we have: x0/Dxb ≈ 4). We then consider an-
other homogeneous model (Model B; see Table 1), in
which the frictional parameters have been chosen in
order to reduce that ratio; in this case we have: x0/Dxb=
2 (in model B x0 = 20 MPa, instead of  73.8 MPa, as in
Model A). As discussed above (Introduction), we know
that a high initial shear stress can reduce the rake rota-
tion during the propagation of  the rupture (and thus
can mask possible differences between formulations (1)
and (2)). The results of  this numerical experiment are
reported in Figure 5. Also in this case the variations be-
tween the two models are small, as small is the varia-
tion of  u3 with respect to its initial value of  0. The fault
striations are very similar in the two formulations (1)
and (2) (see Figure 5a), as well as the traction evolution
(see Figure 5b). The fracture energy density is slightly
different in this Model B (EG = 4.208 MJ/m2 in case of
(1) and EG = 4.203 MJ/m2 in case of  (2)). This makes
sense, in that in the case of  slip path the traction reaches
earlier the residual level xf , as also illustrated in the
inset of  Figure 5b, so that the area under the slip–weak-
ening curve is smaller in this case. As in the previous
Model A, also in this case the total seismic moment in
the case of  slip path is slightly larger than that per-
taining to the slip modulus (M0 = 1.859 × 1019 Nm and
M0 = 1.858 × 1019 Nm, respectively; this corresponds
to a difference ~5%). 

4. Results for a heterogeneous rheology
The selected configurations discussed in Sections

3.1 and 3.2 clearly indicate that in the canonical, ho-
mogeneous configurations, even under supershear con-
ditions, even with a relatively large value of  characteristic

SW distance, the two formulations (1) and (2) produce
practically the same results. This is basically due to the
fact that the rake rotation is not so pronounced to in-
duce variations in the computation of  the frictional re-
sistance specified by the linear SW law. 

The obvious problem is then: what happens if  the
rake rotation is indeed significant? In order to answer
to this problem in the present section we explore more
interesting configurations, including heterogeneities in
the characteristic SW distance (Section 4.1) and in the
initial shear stress (Section 4.2). High frequency (namely,
greater than 1 Hz) patterns emerging in the radiated
waves can be caused by frictional inhomogeneities (as-
perities and barriers), geometrical irregularities (such
as bending and branching) or both. The characterization
of  the heterogeneities in dynamic model has received
much attention of  many authors [e.g., Lavallée et al.
2006, Bizzarri et al. 2010, Andrews and Barall 2011,
Song and Dalguer 2013]. Here we will consider hetero-
geneous distributions of  frictional parameters (Section
4.2) and of  the initial spatial distribution of  the shear
stress (Section 4.2).

4.1. Heterogeneities of  d0
In this section we consider a heterogeneous distribu-

tion of  the characteristic SW distance d0 , in the same way
as Tinti et al. [2005]; in particular, for | x1 − x1

H | ≥ 5 km
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Figure 5. The same as Figure 3, but now in the case of  Model B.
The fault receiver is the same as in Figure 3. 
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we set d0 = 1 m. All the other parameters are the same
as those of  Model B, except for a region of  1 km below
the free surface, having a high strength (unbreakable
barrier); in such a way we prevent the local supershear
acceleration, which has been observed in numerical
models when the rupture front interacts with the free
surface [Olsen et al. 1997, Chen and Zhang 2006, Zhang
and Chen 2006, Day et al. 2008, Bizzarri 2010, Kaneko
and Lapusta 2010, Bizzarri and Das 2012, Zhang et al.
2014]. Once the rupture penetrates the region with a
high d0 it decelerates and the propagation of  the rup-
ture is disturbed (see Figure 6a), so that the slip distri-
butions are different compared to the homogeneous
configuration of  Model B. The misfit between formu-
lations (1) and (2) (reported in Figure 6b) indicates that
in the present case the differences are a little bit more
significant with respect to the homogeneous configu-
ration, especially in the correspondence of  the primary
(subshear) and secondary (supershear) rupture fronts.
By comparing Figure 2b (homogeneous case) against
Figure 6b we have that the misfit of  the total fault slip
predicted by the two formulations is <0.5% in the ho-
mogeneous case and ~2% in the present heterogeneous
one. The resulting seismic moment and magnitude are:
M0 = 1.629 × 1019 Nm (or equivalently Mw = 6.741) for
Equation (1) and M0 = 1.631 × 1019 Nm (or equivalently
Mw = 6.742) for Equation (2).

The time histories of  the solutions in a selected
fault node (Figure 7) basically confirm the previous
findings obtained for the homogeneous configurations
(Models A and B); although d0 in the selected receiver

is now larger, the difference between the two formula-
tions (1) and (2) is only in the slip–weakening curve (see
the inset in Figure 7b). As a net results the fracture en-
ergy density is slightly different: EG = 7.007 MJ/m2 in

SLIP MODULUS OR SLIP PATH?

Figure 6. The same as in Figure 2, but now for a model having d0 = 1 m at distances from the hypocenter lager than 5 km. The other pa-
rameters are the same as in Model B, with the exception of  an unbreakable barrier extending 1 km below the free surface. In panel (b) the
scale is clipped at 2% just to emphasize the (positive) differences near the supershear front.

Figure 7. The same as in Figure 3, but now for the heterogeneous
models of  Figure 6. 
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(b)



the case of  formulation (1) and EG = 7.000 MJ/m2 in
the case of  formulation (2). This difference is compa-
rable with that of  previous Model B. 

4.2. Heterogeneous distribution of  the initial shear stress
In all the numerical experiments discussed so far the

pre–stress was uniform and aligned along the strike di-
rection (x1). We build now a model in which the initial
shear stress is highly heterogeneous and both its two
components are non null; the spatial distributions are re-
ported in Figures 8a and 8b. In this case the fault is larger
than in the previous case and the rupture propagation is
no longer symmetric with respect to the hypocenter.

The resulting distribution of  the fault slip at t = 3.8 s
is reported in Figures 9a and 9b for the formulations (1)
and (2) respectively. The obvious difference between the
two maps is quantified in Figure 9c, which reports the
misfit . In general, we can see that, at
a given time, the slip obtained with the formulation (2)
(Figure 9b) is greater than that pertaining to the formula-
tion (1) (Figure 9a). This is confirmed by the different val-
ues of  the scalar seismic moment: (M0 = 6.634 × 1019 Nm
and M0 = 5.518 × 1019 Nm, respectively) or moment–
magnitude (Mw = 7.15 and Mw = 7.09, respectively). Note
the difference between these values, compared to the
small differences found in Sections 3.1, 3.2 and 4.1. 

A first outcome of  Figure 9c is that, contrarily to
the previous cases (Sections 3.1, 3.2 and 4.1) in which

the | m | is of  the order of  few percents, the variations
can now exceed 75%. Moreover, we can note that the
differences between the two models depend on the spe-
cific location of  the fault. This is not surprising, giving
the fact that the rake rotation is different on the whole
fault plane, owing to the heterogeneous distribution of
the initial shear stress. Finally, we observe that the dif-
ferences tend to enhance as long as the rupture propa-
gates. Indeed, near the external boundaries of  the cracked
region reported of  Figure 9c m can even reach the max-
imum value 100%, indicating that, in a given fault node,
u(path) is non zero, whereas u(mod) = 0. In the sliding logic
of  the linear SW law, this means that in the formula-
tion (2) this specific fault node is slipping (and releasing
stress), while in the formulation (1) that node is still at
rest (i.e., not slipping). This translates into a time shift
of  the rupture fronts (or analogously into a shift of  the
rupture onsets), which increases through time, because
of  the effects of  the dynamic stress redistribution on
the fault plane. Overall, we can conclude that the whole
rupture history is different in the two cases.

Figure 10a reports the fault striations in the receiver
R indicated in Figure 9c. Contrarily to previous cases (Sec-
tions 3.1, 3.2 and 4.1), now the two components of  the
fault slip have roughly the same magnitude (this is an ob-
vious consequence of  the fact that both the components
of  the initial shear stress are non zero; see Figure 8). Re-
markably, the two curves are now significantly different

m u u
u u100 ( ) ( )

( ) ( )

mod

mod

path

path
=

+
-
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Figure 8. Spatial distribution of  the initial shear stress adopted in Model C. (a) Along strike component. (b) Along depth component.
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one from the other also below d0 (see inset in Figure 10a).
Moreover, they are not straight lines, suggesting that rel-
evant rake rotation occurs in this fault node. The rake vari-
ation, reported in Figure 10b for both the formulation, is
expressed as D{= {− {0, where {0 is the initial value of
rake and the actual value { is computed as it follows:

(3)
(In such a way we capture also the rake rotation be-

fore the onset of  the rupture, which corresponds to the

first (negative) peak in each curve.) The shift between
the two curves reflects the shift of  the rupture onset we
observe at t = 3.8 s (see Figure 9c). Remarkably, the most
significant rake rotation (occurring in the correspon-
dence of  the traction degradation from xu to xf  , Biz-
zarri and Cocco [2005]) can reach a maximum absolute
value of  the order of  20°. A relevant rake rotation is the
cause of  a different temporal evolution of  the frictional
resistance in the two cases. This in turn translates into a
globally different behavior of  the dynamic rupture, lead-
ing to the different total slips and seismic moments.
From this simple example we can therefore conclude
that the formulations (1) and (2) can lead to different re-
sults in case of  highly heterogeneous simulations. 

SLIP MODULUS OR SLIP PATH?

Figure 9. Slip distribution of  the fault slip at t = 3.8 s arising from the adoption of  the formulation (1) (panel (a)) and formulation (2) (panel
(b)) for Model C (see Table 1). (c) Misfit (*).
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5. Conclusions
Contrary to rate– and state–dependent friction

laws [e.g., Ruina 1983], the slip–dependent laws inher-
ently pose a formal, geometrical problem in the defini-
tion of  the independent physical observable on which
the magnitude of  the shear traction depends, the fault
slip u. Indeed, we can define the amount of  u at a given
time t and in a given node of  the fault surface (x1, x3) in
terms of  its Euclidean norm (Equation (1)) or in terms
of  slip cumulated along its path (Equation (2)).

The linear slip–weakening (SW) law is one of  the
most employed constitutive models in the modeling of
the source physics processes (a more elaborated dis-
cussion can be found in Bizzarri, [2011]). Various authors
used the different formulations (1) or (2); Olsen et al.
[1997], Bizzarri and Cocco [2005], Bizzarri and Belar-
dinelli [2008] and Bizzarri and Das [2012] employed
Equation (1), while Day [1982], Day et al. [2005], Dalguer
and Day [2006], Bizzarri et al. [2010] and Zhang et al.
[2014] employed Equation (2).

Since a priori we do not know - and we can not pre-
dict - whether these two formulations can lead to differ-
ent results in temm of  the resulting dynamic response

of  the fault system, in the present study we have quan-
tified the differences. First of  all, we remark that the
ambiguity between slip modulus, u(mod), and slip path,
u(path), only exists in 3–D or in 2–D mixed–mode prob-
lems (see Section 2.1 in Bizzarri [2011] for details),
where we can have two non null components of  slip,
slip velocity and shear traction. In the case of  2–D prob-
lems (pure in plane or pure anti plane problems), orig-
inally used in the first applications of  dynamic ruptures
obeying the linear SW friction law [e.g., Andrews
1976a, 1976b], u(mod) and u(path) are identical, if  motion
reversal (or back slip) is not allowed. Moreover, by defi-
nition of  the linear SW law, the possible differences ap-
pear only during the breakdown phase of  the rupture,
i.e., when the fault traction evolves from the maximum
level xu down to the residual level xf  . Indeed, once the
traction is at xf it does not depend on u anymore, so
that the distinction between formulations (1) and (2)
naturally disappears. It is obvious that the potential dif-
ferences are affected by the value of  the characteristic
SW distance d0; for small values of  d0 we expect that
Equations (1) and (2) will provide practically the same
results. This is important, since we know that additional
mechanisms, such as chemical reactions (or thermo-
chemical pressurization) can significantly reduce the
characteristic SW distance in case of  non linear slip–de-
pendent friction [Chen et al. 2013].

When no rake rotation occurs, formulations (1)
and (2) coincide by definition. We already know that
homogeneous, subshear ruptures tend to have very
small, or negligible, rake rotation. On the other hand,
in homogeneous conditions, supershear earthquakes
exhibit variations in the rake only near the supershear
front [Bizzarri and Cocco 2005, Bizzarri and Das 2012].
The numerical results presented here show that, in ho-
mogeneous conditions and with a relatively large d0 the
misfit between the two solutions is less than 0.5% (see
Figure 2b), the resulting total slip is the same, and so is
the scalar seismic moment. Moreover, the fault stria-
tions are the same (see Figure 3a), as well as the frac-
ture energy density (see Figure 3b) and the energy flux
at the rupture front (see Figure 4). These results are also
confirmed for configurations having a small initial
stress value compared to the dynamic stress drop
(Model B; see Figure 5). The general conclusion here is
that, for homogeneous configurations, formulations (1)
and (2) predict practically the same behavior of  the dy-
namic rupture and thus we expect to have practically
identical resulting ground motions.

These results are confirmed also in heterogeneous
conditions, in which a high value of  d0 (1 m) is assumed
in a portion of  the fault. Compared to the homoge-
neous simulations more differences emerge near the
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Figure 10. (a) The same as Figure 3a, but now in the case of  Model
C, having heterogeneous initial shear stress (see Table 1). The selected
fault receiver is located at (26.25,7) km. (b) Time evolution of  the rake
variation (with respect to the initial value) for the two formulations.

(a)

(b)
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rupture fronts (compare Figures 2b and 6b). In this case
the differences are of  the order of  few percents, which
is comparable to the grid dispersion error.

It is important to remark that the coincidence be-
tween the results pertaining to the two formulations (1)
and (2), however, is not the rule. As a counterexample,
in a case with a highly heterogeneous initial shear stress
(Model C; see Figures 9 and 10) the rake rotation (see
Figure 10b) is relevant enough to cause significant dif-
ferences. The whole rupture history of  the fault is quite
different, indicating a more unstable behavior in the
case of  formulation (2). In other words, the slip modu-
lus case tends to underestimate the stress release, the
cumulated fault slip and thus the scalar seismic mo-
ment. Moreover, given the differences of  the on–fault
processes, we can expect to have some variations also in
the synthetic seismograms on the free surface, espe-
cially at closer distances from the fault trace. 

As an overall conclusion, we have demonstrated
here that, in homogeneous cases, the ambiguity be-
tween slip modulus and slip path in the framework of
the SW law is only formal and that the two different
formulations provide the same results (with a tolerance
of  the errors of  the numerical code). This contributes
to reconcile previous papers, where the two formula-
tions have been differently employed, depending on the
preferences of  the authors. From another point of  view,
this can be regarded as a future perspective that in ho-
mogeneous cases the analytical formulation of  the lin-
ear SW law does not really matter. 

On the other hand, in highly heterogeneous simu-
lations, the normalized difference can even reach 100%
(see Figure 9c), indicating that the choice of  the ana-
lytical formulation of  the SW plays some role and it af-
fects the whole rupture history. It is difficult, in this
case, try to highlight a general guidance. First, it should
be noticed that kinematic inversions can provide, at
maximum, with the time evolution of  the shear trac-
tion change in some target fault points, but they are un-
able to clarify whether the slip path or slip modulus
formulation is preferred. However and at a more fun-
damental level, if  we consider the physical processes at
the micro–asperities level and if  we interpret their evo-
lution only in terms of  the cumulated fault slip (i.e., in
terms of  a macroscopic, averaged, slip–dependent law),
then the ambiguity between u(mod) and u(path) would vir-
tually disappear, in that the slip path would be more
preferable than the slip modulus from a theoretical
point of  view and in agreement with the rate– and
state–dependent friction governing models. 

Acknowledgements. Two anonymous referees provided use-
ful comments and suggestions to improve the manuscript.
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