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ABSTRACT

In this work, the effect of  assimilation of  synoptic, radiosonde and
ground-based GPS precipitable water vapor (PWV) data has been inves-
tigated on the short-term prediction of  precipitation, vertical relative hu-
midity and PWV fields over north of  Iran. We selected two rainfall events
(i.e. February 1, 2014, and September 17, 2014) caused by synoptic sys-
tems affecting the southern coasts of  the Caspian Sea. These systems are
often associated with a shallow and cold high pressure located over Rus-
sia that extends towards the southern Caspian Sea. The three dimen-
sional variational (3DVAR) data assimilation system of  the weather
research and forecasting (WRF) model is used in two rainfall cases. In
each case, three numerical experiments, namely CTRL, CONVDA and
GPSCONVDA, are performed. The CTRL experiment uses the global
analysis as the initial and boundary conditions of  the model. In the sec-
ond experiment, surface and radiosonde observations are inserted into
the model. Finally, the GPSCONVDA experiment uses the GPS PWV
data in the assimilation process in addition to the conventional observa-
tions. It is found that in CONVDA experiment, the mean absolute error
(MAE) of  the accumulated precipitation is reduced about 5 and 13 percent
in 24h model simulation of  February and September cases, respectively,
when compared to CTRL. Also, the results in both cases suggest that the
assimilation of  GPS data has the greatest impact on model PWV simu-
lations, with maximum root mean squares error (RMSE) reduction of
0.7 mm. In the GPSCONVDA experiment, comparison of  the vertical
profiles of  12h simulated relative humidity with the corresponding ra-
diosonde observations shows a slight improvement in the lower levels.

1. Introduction
The ground-based global positioning system (GPS)

is used as a new technique of  remote sensing of  the at-
mospheric water vapor since more than two decades.
The GPS signals passing through the atmosphere en-
counter delay due to the atmospheric contents espe-
cially water vapor. The total delay is divided into two
parts: wet and dry. Using surface temperature and pres-
sure measurements the wet delay is mapped into the

precipitable water vapor (PWV) [Bevis et al. 1992,
Rocken et al. 1993].

Sub hourly measurements of  the GPS PWV are
accurate for values of  less than 2 mm [Duan et al. 1996,
Rocken et al. 1997]. The ground-based GPS observations
compared with conventional methods of  measuring
water vapor in the atmosphere such as radiosonde ob-
servations, have a high temporal resolution, long-term
stability and are independent of  all-weather condition
[Rocken et al. 1997, Yunck et al. 2000]. 

The formation of  clouds and precipitations are di-
rectly related to the distribution of  the atmospheric water
vapor. Therefore, high-resolution measurements of
this quantity can play an important role in numerical
weather prediction (NWP) models [Mazany et al. 2002,
Zhang et al. 2007].

Accurate initial conditions are necessary to have a
better numerical prediction of  the atmosphere. Assim-
ilation of  conventional (such as synoptic and radiosonde)
and non-conventional (such as satellite and ground-
based GPS) data can improve the initial conditions
[Govindankutty and Chandrasekar 2011, Srinivas et al.
2012]. The variational data assimilation methods have
the ability of  direct assimilation of  the observed vari-
ables such as satellite radiance, radar reflectivity and
GPS PWV that are different from the model prognos-
tic variables. Using this type of  data assimilation ap-
proaches, several studies showed a positive impact in
the simulation of  the rainfall events [Lipton et al. 1995,
Kalnay 2003, Zapotocny et al. 2007].

Many attempts have been made to evaluate the im-
pact of  the GPS water vapor observations assimilation
on the NWP model outputs [Kuo et al. 1993, Kuo et al.
1996, Falvey and Beavan 2002, Zhang et al. 2007, Zhang
et al. 2008, Bauer et al. 2011, Leiming et al. 2012]. 

Kuo et al. [1993, 1996] showed that the assimila-
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tion of  PWV measurements into a NWP model improve
the vertical structure of  the predicted moisture field.
Falvey and Beavan [2002] examined the potential of
GPS PWV in the advanced regional prediction system
(ARPS) model retrievals of  precipitation. Based on their
results, assimilation of  hourly GPS PWV improved the
predicted total precipitation of  the model up to 3 per-
cent. Also, the use of  GPS PWV data assimilation can
eliminate the wrongly predicted rainfall systems and in-
crease the quality of  rainfall events predictions in tim-
ing, location and intensity [Zhang et al. 2007, Zhang et
al. 2008].

In a study, Leiming et al. [2012] assimilated the
GPS PWV measurements together with the automatic
weather station (AWS) observations into a short-range
numerical model system using 3-dimensional varia-
tional (3DVAR) data assimilation scheme. They found
that the data assimilation of  these observations can im-
prove the rainfall and temperature predictions. The
Iranian permanent GPS network (IPGN) has been es-
tablished to study the crustal deformation and also for
navigation and surveying purposes. At present, this net-
work consists of  about more than 90 active stations
which are mostly distributed in the northern part of
Iran. So far, no effort has been made in using the ob-
servations of  IPGN stations to improve the perform-
ance of  NWP models. The main objective of  this study
is to present preliminary the results on the impact of
3DVAR assimilation of  GPS PWV measurements to-
gether with the conventional synoptic and radiosonde
observations in the simulation of  rainfall over the north-
ern part of  Iran using the weather research and fore-
casting (WRF) model.

In Section 2, a brief  description of  conventional
data, GPS PWV measurements and their estimation
process are provided. The description of  the numerical
experiments, the WRF model settings used in this work
and 3DVAR assimilation methodology are presented in
Section 3. The result of  the three data assimilation ex-
periments (with different selection of  observations) in
the prediction of  rainfall and moisture fields are com-
pared in Section 4. The summary and conclusions are
given in the last section. 

2. Data and case studies

2.1. Conventional data
Most of  the heavy precipitations with more than

100 mm/day, occurred in the southern coasts of  Caspian
Sea are associated with a thermal shallow and cold high
pressure system located over Russia and the northern
Caspian Sea. Due to the temperature difference be-
tween the warm water of  Caspian Sea and relatively

cold air in the shallow high pressure, intense evapora-
tion occurs and thus air becomes saturated in the
boundary layer. The low pressure aloft causes vertical
motions and precipitations take place in the southern
Caspian Sea. Accurate predictions of  precipitations as-
sociated with the above mentioned mechanism is a
challenging task and has much importance in opera-
tional forecasting. Thus in this research, two of  such
synoptic systems are selected to investigate the impact
of  the assimilation of  radiosonde and synoptic station
observations as conventional data and GPS water vapor
measurements in numerical prediction of  two rainfall
cases (February 1, 2014, and September 17, 2014) over the
northern part of  Iran. The study area (inner domain of
simulation) is located between geodetic latitudes of
33.06 to 39.44 and longitude 42.63 to 61.82 degrees.

Conventional observations of  temperature, pres-
sure, humidity and wind for 50 synoptic stations in the
inner domain and 150 stations in the outer domain con-
sidered were used in the assimilation process. Figure 1
shows the spread of  the Zagros and Alborz mountain
ranges over the western and northern parts of  Iran, re-
spectively. Distribution of  the synoptic stations over the
country is more or less uniform. Three hourly synoptic
data collected at surface stations along with the vertical
temperature and humidity profiles observed at four ra-
diosonde stations (yellow stars in Figure 1) were ob-
tained from the I. R. of  Iran Meteorological Organization
(IRIMO) network. The radiosondes are lunched twice
a day at 00 and 12 UTC. Total daily precipitation obser-
vations from rain gauges in the study area were used to
validate the NWP model simulation of  precipitation.

2.2. GPS PWV data
The GPS PWV values derived from the processing

of  the ground-based observations of  the IPGN net-
work with sub hourly temporal resolution are used to
improve the numerical simulation of  rainfall. The inner
domain of  the model is located in the northern part of
Iran, mainly because heavy convective rainfall events
occur in the northern part of  Iran along the coast of
Caspian Sea and in many cases NWP models fail to ac-
curately forecast the precipitation over this region.
Moreover, most of  the ground-based GPS stations are
located in the north and north-west parts of  the coun-
try that lie inside our inner domain. Accurate precipi-
tation forecast over north of  Iran is thus a challenging
task for professional forecasters. Distribution of  GPS
stations in the IPGN network over Iran topographic
map along with the boundaries of  the inner domain in
the simulation is depicted in Figure 1.

The total atmospheric delay in the zenith direction
and the components of  position are estimated for each
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station. Total tropospheric zenith path delay of  GPS
signal is divided into two parts, zenith hydrostatic delay
(ZHD) and zenith wet delay (ZWD) [Iwabuchi et al.
2000].

Using the Sasstamoinen model [Davis et al. 1985]
and surface pressure measurements (P0) at GPS station,
the ZHD can be calculated accurately through:

(1)

where, { is the latitude and H is the height from geoid
in kilometers. The total zenith delay of  the GPS signals
is calculated during the processing of  IPGN observa-
tions. By subtracting ZHD from the estimated total
zenith delay, the ZWD is easily derived. 

The ZWD is a function of  the water vapor and at-
mospheric temperature. So, the PWV could be esti-
mated when weighted average of  the atmospheric
temperature, Tm is calculated. The PWV values are re-
lated to the ZWD as follows [Bevis et al. 1994]:

where, Mw(18.0152gr/mol) and Md(28.9644 gr/mol) are the
molar masses of  water vapor and dry air, respectively.
The physical constants k1(77.689K/hPa), k2(71.295K/hPa)
and k3(375463K2

/hPa) belong to the formula for atmos-
pheric refractivity [Rüeger 2002].

3. Numerical experiments and model configuration

3.1. Description of  the model
For each rainfall case, three numerical experiments

are conducted. The initial and boundary conditions of
the first experiment (CTRL) are prepared from the Na-
tional Center for Environmental Prediction (NCEP)
global forecast system (GFS) analysis data. These data
are used at a spatial horizontal resolution of  0.5°× 0.5°
and a time resolution of  3 h. In the second experiment
(CONVDA), using 3DVAR data assimilation system,
the conventional surface and radiosonde observations
are assimilated to generate model initial and boundary
conditions. The third experiment (GPSCONVDA) is
similar to the second one, but the GPS PWV measure-
ments from the IPGN network are also assimilated into
the WRF model. In each case, the model is integrated
54 hours ahead starting from the initial time at 1200
UTC one day before the rainfall event chosen.

The configuration of  model includes 41 vertical
layers and two nested domains. The grids spacing of
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Figure 1. Distribution of  IPGN stations together with topographic information over Iran. The red rectangle shows the inner domain of
model. The yellow stars show the location of  radiosondes in the domain.



the inner and of  the outer domains are 7 and 21 km, re-
spectively. The other details of  domains and physical
settings of  the model are presented in Table 1.

3.2. Assimilation methodology
To ingest and assimilate the observational data

into the WRF model, we utilized 3DVAR data assimi-
lation technique [Barker et al. 2004]. This method pro-
vides the optimal estimate of  the true atmospheric
state via the minimization of  the following cost func-
tion [Ide et al. 1997]: 

(4)

where, x, xb and yo are the vectors of  analysis variable,
background forecast and observation, respectively. B is
the background error covariance matrix and O is the
covariance matrix of  the observational error.

In the WRF data assimilation system, the back-
ground error covariance matrix B is calculated using the
National Meteorological Center (NMC) method
[Parish and Derber 1992], which uses the WRF fore-
casts differences with different ranges and valid at the
same time. In this work, the differences of  12h and 24h
WRF model forecasts were used and the background
error statistics were made with one month forecasts in
January 2014 for the domains.

The analysis control variables in WRF 3DVAR sys-
tem are the amplitudes of  empirical orthogonal func-
tions (EOFs) of  stream function, pseudo relative
humidity, unbalanced part of  temperature, velocity po-
tential and surface pressure [Barker et al. 2004]. PWV is
not a state parameter and the observation operator

transforms the model control variables into the PWV
counter-parts at the time and location of  the observa-
tions. The observation operator of  the GPS PWV
which was used in the WRF 3DVAR system is ex-
pressed as follows [Iwabuchi et al. 2005]:

(5)

where, t (kg/m3) is the air density, q(kg/kg) is specific hu-
midity and dz (m) is the height of  the vertical model
grid.

The two modes of  performing the 3DVAR data as-
similation are cold-start and cycling. In cold-start mode,
3DVAR generates the new background analysis only at
the WRF starting time of  forecast. In cycling mode, the
forecasts of  the WRF after a specific time window is
used as a new background for assimilation instead of
the background produced from GFS [Guo et al. 2004,
Routray et al. 2010, Hsiao et al. 2012, Eiserloh 2014]. In
this study, we use WRF 3DVAR data assimilation in cy-
cling mode to account for the spin-up time of  the fore-
casts. So, the forecasts of  the WRF are used as a first
guess for subsequent cycles with the 3h time window.
The structure of  the 3 hourly cycling update is depicted
in Figure 2. As it can be seen in Figure 2, before the start
of  the forecast (at 12 UTC) the assimilation is done
three times. In other words, the assimilation spin-up
time takes 6 hours.

4. Numerical results
In this section, the 3DVAR data assimilation tech-

nique in cycling mode is used to evaluate the impact of
the observations on the WRF model simulation in pre-
cipitation, PWV and vertical relative humidity fields.
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Non-hydrostatic Dynamics

41 vertical levels Vertical resolution

Domain 2: 7 km Domain 1: 21 km Horizontal resolution

42.63°E−61.82°E
33.06°N−39.44°N

(241×97 grids )

32.54°E − 63.94°E
18.69°N − 42.45°N

(142×130 grids)
Domains of integration

WSM 3-class simple ice scheme [Hong et al. 2004] Microphysic

RRTM scheme [Mlawer et al. 1997] Longwave radiation option

Dudhia scheme [Dudhia 1989] Shortwave radiation option

MM5 Monin-Obukhov scheme [Monin and Obukhov 1954] Surface-layer option

Unified Noah land-surface model [Chen and Dudhia 2001] Land-surface option

YSU scheme [Hong et al. 2006] Boundary-layer option

Kain-Fritsch (new Eta) scheme [Kain 2004] Cumulus option

Table 1. Details of  domains and physics used in the model.
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Using the three numerical experiments introduced in
Section 3.1, the simulations are conducted for the two
rainfall cases previously introduced.

4.1. Rainfall
To evaluate the WRF model forecasts of  precipi-

tation in each experiment, we used observations of  rain
gauges in the study area. The mean absolute errors
(MAEs) of  the accumulated precipitation in 24h simu-
lations (day-1 and day-2) initialized at 12UTC, January
31, 2014 (Case-1) are given in Table 2. As it can be seen,

in day-1 the inclusion of  conventional data into the
WRF model in the CONVDA experiment caused a 5
percent reduction in the accumulated precipitation
forecast error as compared with the CTRL. The posi-
tive impact of  data assimilation on the precipitation
forecasts declined in day-2. The MAE values in Case-1
show that there is no significant difference between
CONVDA and GPSCONVDA simulated precipitations.
So, the assimilation of  GPS PWV measurements into
the model has almost no effect on the accumulated pre-
cipitation forecast in Case-1.

NUMERICAL SIMULATION OF RAINFALL

Figure 2. The structure of  cycling 3DVAR data assimilation with 3h time windows.

Forecast day CTRL CONVDA GPSCONVDA

Day-1 4.03 3.81 3.78

Day-2 3.02 2.91 2.97

Table 2. MAE of  the 24-hour accumulated precipitation (in mm)
simulated in different experiments. The WRF initialized at 12UTC,
January 31, 2014.

Table 3. MAE of  the 24h accumulated precipitation (in mm) simu-
lated in different experiments. The WRF initialized at 12UTC, Sep-
tember 16, 2014.

Forecast day CTRL CONVDA GPSCONVDA

Day-1 2.9 2.52 2.41

Day-2 1.74 1.41 1.53

Figure 3. Six hourly RMSEs in predicted PWV using different experiments: CTRL, CONVDA and GPSCONVDA from the WRF forecast
initialization in both case studies (a) February 1, 2014 and (b) September 17, 2014.



Similarly, the MAE values of  accumulated rainfall
in 24h simulations (day-1 and day-2) initialized at 12UTC,
September 16, 2014 (Case-2) are given in Table 3. Ac-
cording to the error values in this rainfall case, the data
assimilation reduces the error on the first day of  precipi-
tation forecast. The comparison of  the three experiments
forecast errors shows that assimilation of  observational
data in CONVDA and GPSCONVDA experiments re-
duced the accumulative precipitation errors in day-1 up
to 13 and 17 percent respectively as compared to the
CTRL. Therefore, the inclusion of  PWV measure-
ments obtained from IPGN stations into assimilation
cycles decreases the rainfall simulation error of  day-1
up to 4 percent. Also, the positive impact of  conven-
tional and non-conventional data assimilation is de-
clined on the second day of  the forecast.

4.2. Precipitable water vapor
The simulated PWV values from different experi-

ments during the two rainfall cases are evaluated in this
section. For this purpose, the estimated PWV values
prepared from the IPGN GPS (using Equation (2)) sta-
tions located in the inner domain of  the model are con-
sidered as reference and used to verify the corresponding
simulated values of  PWV in CTRL, CONVDA and GP-
SCONVDA experiments. Figure 3 shows the six hourly
root mean squares error (RMSE) of  the PWV obtained
from the experiments in Case-1 (Figure 3a) and Case-2
(Figure 3a). The RMSE values have been calculated for
all of  the GPS stations located in the study area and are
shown for different forecast lengths in this figure. 

For each case study, GPSCONVDA and CTRL ex-
periment simulated PWV have the minimum and max-
imum RMSE over the forecast length, respectively. The
assimilation of  conventional surface observations in
comparison with the CTRL has almost no positive ef-
fect on PWV simulation in Case-1 while in Case-2 after
12 h from the start of  WRF forecast, the CONVDA re-
duced the forecast error up to 0.2 mm. The superiority
of  GPSCONVDA with respect to the CONVDA is clear
in the first 24h and 12h forecast lengths of  Case-1 and
Case-2, respectively. As it can be seen in Figure 3, it is
found that the GPSCONVDA has reduced the PWV
simulation error from 0.2 to 0.7 mm. In other words,
during the first 12h and 24h forecast lengths the assim-
ilation of  GPS observations improved the PWV pre-
diction RMSE between 8 to 22 percent.

4.3. Vertical relative humidity
It is also important to validate the simulated verti-

cal structure of  relative humidity in both rainfall cases.
The relative humidity prediction of  three different ex-
periments in vertical pressure levels is compared with
the available corresponding radiosonde observations at
Tehran Mehrabad airport (latitude=35.68°N, longi-
tude=51.35°E). The 12h and 24h simulated relative hu-
midity profiles together with the verifying observations
(black graphs) are depicted in Figures 4 and 5 for the
two cases, respectively. 

The results of  the model run starting at 12UTC
January 31, for relative humidity profiles valid at 00UTC
(Figure 4a) and 12UTC (Figure 4b) February 1 indicate
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Figure 4. Comparison of  the WRF predicted vertical profiles of  relative humidity (%) from different experiments with radiosonde obser-
vations at Tehran Mehrabad airport (OIII: latitude = 35.68°N, longitude = 51.35°E) in (a) 12h and (b) 24h simulation. The WRF start the pre-
diction on January 31, 2014, 12 UTC.
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that in the first 12 h the simulated vertical structure of
moisture from the CONVDA (red graph) and GP-
SCONVDA (blue graph) experiments are slightly closer
to the verifying observations as compared to the ex-
periment without assimilation. In Case-2, the predicted
12h relative humidity profiles from GPSCONVDA and
CTRL experiments (blue and green graphs in Figure
5a) are fairly closer to the observations. Moreover, for
the 24h simulation of  vertical relative humidity in both
cases, there is no significant difference in the results of
the three experiments.

From Figures 4a and 5a, it is seen that in general,
GPS PWV assimilation may slightly modify the humidity
values only in the lower levels without really touching
the vertical structure. Even though there is a change in
the structure, it is mostly ascribable to the vertical struc-
ture of  background error covariances. Errors of  the back-
ground are necessary to give an appropriate weight of
contribution to the observations and background during
analysis estimation [Bölöni and Horvath 2010]. Back-
ground error covariance (BE) of  the WRF data assimila-
tion system is in Eigen space but this information could
be used to extract the BE in physical space [Barker et al.
2004]. We use single observation test on the model levels
and extract the vertical profile of  humidity background
error standard deviation at radiosonde location. Figure 6
shows the structure of  specific humidity background
error standard deviation in the vertical model levels. As
seen from Figure 6, the background error standard devi-
ation of  humidity decreases from surface to upper levels.
It is thus expected that the incorporation of  the observa-
tions should have the largest impact in the lower levels.

According to Figures 4a and 5a, the three numeri-
cal experiments have resulted similar results in terms of
relative humidity in the upper levels. The inclusion of the
observations of  conventional and GPS PWV data is more
effective in the lower levels below 500 hPa. This could be
probably attributed to the higher values of  background
standard deviation in lower levels (Figure 6).

5. Conclusions
In this study, 3DVAR data assimilation scheme for

the WRF mesoscale model with two domains at 21 and
7 km horizontal resolutions were used to examine the
impact of  conventional (surface and radiosonde) obser-
vations and GPS PWV measurements as non-conven-
tional observations in the simulation of  precipitation,
relative humidity and PWV over north of  Iran. Using
three sets of  experiments, the simulations were per-
formed for two rainfall events (February 1, 2014, and Sep-
tember 17, 2014) in the study area. The first experiment
named as CTRL run without data assimilation. The other
two experiments CONVDA and GPSCONVDA use
3DVAR data assimilation of  conventional and GPS PWV
along with the conventional observations, respectively.

We investigate the impact of  inclusion of  obser-
vational data using the 3DVAR scheme with respect to
the GFS analysis data in generating the initial and bound-
ary conditions used in WRF forecasts. Generally, com-
parison of the model results with the IRIMO observations
indicate a better agreement of  the simulations with
CONVDA and GPSCONVDA experiments compared
with the CTRL simulation as many studies reported
earlier [Falvey and Beavan 2002, Leiming et al. 2012]. 

NUMERICAL SIMULATION OF RAINFALL

Figure 5. Comparison of  the WRF predicted vertical profiles of  relative humidity (%) from different experiments with radiosonde obser-
vations at Tehran Mehrabad airport (OIII: latitude = 35.68°N, longitude = 51.35°E) in (a) 12h and (b) 24h simulation. The WRF start the pre-
diction on September 16, 2014, 12 UTC.



In both rainfall case studies, inclusion of  observa-
tion into the model improved the predicted cumulative
precipitation on the first day of  the forecast while the
positive impact of  data assimilation declines on the sec-
ond day. Based on the results in Case-1 and Case-2 using
assimilation of  conventional observations, the MAE of
the accumulated precipitation forecast in day-1 reduced
up to 5 and 13 percent, respectively. Also, the use of
GPS PWV measurements together with conventional
data reduced the rainfall simulation error up to 17 per-
cent in the first forecast day of  Case-2.

A comparison of  simulated PWV values using dif-
ferent numerical experiments with corresponding values
that were estimated from GPS observations showed
that forecasts without data assimilation in CTRL ex-
periment led to more errors in prediction compared
with the CONVDA and GPSCONVDA experiments.
Based on the result, the assimilation of  GPS data re-
duced the RMSE of  simulated PWV between 8 to 22
percent during the first 24 h of  the forecast length. 

To evaluate the effect of  assimilation of  observa-
tions on the prediction of  vertical structure of  relative
humidity, the profiles of  12h and 24h simulated relative
humidity were compared with the corresponding ra-
diosonde observations at Tehran Mehrabad station.
The 12h simulations of  relative humidity from the GP-
SCONVDA experiment which used 3DVAR system were
slightly closer to the observations only in the lower lev-
els compared to the CTRL experiment. In general, the
results showed slightly more improvement at lower lev-
els compared to higher levels. The reason for this is in
agreement with higher values of  background error
variances for humidity at lower levels.

Overall, this study showed a positive impact on
local simulations of  the precipitation and PWV using
surface, radiosonde and GPS observations in the 3DVAR

data assimilation system. It should be noted that using
a more sophisticated method of  4DVAR may improve
the result further. The main reason for this is that the
GPS data have high temporal resolutions and have to
be used in their own time.
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