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ABSTRACT

This paper describes a method to obtain local magnetic index, K, from
the global index, Kp. Until now, however, for the cases of  areas without
magnetic observatories, to estimate the geomagnetic activity there, global
indices were the only option. The methodology that we used to estimate
local index was based on neural networks. This tool has a great potential
for processing information from complex systems as in the case of  the ge-
omagnetic system. Local K index calculated with this method resulted to
be a better option than directly using the global index Kp when we need
an indicator of  geomagnetic activity in a specific area. The best results of
our method were for moderate and high geomagnetic activity, which are
of  major interest in Space Weather.

1. Introduction
The magnetic variations on the magnetograms are

different at each observatory. They mainly depend on
the latitude of  the observatory and the local time. We
need a quantitative measure of  the amount of  magnetic
disturbance at any time and, consequently, we need to
introduce magnetic indices. These indices are often used
as inputs of  different regional models to describe the
geomagnetic or ionospheric behavior [e.g., Zolesi and
Cander 1998, Pietrella and Perrone 2008, Pietrella 2012].
There is a great variety of  indices used to measuring the
degree of  magnetic disturbance for various purposes.
In this paper, we will focus our attention in two indices:
K-index (local) and Kp-index (planetary), which are
widely used in geophysical studies. 

The K-index is a local index. It was introduced by
Bartels in 1939 [Bartels et al. 1939]. Each observatory
assigns a digit ranging from 0 to 9 to both H and D, two
components of  the magnetic field, for every three-hour
interval starting at midnight, universal time (UT). The
digit is based on the range of  the element during the
three-hour interval normalized on a standard quasi-log-
arithmic scale [Mayaud 1980]. Several scales are applied,
each one being specified by the amplitude, in nT, that

corresponds to K=9. Bartels chose the appropriate
scale for each observatory, considering each one to have
roughly the same frequency distribution of  K-indices.
The factors of  proportionality between each scale were
derived empirically for each observatory and reflect dif-
ferent geomagnetic effects depending on the observa-
tory location. However, it was later shown that the
“goal of  proportional grids leading to similar signifi-
cance of  K values is achieved only in the subauroral re-
gions, where the geomagnetic perturbations have
similar local time and seasonal variations and where the
distribution of  K index is lognormal” [Menvielle and
Berthelier 1991]. In order to derive this index, some
caution is required when determining the three-hourly
range on which the K-index is based, since what is
wanted is not simply the range, but the range after the
diurnal variation has been removed [Mayaud 1967]. K-
indices have to measure the disturbance variations
which are not related to the diurnal variation. As the
diurnal variation differs from day to day, observers - in
the case of  hand-scaled - or algorithms - in the case of
automatically - must exercise great care when estimat-
ing it [Menville et al. 1995]. In some situations, it is very
difficult to obtain the diurnal variation, for instance in
the recovery phase after magnetic storms which mod-
ify the baseline of  the diurnal variations.

The other index that we take into consideration is
the Kp-index, which is derived from the preceding one.
Kp is a global index. It was introduced by Bartels in
1949 [Bartels 1949]. Kp involves a digit ranging from 0
to 9 with a subdivision in thirds (0, 0+, 1–, 1, 1+,…) for
each three-hour interval starting at midnight, UT. It is
worked out from the K-index of  a group of  13 obser-
vatories (11 in the Northern Hemisphere, mainly in
North America and Western Europe, and only 2 in the
Southern Hemisphere), this irregular distribution im-
plies that Kp-index is biased due to Northern Hemi-
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sphere. Kp-indices are meant to measure and compare
different disturbances at different times. Bartels recog-
nized that K indices from different observatories had to
be “standardized” (Ks, s from standardized) before they
could be combined into a planetary index. Bartels han-
dled the latitudinal and local time/seasonal corrections.
Both corrections had the same condition: K values must
have the same frequency distribution. To obtain the Ks
value, the latitudinal variation was corrected with the
definition of  K=9 scales for each observatory; and the
local time/seasonal variation was corrected through
conversion tables. In this way, each three-hour value
from the group of  13 selected observatories was calcu-
lated on basis of  latitude conversion table, K=9 scale, and
after that, converted into Ks using the local time/sea-
sonal conversion tables [Bartels 1949, 1951]. As a result
of  this process, each K measurement was transferred
through statistical tables to a specific location, Niemegk,
and to a specific time, autumn, in order to be compared
under the same conditions. The Kp-index gives us infor-
mation on global magnetic activity, but it is an abstract
index which does not give specific information of  the
disturbance in a specific location at a specific time. 

A significant problem related to magnetic indices is
the irregular distribution of  the observatories. Numer-
ous in the Northern Hemisphere and very scarce in the
Southern Hemisphere, these observatories, however,
are the only source of  local indices. The inverse process
of  obtaining local indices from global indices is our
aim. It is not an easy task because there is not any re-
lating algorithm. The process of  constructing Kp-index
implies a transformation of  local K through statistical
tables. Then, using selected observatories, an average
of  Ks is calculated and this gives the Kp. To obtain local
indices from global indices at a specific place you need
to have the statistical table for this place, and also be
able to undo the calculation of  the Ks average. The
main problem to undo this process remains on the sta-
tistical tables; these tables are constructed to have the
same frequency distribution of  K for every observatory,
and are significantly different for each observatory.

The observatories distribution over the world is
very irregular. With the time, the number of  observa-
tories has increased, but, even now, there are still large
areas without observatories. The aim of  this work is
making an assessment of  the geomagnetic activity in
remote areas which usually are poorly covered with ob-
servatories. Having an assessment about geomagnetic
activity in areas without observatories would be help-
ful to have a complete view of  geomagnetic activity in
any part of  the Earth. There are different ways to try to
do this. When the K-value for an observatory is not
available, the easiest method to obtain a good approxi-

mation is to use the K-values of  the nearest observa-
tory. However, we are interested in remote areas, with
low number of  observatories, and so, this method would
not be suitable. A second method involves making an
interpolation using other observatories, but, again, the
reduced number of  observatories and their irregular
distribution in those remote areas also rule out the fea-
sibility of  this technique. Finally, a third method in-
volves attempting to undo the process whereby the Kp
has been calculated. In this way, we propose a method
to obtain local assessment derived from a global index.
We compute local index K from a global index, Kp,
through neural networks.

The neural network models are known to have the
property of  learning from cases and with ability to han-
dle complex nonlinear physical phenomena. This neu-
ral network capability in space weather, related to
predictions, has been demonstrated in various studies
[Uwamahoro et al. 2012, Watthanasangmechai et al.
2012]. In the field of  geomagnetism, Segarra and Curto
[2012] applied neural networks for sudden commence-
ment automatic detection. Lundstedt and Wintoff  [1994]
used neural network to predict geomagnetic storms
using solar wind data. Wu and Lundstedt [1996, 1997],
Lundstedt et al. [2002] and Kugblenu et al. [1999] demon-
strated the ability of  neural network for Dst forecast.
Takalo and Timonen [1997] used neural networks for
AE-index forecasting. Duka and Hyka [2008] checked
multiple neural networks to predict the evolution of
the three components of  the global geomagnetic field.
Boberg et al. [2000] developed a method for the predic-
tion Kp-index based on neural networks, other authors
used different methodology with the same aim, for ex-
ample Costello [1997] or Wing et al. [2005]. A few mod-
els have been developed for the prediction of  the local
K-index [Virjanen et al. 2008, Kutiev et al. 2009].

As a validation of  our method, we compute K val-
ues for a specific and remote place, Livingston (LIV)
(62°39´44˝ S, 60°23´41˝ W geographic coordinates;
52°50´13˝ S, 8°57 42˝ E, geomagnetic coordinates). Liv-
ingston Observatory is an unattended observatory dur-
ing the major part of  the year, only there are staffs
during summer season. There, when data are retrieved,
local K indices are automatically calculated by the adap-
tive smoothing method recommended by INTER-
MAGNET [Novozynsky et al. 1991]. 

2. Methodology - Neural networks
Neural networks can be defined as a form of  com-

putation inspired in biological models. Their name
comes from their similarity with the human brain in
two aspects: the fact that knowledge is acquired by
learning; and that links, which are connecting the neu-
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rons, store the information using a weight function
[Hopfield and Tank 1985].

Neural networks consist of  elements (neurons)
and connections (weight functions) that are adjusted,
or trained, so that a particular input leads to a specific
target output. These elements are inspired by biologi-
cal nervous systems. As in the natural world, network
behaviour is possible due to the connections existing
between individual elements. A network requires two
or more layers. Each layer consists of  simple elements
(neurons), with the ones in each layer connected to the
neurons in the next layer through weighted links. The
process of  determining these weights is called “learn-
ing”. The first layer receives the external information;
the last one produces the output or solution and the in-
termediate layers have no connection with the external
“world”, so they are called hidden layers. A neural net-
work can be trained to perform a particular function
by adjusting the values of  the weights. The weights are
adjusted according to different rules for example back-
propagation learning rule: a learning rule which weights
and biases by error-derivative (delta) vectors back-prop-
agated through the network.

Generally, in order to train neural networks, a par-
ticular input is introduced along with a target, which
represents the desired output. The network begins to
create different connections selecting those variables
which may make the final output reach the desired tar-
get. When network training ends, the information has
flowed through the network several times and the
weights have been modified according to the accuracy
of  the output regarding the target.

2.1. Back-propagation
Neural networks, in particular a feedforward back-

propagation network, are very efficient in the recognition
of  patterns or hidden structures in a dataset [Demuth
and Beale 1994]. Feedforward neural network with
error back-propagation is a method commonly used for
mapping multivariable inputs to multivariable outputs
[Rumelhart et al. 1986].This kind of  network extracts
features from a data set and learns the associations be-
tween the inputs and the outputs. Input information
crosses the network (forward), being transformed by
the intermediate layers, and the obtained output is
compared with the target. The difference or error is re-
turned back to the network, crossing the network back-
wards [Rojas 1996]. Repeating this process adjusts the
weights of  the connections in the network to minimize
the difference between the current and desired output
of  the net. There is no conclusive way to determine the
appropriate number of  layers and neurons. These fig-
ures are determined on a trial-and-error basis. 

The amount of  data and the distribution used to
train the network is fundamental for an accurate de-
termination of  the network. For a successful manipula-
tion, training data should include cases of  every possible
relevant option in the distribution [Kröse and Van der
Smagt 1996]. Therefore, there is an aspect concerning the
number of  neurons in the hidden layer that should be
emphasized: more neurons, which theoretically would
entail a greater capacity of  calculation, does not neces-
sarily mean better results [Demuth and Beale 1994].

In order to find the appropriate network, two major
selections should be considered [Nakamura et al. 2007]:
the parameters of  the physical problem to be resolved,
which will determine the input information for the
neural network, and the parameters of  the neural net-
work architecture. Furthermore, these choices have to
be made in parallel.

2.2. Input parameters
In order to choose the input parameters, we need

to consider the physics of  the problem, which variables
could affect the value of  K-index. Depending on the lo-
cations of  the observatories, different effects from the
flowing currents around the magnetosphere are recorded.
Thus the observatories located at night local time are
more affected by the particles that came from the mag-
netotail, especially during substorm time [Parkinson
1983]. Thus, we take the geomagnetic latitude and ge-
omagnetic longitude of  each observatory as input vari-
ables. Diurnal and seasonal variations also contribute
to modulate regular and irregular variations, the ionos-
pheric current systems are modulated by thermal ef-
fects of  the Sun and their incidence to the Earth, so
ionospheric current systems have a seasonal dependence
[Parkinson 1983]; consequently we also take the time and
day of  the year as input variables. And as our objective
is transforming Kp-index to local index, we must take
Kp-index as an input variable.

The neural network input “vector” for each ob-
servatory was determined as: geomagnetic latitude and
longitude, time, day of  the year and Kp-index. The neu-
ral network target is the corresponding K-index, but only
for our training stations, as our test station, LIV, is ex-
cluded from the training set. The network found the
relationship between these variables and the target. 

We worked with the values of  K obtained for the
years 2003, 2004 and 2005 in the INTERMAGNET net-
work (International Real-time Magnetic Observatory
Network). We have data from 68, 72 and 78 observato-
ries respectively according to their availability. In addition
to that, we have the data from the station in Livingston
(LIV) for the same period [Marsal et al. 2004, 2005], which
is useful to test the results of  our neural network. 
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2.3. Data sets 
After defining the variables of  physical interest we

selected the observatories whose data we were going
to use in order to train the neural network. We cannot
directly include all the observatories because their ir-
regular distribution around the Earth, and as we com-
mented above, Kp-index is biased for Northern America
and Western Europe observatories. If  we take all ob-
servatories the results would be biased due to the over-
weight of  the overpopulated areas. As our test station
is Livingston, which is located in a very special region -
the Antarctic region - we had to select our data set even
more carefully.

To train the neural network we were faced with
two possible options: either take observatories from all
around the planet - although well distributed -, or just
choose observatories close to Livingston. To sum up,
we could either use a global data set network or a local
data set one. We tried both options.

2.3.1. Global network
We need to attain a regular distribution of  obser-

vatories, with special attention paid to the number of  ob-
servatories in each hemisphere. Figure 1 shows the global
distribution of  the observatories included in the study.

We have 7 files containing the data of  6 observato-
ries each, making 42 observatories in total. These files are
intended to offer a regular distribution of  observatories;
two in the Northern Hemisphere, two in the Southern
Hemisphere, and two near the Equator. Moreover, the
training was carried out randomly, both in terms of
which observatories were chosen for each group and also
in which order those observatories were selected. 

2.3.2. Local network
The other approach involves taking the local data

set network with those observatories close to our test
station, as shown in Figure 2. In this case we take all the
observatories in the Southern Hemisphere, except those
in the auroral zone because of  their different magnetic
behaviour. Livingston is an Antarctic observatory but
it is considered as a mid-latitude station from the point
of  view of  geomagnetism. 

Unlike the global data set network, all the available
observatories were included in this second approach.
There are just 11 available stations out of  the 42 sta-
tions selected for the global data set network. Liv-
ingston is not included in the training data set as we
kept it apart for checking purposes.

2.4. Neural network parameters 
The other elements to be chosen are the parame-

ters of  the neural network, such as the number of  lay-
ers, the number of  neurons in each layer, the transfer
function included in the neurons, and the training al-
gorithm. After running several tests to delimit our re-
search, we concentrated on 2, 3 or 4 layers (counting the
input, hidden and output layers), with a maximum of
40 neurons each. A higher number of  neurons would
involve more computing time but would not lead to a
significant improvement in our results. 

Due to the training method chosen, the neural
network used the error back-propagation method,
which means the weights keep adjusting as the infor-
mation flows through the network. The transfer func-
tion was a log-sigmoid for the hidden layers and a linear
function for the other layers. After running several
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Figure 1. Global distribution of  magnetic observatories used in the option one in the training process of  the network. 
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tests, we chose these functions because they give us the
best performance. The training method we used was a
conjugate error gradient algorithm, based on the search
of  direction of  the negative gradient. To accelerate the
training process, we used the Powell-Beale condition
[Demuth and Beale 1994] 

(1)

where gk is the current gradient, gk
T its transposed ma-

trix and 1gk is the gradient computed in the previous
cycle. The search of  the negative gradient is made along
the conjugate gradient direction; the direction search
is periodically reset to the negative of  the gradient. This
technique restarts if  there is very little orthogonality
left between the current gradient and the previous gra-
dient. If  this condition is satisfied, the direction search
is reset to the negative of  the gradient.

In order to choose between all the possible param-
eters of  the neuronal network, we had to compare the
results obtained in each case. We created and trained
the neural network and then we compared the results
obtained with the real data of  the magnetic station of
Livingston.

We ran a series of  tests taking different numbers
of  layers and neurons per layer (the results are shown in
Table 1). We were interested in finding a network able
to produce an output Kn (n from network) with the
high and low values of  K.

After a series of  tests, we decided to work with
three different architectures: a two layer network, with
40 and 1 neuron per layer respectively; a three-layer net-
work, with 20, 10 and 1 neurons per layer respectively;
and a four layer network, with 40, 10, 10 and 1 neurons
per layer respectively. We decided work with these three
neural networks because these neural networks were
able to provide almost the full range of  the K values.
Among the other options which were tested, the case
of  4-layer network [40, 30, 20, 1] is worth mentioning: it
provided values of  Kn over 9, and thus it was discarded. 

Next, with our chosen parameters, we needed to
check which kind of  data set network, either global or
local, may lead to better results. We ran series of  tests
on the selected neural networks with a global and local
data set network of  observatories (Table 2). To decide
which the best neural network for our aim is, we used
the same criteria than above; we need a network able to
produce low and high K values. We decided that the
best neural network in our case is a three later network,
with 20, 10 and 1 neuron per layer respectively. 

In all three network architectures, using a global
data set network of  observatories, the networks pro-

.g g g0 2k
T

k k1
2$-
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Figure 2. Local distribution of  magnetic observatories in the neighbourhood of  our test station, Livingston (LIV), used in the option two
in the training process of  the network.

Number of  layers Neurons for layer Kn range

2 layers [40 1] 0-7

[20 1] 1-5

3 layers [40 20 1] 0-7

[20 10 1] 0-8

[10 5 1] 0-5

4 layers [40 30 20 1] 0-13

[40 10 10 1] 0-7

[20 10 5 1] 0-6

[10 5 5 1] 1-7

Data sets NN architecture Kn range

Global [40 1] 1-4

[20 10 1] 1-6

[40 10 10 1] 1-4

Local [40 1] 0-7

[20 10 1] 0-8

[40 10 10 1] 0-7

Table 1. Summary of  the Kn range for each network parameter set.

Table 2. Summary of  the Kn range depending on data set and neu-
ral network architecture.



duce K but they do not cover all the range of  possible
values. However, the local data set network of  obser-
vatories does. So the option that leads to the best re-
sults is a local network of  observatories. This is because
when training the neural network with observatories
from different regions, the network is not able to rec-
ognize the different latitudinal effects that affects the
magnetic signatures of  the different observatories, and
tries to produce an average. The neural network can
not correct the latitudinal effects on the basis of  the
input parameters. But when training the network with

observatories from the same region, they are subjected
to the same magnetospheric effects, and the neural net-
work is able to recognize these patterns, because we
used time and day of  the year as input parameters and
the neural network can correct the local time/seasonal
variations. 

Nevertheless, we must also verify the frequency
distribution obtained by the neural network, the per-
centage of  each class that the network obtains. We un-
derstand by class the subset of  three-hourly periods
having the same degree of  magnetic activity deter-
mined by the value of  K. We must also verify whether
a neural network works better for high or low K val-
ues. Figure 3 shows frequency distributions for a local
data set network (grey bar), a global data set network
(white bar), and the real frequency distribution of  K at
Livingston (black bar). We compare Kn obtained with
a local data set network and Kn obtained with a global
data set network. Clearly, the local data set network
seems to be superior, especially for moderate K values. 

Figure 3 illustrates another question: all these neu-
ral networks produce fewer Kn=0 than we expected.
It seems that the neural network converts a significant
number of  Kn=0 into Kn=1. We detected this prob-
lem in a large variety of  architectures of  neural net-
works and with different data tests. On the basis of  our
empirical experience, we assume that the few number
of  Kn=0 is due to a systematic boundary problem of
operational function of  the selected network. The neu-
ral network gives us an integer number from 0 to 9, and
if  we do not apply this condition we can see that there
is an important number of  cases in which Kn is around
0.5-0.7. So, taking Kn<0.7 as the K=0 value, we can ad-
just our results with more accuracy. All the figures and
results which we show below were obtained using
these criteria. At the highest boundary, K=9, we have
another problem but from a different source. The neu-
ral network learns from cases but with three years of
data only 0.6% of  our training data set lies between K=
7 to K=9. In this situation is remarkable that we have
adequate predictions for these values.

3. Results
With the selected neural network, we represent

the distribution of  the differences between Kn and K
that the neural network gives for each class of  real K-
index at the magnetic station of  Livingston, Figure 4. In
this figure, for low values of  K, the differences between
Kn and K are more than 90% centred around 0 and ±1.
For K values greater than 5, the differences are biased to
–1 value, with a ratio of  more than 80% between 0 and
±1. In the strict sense, a good “hit” occurs when the dif-
ference between the K-computed by the network, Kn,
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Figure 3. Comparison between the frequency distribution of  Kn
obtained through a local network (grey bar) and another Kn ob-
tained with a global network (white bar), and also K real frequency
distribution in LIV (black bar). 

Figure 4. Histograms with the percentage of  differences between
Kn and K for each class of  K-index.



7

and the K-real is zero. In order to determine if  the re-
sults can be considered to be correct, we need to take
into account that an error of  ±1 may be accepted. Such
an error is “de facto” acceptable, mainly for low K val-
ues, since some uncertainty is involved in the determi-
nation of  the K index mainly due to the problem in
extracting the diurnal variation. A two-unit difference
can already be considered problematic, and in the case
of  a three-unit difference, the error is unacceptable. 

In order to see the advantages of  using the K of
the neural network instead of  directly using Kp, we use
the same kind of  graphs, but now focusing on the dif-
ferences between Kp and K-real at Livingston (Figure 5).
For all K values the differences are centered around 0,
but have a distribution similarly to distribution showed
in Figure 4. To show the benefits to use Kn we have to
compare the frequency distributions of  Kp and Kn
(Figure 6). We applied the same criteria used by Bartels
et al. [1939] to establish the K=9 logarithmic scale for
each observatory. We see that for low K values, the Kp
distribution matches better than Kn to K values. For
these ranges, when we have quiet solar conditions, this
is especially significant because the diurnal variation is
dominant in magnetograms, and this is usually the range
with a greater error in the process of  determining K.
But for moderate and high magnetic activity (high K)
- when the most important situations in Space Weather
happen -, the Kn distribution is much better than the
Kp distribution when we compare them to the local K.

On the basis of  deviations between amplitudes in
the frequency distribution, we can compare the differ-
ences between both distributions. If  we take Kp as the

K-local, the difference rate is 3% for K=1, 11% for K=2,
and the rate increases considerably for higher values of
K (29% and 64% for K=4 and 5). However, if  we take Kn
as the K-local, the difference rate is higher for low K (9.5%
for K=1), but from K=2 upwards the difference lessens
and keeps constant around 5% for K=2 to K=5.

To show the advantages of  our method, in the Fig-
ure 7, we compare the frequency distributions of  K val-
ues obtained with our method with those obtained
with two different interpolation methods. We obtained
K values for LIV interpolating the K values of  observa-
tories close to LIV. We checked two interpolating cases,

RECOVERING OF K-INDICES FROM Kp-INDICES

Figure 5. Histograms with the percentage of  differences between
Kp and K for each class of  K-index.

Figure 6. Comparison between the frequency distributions of  K-
real at Livingston (black bar), Kn calculated with the network (white
bar) and Kp (grey bar).

Figure 7. Comparison between the frequency distribution of  the
longitudinal interpolation results (dark grey bar), the latitudinal in-
terpolation results (light grey bar), Kn calculated with the neural
network (white bar) and the K-real at LIV (black bar).



one derived from a latitudinal interpolation and the
other one from a longitudinal interpolation. We ob-
tained K values of  LIV interpolating the K values of
AIA and TRW observatories (light grey bar in Figure
7), located around similar longitude. The other inter-
polation method implies the observatories of  TRW and
CZT (dark grey bar in Figure 7), this two observatories
are located around the same latitude. In the same fig-
ure, we plot the frequency distribution obtained by our
method, Kn (white bar in Figure 7), and also the fre-
quency distribution of  the real K (black bar in Figure
7). For all K ranges the distribution of  Kn match better
the real values than the interpolation methods, spe-
cially for K=1, K=3 and K=4. This comparison rein-
forces the goodness of  the results obtained by the
neural network.

Until now, this computation was applied to the
case of  Livingston, and it is obvious that under condi-
tions of  disturbance, Kn is a better choice than Kp. At
this point, it is worthy checking if  the same neural net-
work may be applied to other observatories in the same
zone. Thus, we had to check if  our neural network
works correctly at other observatories in the Southern
Hemisphere. We could not take another observatory
for testing directly, because we had already used all the
available observatories for training. So, first we had to
remove the data of  the observatory we were interested
in from the training set, and then we trained the net-
work again and checked the new results. In Figure 8,
we represent the frequency distributions at 4 observa-
tories, Eyrewell (EYR), Gnangara (GNA), Martin de
Vivies-Amsterdam Island (AMS) and Trelew (TRW).

The network responds well enough for all these obser-
vatories, showing the same features than Livingston ob-
servatory. We can conclude that for the zone of  middle
latitudes in the South Hemisphere, taking the Kn cal-
culated with the neural network is better than taking
Kp directly, especially in periods of  magnetic activity.
As this zone is very under populated with observato-
ries, this method could be very useful. 

4. Conclusions
K index is one of  the most popular geomagnetic

activity indicators. The aim of  this research was to es-
timate a more accurate local K-index which would be
especially useful for remote zones with not available
observatories. Our method adjusts the frequency dis-
tribution of  local K better than when replacing the un-
known local data with global indices Kp, especially
under conditions of  moderate and high magnetic ac-
tivity, which are, by far, the most interesting conditions
for the modellers of  Space Weather.

We applied our method to the case of  a remote
observatory, Livingstone, as a test. We demonstrated
that under disturbance conditions this method is a bet-
ter choice than Kp. The same neural network is also
able to produce appropriate values for a wide region
under the same magnetic effects. 

In the future, the network would be improved by
being trained with more cases of  very high K-indices
(K=8 or K=9) taking advantage of  years with high ge-
omagnetic activity. Another interesting input variable
to be considered might be the ordinal number of  the
year in the solar cycle or the Wolf  number, which
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Figure 8. Comparison between the frequency distributions of  K-real (black bar), Kn (white bar) and Kp (grey bar) for 4 observatories which
are inside the influence zone of  the network.
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would allow us to relate the value of  the indices to the
phase of  the solar activity cycle. 

These indices could be suitable to be introduced
in regional models of  Space Weather when local con-
ditions are relevant because Kn are statistically more ac-
curate than the direct use of  Kp. 
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