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ABSTRACT

The scaling of  earthquake source displacement spectra is analytically
studied based on the continuous form of  one-dimensional dynamical
spring-slider model in the presence of  either linearly slip-weakening fric-
tion or linearly velocity-weakening friction. The main parameters of  the
model are the natural angular frequency, ~o, and the (dimensionless) de-
creasing rate, D, of  friction with slip (or the characteristic displacement)
for slip-weakening friction as well as the (dimensionless) decreasing rate,
y, of  friction with velocity (or the characteristic velocity) for velocity-weak-
ening friction. The analytic solution includes the complementary and par-
ticular parts. The former shows the travelling wave and the latter denotes
vibrations at a site. The complementary solution exhibits ~-1 scaling in
the whole range of  ~ for both friction laws. For the particular solution,
slip-weakening friction results in spectral amplitudes only at three values
of  ~. For velocity-weakening friction with y>0.5, the log-log plot of  spec-
tral amplitude versus ~ exhibits almost ~0 scaling when ~ is lower than
the corner angular frequency, ~c, which is independent on y and increases
with ~o. When ~>~c, the spectral amplitude monotonically decreases
with ~ following a line with a slope value of  −1, which is the scaling ex-
ponent.

1. Introduction
The body-wave seismic spectrum, P(~), where

~=2rf is the angular frequency and f  is the frequency,
is controlled by the seismic moment Mo and the corner
angular frequency ~c, which is associated with the source
dimension. The generally accepted earthquake source
functions have either ~-2 or ~-3 high-frequency spectral
decay, and are commonly referred to as ~-square and
~-cubic models [Haskell 1966, Aki 1967, Brune 1970,
Aki 1972, Kanamori and Anderson 1975]. Of  course,
some authors [cf. Boatwright 1978, Dysart et al. 1988,
Patanè et al. 1997] claimed that neither of  them is ap-
propriate for describing the observations. Kim et al.
[1997] considered the effect of  seismic attenuation on
the seismograms from which the source displacement
spectrum is retrieved. They also suggested a method to

separate the attenuation and source effects. Huang and
Wang [2002] studied the scaling law of  the displace-
ment spectra from the seismograms recorded at nine
near-fault stations generated by the 1999 Chi-Chi, Tai-
wan, earthquake. Results show that the values of  cor-
ner frequency fc at the nine stations are almost 0.2 Hz.
The pattern of  displacement spectrum at each station
is similar to the theoretical one proposed by Aki [1967].
The spectral amplitude is almost constant (or ~0 scal-
ing) when f <0.2 Hz and decays at a higher decreasing
rate when f >3 Hz. In the frequency range of  0.2-3 Hz,
P(~)~~-b, b varies from 1.63 to 3.04 at the nine near-
fault stations, and decreases from north to south. Such
a variation might be mainly due to the source effect.
Results seem also to suggest that a ~-square model is
appropriate for the single-degree-of-freedom rupture
processes on the southern fault plane, and a ~-cubic
model for the two-degree-of-freedom ones on the
northern fault plane.

Scaling of  spectral amplitude with ~ is generally
specified with a form of  ~-2 or ~-3. This shows a type of
f -c signal. The f -2 signal is considered to be a result of
the Brownian motions. Bak et al. [1987, 1988] proposed
self-organized criticality to explain f -c signal. Frankel
[1991] assumed that the high frequency energy of  an
earthquake is produced by a self-similar distribution of
subevents. The number of  subevents with radii greater
than r is proportional to r -D, D being the fractal dimen-
sion. In his model, an earthquake is composed of  a hi-
erarchical set of  smaller events. The static stress drop is
parameterized to rn, and strength is assumed to be pro-
portional to static stress drop. He found that a distribu-
tion of  subevents with D=2 and stress drop independent
of  seismic moment (n=0) produces an earthquake
with an ~-2 falloff, if  the areas of  subevents fill the rup-
ture area of  the earthquake. Based on an ideal system
under external random forces, Koyama and Hara [1993]
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studied the dynamical process of  random activation.
They applied the Langevin equation to represent the
time evolution of  the system and took a scaling rule
(represented by an auto-correlation function) to describe
the random activation for generalizing the system.
Their model predicts the fractional power spectrum
f -c from a white spectrum to a Lorentzian. The expo-
nent c is a function of  the fractal dimension of  the scal-
ing rule. The fractal dimensions of  2, 1, and of  about
0.47 indicate a Lorentz spectrum, a f -1 spectrum, and a
power spectrum of  f -1.53 type, respectively. Herrero and
Bernard [1994] and Bernard et al. [1996] proposed the l-
square model to approach the theoretical ~-square
model. Hisada [2000] proposed a model modified from
the l-square model proposed by Bernard et al. [1996]
under three assumptions: (1) the spatial wave-number
spectrum of  the slip distribution falls off  as the inverse
of  the wave-number square; (2) a Kostrov-type slip ve-
locity model is included; and (3) the incoherent rupture
time is introduced to model variable rupture velocities.
He claimed that his model can produce the ~-square
source displacement spectrum.

Aki [1967] described the scaling of  earthquake
source displacement spectra using the dislocation
model based on empirical assumptions about some
model parameters. Although this approach is good
enough, it is still significant to study such scaling based
on a dynamical model. Up to date, only Shaw [1993]
studied this problem using a modified version of  the
one-dimensional dynamical spring-slider mode (abbre-
viated by the 1-D BK model hereafter) proposed by
Burridge and Knopoff  [1967]. Meanwhile, friction con-
trols the rupture processes of  an earthquake [e.g., Nur
1978, Knopoff  et al. 1992, Rice 1993, Shaw 1993, Wang
1996, 1997, 2000, 2004, 2006a, 2007, 2008, 2009, 2012,
2016]. Shaw [1993] considered velocity-weakening fric-
tion, as shown below, suggested by Carlson and Langer
[1989]. He took a homogeneous spatial distribution of
static frictional force in his study. His results show a dif-

ference in spectra, P(~), between large events and small
ones. For large events with Mo>Moc, where Mo is the
seismic moment and Moc is the characteristic seismic
moment, there are different power-law relations in three
angular-frequency regions: P(~)~~0 for ~<2r/Mo;
P(~)~~-1 for 2r/Mo<~<2r/p; and P(~)~~-c for
~>2r/p, where p=2ln(4l2/v)/a. The definitions of  a
and v can be seen in Shaw [1993]. When v is small and
a>1, the exponent c has almost a value of  2.5. Obvi-
ously, there are two turning points in the source spec-
trum for large events. At low ~, the theoretical result is
similar to that proposed by Aki [1967]. At medium ~,
the theoretical power spectrum shows the so-called 1/f
noise [cf. Bak et al. 1987]. At high ~, the theoretical re-
sult is somewhat between ~-2 and ~-3 models, because
c is about 2.5. This is somewhat different from that pro-
posed by Aki [1967]. For large events, Shaw’s theoreti-
cal source spectra are more complicated than Aki’s. For
small events with Mo< Moc, there are two power-law re-
lations in two angular-frequency ranges: P(~)~~0 for
~<2r/L and P(~)~~-2 for ~>2r/L, where L is the
rupture length of  an event. There is only a turning point,
which is dependent upon L. Obviously, Shaw’s theoret-
ical result for small events is similar to Aki’s ~-square
model.

Shaw [1993] only used a velocity-weakening fric-
tion law for numerical simulations. It seems necessary
to explore the effect on the source displacement spec-
trum due to slip-weakening friction. In this work, I will
focus on the analytical study of  frictional effect on scal-
ing of  earthquake source displacement spectra using
the continuous form of  the 1-D BK model in the pres-
ence of  two types of  friction, i.e., slip-weakening fric-
tion and velocity-weakening friction.

2. One-dimensional spring-slider model
The 1-D BK model (see Figure 1) consists of  N slid-

ers of  equal mass, m, and springs with one slider being
linked by a coil spring of  strength, Kc, with the other.
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Figure 1. An N-degree-of-freedom one-dimensional dynamical spring-slider system.
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Each slider is also pulled by a leaf  spring of  strength,
Kl, on a moving plate with a constant velocity, Vp. At
time t=0, all the sliders rest in the individual equilib-
rium states. The i-th slider (i = 1, …, N) is located at po-
sition Xi, measured from its initial equilibrium position,
along the horizontal axis. Each slider is subjected to a slip-
and/or velocity-dependent frictional force. The fric-
tional force is denoted by Fi (Xi; Vi), where Vi=∂Xi/∂t,
with a static frictional force, Fsi, at rest. Elastic strain of
each slider gradually accumulates due to the moving
plate. Once the elastic force at a slider is greater than
Fsi, the static frictional force drops to the dynamic fric-
tional force, Fdi, and the slider will move subject to Fdi.
The equation of  motion is

(1)

Wang [1995] defined the ratio l=Kc/Kl to be the
stiffness ratio of  the system. It is an important param-
eter representing the level of  conservation of  energy in
the system. Larger (smaller) l shows stronger (weaker)
coupling between two sliders than between a slider and
the moving plate. This results in a smaller (bigger) loss of
energy through the Kl spring, thus indicating a higher
(lower) level of  conservation of  energy in the system.
Since the fault system is a dynamically coupling one with
dissipation, l must be a non-zero finite value. The plate
velocity Vp is usually small and in the order of  ~10-12 m/s.
It is noted that the 1-D BK model can only generate a lon-
gitudinal- wave-type rupture [Wang 1996]. However, the
result obtained from this model is still significant for un-
derstanding the P-wave-type source scaling. In crack me-
chanics, the load is applied remotely on a 3-D extended
fault. For the present model, the load is directly linked to
each slider. As mentioned below, when the driving force
is higher than static frictional force, only the earthquake
rupture is taken into account and the driving force and
static frictional force will be cancelled out each other and
can be ignored. Hence, only a single instability is consid-
ered and therefore the problem can be treated easily. The
present advantage is that the closed-form analytical solu-
tions can be obtained.

3. Friction

Velocity-dependent friction and slip-dependent friction
The frictional force between two contact planes is

classically considered to drop from static one to dy-
namic one after the two planes move relatively. In fact,
friction is a very complicated physical process. From
laboratory experiments, Dieterich [1972] first found
time-dependent static frictional strength of  rocks in lab-

oratory experiments. Dieterich [1979] and Shimamoto
[1986] observed velocity-dependent dynamic frictional
strengths. Dieterich [1979] and Ruina [1983] proposed
empirical, velocity- and state-dependent friction laws. In
fact, a large debate related to the friction laws governing
earthquake ruptures has been made for a long time. Al-
though this problem is important, it is out of  the scope
of  this article and thus will not be described in details.
A detailed description of  the generalized velocity- and
state-dependent friction law and the debates can be
found in several articles [e.g., Marone 1998, Wang 2002,
Bizzarri and Cocco 2006c, Wang 2009, Bizzari 2011].

For theoretical analyses and numerical simulations
of  earthquake ruptures, several simple friction laws
have been taken into account. Burridge and Knopoff
[1967] first considered a velocity-dependent, weaken-
ing-hardening friction law. Carlson and Langer [1989]
and Carlson et al. [1991] considered a velocity-weaken-
ing friction law: F(v)=Fo/(1+v/vc), where Fo is the
static frictional force and vc is a characteristic speed to
specify the variation in F with velocity. F(v) is Fo at v=0
and decreases monotonically from Fo to zero as |v| be-
comes large. Several authors [e.g., Carlson and Langer
1989, Carlson 1991, Carlson et al. 1991, Beeler et al.
2008] theoretically modeled earthquakes by using this
velocity-weakening friction law.

Cochard and Madariaga [1994] and Madariaga and
Cochard [1994] assumed that purely velocity-dependent
friction models can lead to unphysical phenomena or
mathematically ill-posed problems. Hence, those mod-
els are very unstable at low values of  the fault slip ve-
locity both during the passage of  the rupture front and
during the possible slip arrest phase. Moreover, Ohnaka
[2000] stressed that purely velocity-dependent friction is
in contrast with laboratory evidence that is the friction
law is not a one-valued function of  velocity. Bizzarri
[2011a,b] deeply discussed this point. Nevertheless, in
order to obtain a closed-form solution the single-valued
velocity-dependent friction law is taken into account.
The present study can be regarded as a marginal analysis
of  the effect of  velocity-dependent friction on the scal-
ing of  source displacement spectra of  earthquakes. An-
alytic results will help us to understand such an effect.

For the first-order approximation, Wang [1995,
1996] considered a piece-wise, linearly velocity-depen-
dent weakening-hardening friction which is simplified
from the friction law proposed by Burridge and
Knopoff  [1967]. The decreasing (weakening) and in-
creasing (hardening) rates of  dynamic friction strength
with sliding velocity are two main parameters of  this
friction law. The two rates are denoted, respectively, by
rw and rh. The function F(v) is defined only for v≥0 and
F(v) is a negative infinity when v < 0. This means that
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no backward motion is allowed. When v=vc, F(v)
reaches the minimum value, i.e., gFo(0<g<1). The
smaller g is, the larger the force drop is. Thus, smaller g
is more capable of  generating a larger event than larger
g. A drop in the frictional force from Fo to gFo behaves
like an extra source supplying additional energy to a
slider for proceeding sliding. The velocity hardening
stage is a fast re-strengthening process associated with
some healing of  slip.

Cao and Aki [1984/85] took a displacement soft-
ening-hardening friction law: F(d)=Foexp[−(d−do)2/c2],
where d is the fault slip and Fo, do, and c are constants.
Cao and Aki [1986] applied rate- and state-dependent
friction to controlling the motion of  a slider. From a
comparison between a slip-dependent friction law and
a velocity- dependent one through numerical compu-
tations, they concluded that the two kinds of  friction
laws cause different effects on simulation results. 

Friction can also be produced from thermal pres-
surization [cf. Fialko 2004, Bizzari and Cocco 2006a,b,
Rice 2006, Wang 2009, Wang 2013]. Rice [2006] pro-
posed two end-members models for thermal pressur-
ization: the adiabatic-undrained-deformation (AUD)
model and slip-on-a-plane (SOP) model. He also ob-
tained the shear stress-slip functions, x(d), caused by
thermal pressurization: xaud(d)= f (vn− po)exp(−d/dc),
where dc=tch/fK and t, c, h, f, and K are, respectively,
the density, heat capacity, thickness, friction coefficient,
and undrained pressurization factor of  the slip zone,
for the AUD model; and xsop(d)= f (vn− po)exp(d/L*)
erfc(d/L*)1/2, where erfc(z) denotes the complementary
error function and L*= 4(tc/K)2(at

1/2+ah
1/2)2/f 2V, where

at, ah, and V are, respectively, the thermal diffusivity,
hydraulic diffusivity, and slip rate of  the fault zone, for
the SOP model. The two parameters dc and L* control
the shear stress-slip functions of  the individual end-
member models. Clearly, the two friction laws exhibit
exponentially slip-weakening friction for the AUD
model and slip-weakening friction for the SOP model.

Static frictional force and breaking strengths
The distribution of  the static frictional force (or

the breaking strengths) affects dynamical behavior of  a
fault system. Carlson and her co-workers used an al-
most uniform distribution of  the breaking strengths in
their studies. Thus, de-localized events, for which all
sliders of  the model are in an unstable state, can be eas-
ily generated in their simulations. Nussbaum and Ruina
[1987] claimed that such a homogeneous fault stress is
generally unstable. It is known that the fault zones re-
lated to earthquakes are usually quite complicated.
Seismological and geological observations show that
the mechanical properties and geometry of  a fault zone

are heterogeneous. For example, the breaking strengths
on the Chelungpu fault, along which the 1999 Ms 7.6,
Chi-Chi, Taiwan, earthquake ruptured, are heteroge-
neous [see Wang 2006a,b]. The breaking strength is the
main mechanical parameter representing the state of
stress over the fault zone for generating ruptures and
thus influences seismicity and its scaling laws. Two phe-
nomenological models have been long accepted to de-
scribe the heterogeneous fault strengths: one is the
barrier model proposed by Das and Aki [1977] and Aki
[1979] and the other the asperity model suggested by
Kanamori and Stewart [1978]. 

4. Analytical studies and discussion
In this study, I will analytically study the conditions

of  generating scaling of  source displacement spectra of
earthquakes utilizing the 1-D BK model in the presence
of  either velocity- or slip-weakening friction. As men-
tioned above, the friction law is quite complicated. In
order to perform analytic studies, I take the simplified
linear friction laws: F(V)=Fo(1−V/Vc) (V = dX/dt = the
velocity and Vc= the characteristic velocity) for veloc-
ity-weakening friction and F(X)=Fo(1−X/Xc) (X=the
slip and Xc=the characteristic slip distance) for slip-
weakening friction. The former and the latter are al-
most the approximations, respectively, of  the friction
law used by Carlson and Langer [1989] at low velocities
and of  that used by Cao and Aki [1986] or those pro-
posed by Rice [2006] at small displacements. It is obvi-
ous that Fo/Vc is the weakening rate with velocity and
Fo/Xc is the weakening rate with slip. Hence, in some
sense the marginal analyses of  generalized friction laws
are made in this study. The characteristic velocity and
characteristic slip distance are also the slopes of  the re-
spective laws, thus representing the respective decreas-
ing rates. A uniform distribution of  the breaking
strengths is considered in this study. This means that
only steady travelling waves are taken into account.

Letting xi=Xi−Vpt leads to Vi=dXi/dt=dxi/dt−
Vp= vi+Vp, and thus Xi=xi+Vpt. This makes Equation (1)
become

(2)

When a slider slips, Vpt and Vp are, respectively,
much smaller than xi and vi, and thus can be ignored.
Thus, Equation (2) becomes 

(3)
Obviously, Vp is no longer a parameter of  the

equation of  motion.
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5

Dividing Equation (3) by a unit area, i.e., dydz,
where y and z denote the coordinates, respectively, along
and normal to the 1-D system, leads to 

(4)
Defining tA=m/dydz, kc= Kc/dydz, kl= Kl/dydz,

and fi =Fi/dydz, Equation (4) becomes

(5)

To simplify the mathematical manipulation, the
continuous form will be normalized on the basis of
some normalization factors. Now, the stiffness ratio be-
comes l=kc/kl. Let fi(xi;vi) = foz(xi;vi), and define
Do= fo/kl(=Fo/Kl) to be the characteristic slip distance
of  a slider exerted by a force fo through a spring with
strength of  kl. Larger fo yields longer Do when kl is
fixed. Define ~o=(kl/tA)1/2=(Kl/m)1/2 and x=~ot. The
quantity ~o/2r is the predominant frequency of  oscil-
lation of  a single slider attached to a leaf  spring in the
absence of  friction and thus a characteristic parameter
of  the model. This gives To=2r/~o to be the natural
period of  oscillation. The ratio Do/Vp is the loading
time for a leaf  spring to stretch enough for overcoming
the static frictional force, and thus Vp/Do~o is equiva-
lent to the ratio of  the slipping time ~o

-1 to the loading
time. Obviously, Do and ~o are two basic units to scale,
respectively, the spatial coordinates, xi, and time, t.

Defining ui=xi/Do and vi=dui/dt and substituting
the above-mentioned normalized factors into Equation
(5) lead to

(6)

To further perform the problem easily, like Carl-
son and Langer [1989] the equivalent differential equa-
tion, i.e., the continuous form, is made from Equation
(6). The difference terms in the right side of  Equation
(6) are divided by the square of  the unit length, a, be-
tween two sliders in the equilibrium state and thus
Equation (6) becomes

(7)
It is noted that the length ‘a’ is not an explicit one

of  the original equation. The limits of  la2, ui, and vi,
are represented, respectively, by h2, u, and v as the value
of  ‘a’ approaches zero. Hence, Equation (7) becomes

(8)

where p is the normalized horizontal coordinate of  the
model.

The trial solution of  Equation (8) is u= −z(u;v)≈con-
stant when ∂2u/∂x2= 0 and ∂2u/∂p2= 0. This solution
means that all sliders are moving uniformly. Consider
to add a small perturbation to u (p,x), that is, u (p,x) =
−z(u;v)+ uoexp(iqp+Xx), where uo is a very small
quantity, q is the wave-number, and X=~/~o is the
dimensionless angular frequency. This gives ∂u/∂x=
Xuoexp(iqp+Xx), ∂2u/∂x2 = X2uoexp(iqp+Xx), and
∂2u/∂p2= −q2uoexp(iqp+Xx). Substituting those quan-
tities into Equation (8) leads to X2uoexp(iqp+Xx) =−h2q2

uoexp(iqp+Xx)−[−z(u;v)+uoexp(iqp+Xx)]−z(u;v) .
This gives X2uo=−h2q2uo−uo or (X2+h2q2+1)uo= 0. For
non-null uo, we have (X2+h2q2+1)=0. This gives X=
i(h2q2+1)1/2. Since h2q2+1> 0, X is purely imaginary.
Hence, the solution is u(p,x)=−z(u;v)+uoexp[i(qp+Xx)].
This shows that any small perturbation added to a slider,
no matter how long its wavelength is, does not diverge
when u = −z(u;v)≈constant.

Slip-weakening friction
As mentioned above, the simplified slip-weaken-

ing friction law is z(u)=1−u/(Xc/Do). Define D=Xc/Do,
we have z(u)=1−u/D, where D is the dimensionless
characteristic slip distance and also the dimensionless
decreasing rate of  friction with slip. This makes Equa-
tion (8) become

(9)

In order to solve Equation (9), we take the Laplace
Transformation (LT, denoted by L), which is described
in Appendix A. According to Appendix A, the LT of
Equation (9) is

(10)

This gives

(11)

To solve Equation (11), let U = Uc+Up where Uc and
Up are, respectively, the complementary and particular
solutions. Let } = (s2+1−D-1)1/2. According to the
method shown in Appendix B, the general solution of
Equation (11) is

(12)

where Uc= C1e-}p/h+C2e}p/h and Up=−1/s}2.
Equation (11) consists of  two kinds of  waves: the first

.
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one is the travelling wave along the model represented by
the first and second terms in its right-handed-side and the
second one is the displacement at a site given by the third
term. The first and second terms represent the waves trav-
elling along the direction of  increasing p and that of  de-
creasing p, respectively. The second term with p< 0 can
indeed be re-written as e-}|p|/h. From Equation (A2) in
Appendix A, L-1[e-}|p|/h] with |p|/h>0 is

(13)

where C=C1 or C2, c= (1−D-1)1/2 and H(x−|p|/h) is
the unit step function (H(x)=0 as x<0 and H(x)=1 as
x≥0) representing a travelling plane wave.

The two parameters x=~ot and p=x/Do are, re-
spectively, the normalized time and normalized (dimen-
sionless) rupture distance, Hence, h is the normalized
(dimensionless) rupture velocity and equal to vR/Do~o,
where vR is the rupture velocity. The arrival time of
rupture wave at p or x is xa=|p|/h or ta=x/vR. When
the rupture propagates from 0 to pL, which is the nor-
malized (dimensionless) total rupture length and equal
to L/Do (L = the total rupture length), the normalized
total duration time is xD=pL/h, and thus the total du-
ration time is TD= xD/~o= pL/~oh, thus giving TD=
pL/~oh = (L/Do)/~o(vR/Do~o) = L/vR.

Based on the above-mentioned parameters, Equa-
tion (13) can be transferred to 

(14)

Hence, the FT of  the first part of  Equation (14),
i.e., xc1(y,t) = CDoH(~ot−|y|/Doh), is Xc1(y,~)=
F [xc1(y,t)]=F [CDoH(~ot−|y|/Doh)]=CDo[rd(~)−
(i/~)exp(|y|/Doh)]. When ~>0, the spectrum shows
~ -1 scaling. 

The FT of  the second part of  Equation (14), i.e.,
xc2(y,t)=−CDoc~otaJ1[c~o(t2− ta

2)1/2]/(t2− ta
2)1/2}H[~o

(t − ta)], is Xc2(y,~)=F [xc2(y,t)]=−CDoc~ota∫{ J1[c~o
(t2− ta

2)1/2]/(t2− ta
2)1/2}H[~o(t − ta)]e-i~tdt, with an inte-

gral range from −∞ to +∞. At each site, the rupture
occurs just between ta and tR= ta+TR where TR is the rise
time of  rupture. When t >TR. the rupture stops. We are
only interested on the spectrum at a site and thus differ-
ent values of  ta at different sites just lead to phase changes
and cannot influence the spectral amplitudes when the
wave attenuation is ignored. Hence, the value of  ta inside
the integral can be set to be zero to simplify the problem.
This gives Xc2(y,~)=−CDoc~ota∫[J1(c~ot)/t]e-i~tdt, with
an integral range from 0 to TR. Since F [J1(t)/t] = [2(1 −

~2)/r]1/2rect(~/2c~o), where rect(~) is the rectangu-
lar function: rect(~) = 1 for |~|<1/2, 1/2 for |~|=1/2,
and 0 for |~|>1/2, we have F [J1(c~ot)/t]= {2[1−(~/
c~o)2]/r}1/2rect(~/2c~o). Clearly, the Fourier trans-
form is equal to 1 only when |~|<c~o. This means
that the Fourier amplitudes of  xc2(y,t) exist only when
|~|<c~o. Hence, the complementary solution cannot
lead to ~-n source scaling at high frequencies.

The third term of  Equation (12), i.e., Up(p,s)=
−1/2s(s2+1−D-1), represents source behavior of  slip at
a site. According to Appendix A, up(p,x)=L-1[Up(p,s)]=
[1−cos(cx)]/2c. Obviously, the solution does not exist
when 1−D-1= 0 or D=1. When 1−D-1≠0 or D≠1, we have

(15)

There are two cases in Equation (15): one with
1−D-1<0 or D<1 and the other with 1−D-1>0 or D>1.
For the first case, sin[(1−D-1)1/2x/2] = i·sinh[(D-1−1)1/2

x/2], and thus sin2[(1−D-1)1/2x/2] = − sinh2[(D-1−1)1/2

x/2]. The solution displays a negative hyperbolic sine-
type function. It cannot represent a commonly-defined
wave. For the second case, the solution Equation (14)
shows vibrations, specified with a positive sine-type
function, at a site. Replacing up(p,x) by xp(y,t), p by
x/Do, and x by ~ox into Equation (15) leads to

(16)

Obviously, xp(y,t) =0 when t = 0.
The FT of  xp(y,t), i.e., Xp(y,~)=F [xp(y,t)], is

(17)

Obviously, the values of  Xp(y,~) exist only at ~=
−c~o, 0, and c~o. thus unable to represent a com-
monly acceptable earthquake source displacement
spectrum. This means that the simplified linearly slip-
weakening friction law cannot work well for earth-
quake ruptures based on the 1D BK model. Since this
friction law has been widely used by others for other
models as mentioned above, I assume that a more com-
plicated slip-dependent friction law like that used by
Cao and Aki [1984/85] or those proposed by Rice
[2006] should be taken into account for the 1D BK
model in the future.

Bizzarri [2012] considered a single spring-slider sys-
tem and assumed a linear slip-weakening friction law
to govern the motion of  the slider. He provided a
closed-form, analytical solution of  the physical system.
His solution of  slip includes two exponential time func-
tions, like e-Ct for t>0. The function can be represented
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by e-Ct H(t). Like the previous complimentary solution,
the Fourier spectrum of  his slip function is 1/(i~+C),
thus showing ~-1 scaling in the entire range of  ~.

Velocity-weakening friction
As mentioned above, the simplified velocity-weak-

ening friction law is z(v)=1−v/(Vc/Do~o). Define the
dimensionless characteristic velocity to be y=Vc/Do~o,
we have z(v)=1−v/y, where y is also the dimension-
less decreasing rate of  friction with velocity. This makes
Equation (8) become

(18)

According to Appendix A, the LT of  Equation (18)
is

(19)

This gives

(20)

Let g=(s2+1−sy-1)1/2. From Appendix B, the gen-
eral solution of  Equation (20) is 

(21)

Equation (21) shows the superposition of  two
kinds of  waves, i.e., the travelling waves along the
model represented by the first and second terms in its
right- handed-side and the displacement at a site shown
by the third term. The first and second terms represent
the waves travelling along the direction of  increasing p
and that of  decreasing p, respectively. The second term
with p<0 can indeed be re-written as e-g|p|/h. Let v=
(1−1/4y2)1/2 . According to Appendix A, L-1[e-g|p|/h]
with |p|/h>0 is

(22)

Obviously, this expression represents a travelling
plane wave. In the right-handed side, the quantities in
the front of  H(x−|p|/h) show the wave amplitude. Un-
like Equation (13) for slip-weakening friction, Equation
(22) has an additional term ex/2y, which increases ex-
ponentially with time as displayed in Figure 2. When
the rupture propagates from 0 to pL, the normalized
total rupture duration time is xD=pL/h, and thus the
total rupture duration time is TD=xD/~o=pL/~oh =
(L/Do)/~oh. Substituting uc(p,x) = xc(y,t)/Do, p=y/Do,

x=~ot, ta=y/vR, and s=~o/2y into Equation (22) leads
to

(23)

The first part of  Equation (23) is 

(24)

Its FT is X c1(y,~)=F [xc1(y,t)]=CDo∫e
-(i~ -s)tdt. At

each site, the integration is made from ta to tR= ta+TR,
where TR is the rise time of  rupture. Hence, we have 

(25)

This give |Xc1(y,~)|= CDo|exp(stR)−exp(sta)|/
(~2+s2)1/2. Clearly, the spectral amplitude decays with
~-1 in the entire range of  ~, and |Xc1(y,0)|= CDo|exp
(stR)−exp(sta)|/s.

The FT of  the second part of  Equation (23), i.e.,
xc2(y,t) = −CDov~otaest J1[v~o(t2 − ta

2)1/2] H [~o(t −
ta)]/(t2− ta

2)1/2}, is Xc2(y,~)=F [xc2(y,t)]=−CDov~ota
∫{J1[v~o(t2− ta

2)1/2]/(t2− ta
2)1/2}est [H[~o(t − ta)]e-i~tdt,

with an integral range from −∞ to +∞. At each site,
the rupture occurs just between ta and tR=ta+TR, where
TR is the rise time of  rupture. We are only interested
on the spectrum at a site and thus different values of  ta
at different sites just lead to phase changes and cannot
influence the spectral amplitudes when the wave at-
tenuation is ignored. Hence, the value of  ta inside the
integral can be set to be zero to simplify the problem.
This gives Xc2(y,~)=−CDov~ota∫[ J1(v~ot)/t]este-i~tdt,
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Figure 2. The function of  exp(~ot/2y) versus t. The solid curve
from ta=y/vR to tR= ta+TR, where vR and TR are the rupture veloc-
ity and rise time, respectively, displays the integration range.



with an integral range from 0 to TR. Since F [ J1(t)/t] =
[2(1−~2)/r]1/2 rect(~/2), where rect(~) is the rectan-
gular function as mentioned above, we have
F [ J1(v~ot)/t]={2[1−(~/v~o)2]/r}1/2 rect(~/2v~o).
Obviously, the Fourier transform is equal to 1 when
|~|<v~o. The Fourier transform of  est is F [est ] =
∫este-i~tdt, with an integral range from 0 to TR, and
equal to [exp(s−i~)TR−1]/(s−i~). Mathematically,
F{[ J1(v~ot)/t]est}=F [ J1(v~ot)/t]*F [est ], where the
symbol “*” denotes the convolution of  F [ J1(v~ot)/t]
and F [est ], i.e.,

(26)

with an integral range from −v~o to +v~o. Equation
(26) is quite complicated and cannot be easily integrated.
Since only spectral scaling at high frequencies is con-
sidered here, the integration is conducted only for high
frequencies. Since |z|<v~o<~o and s=~oy/2<~o,
s−i(~−z) can be approximated by i~ when ~>>~o.
Under this condition, Equation (26) can be re-written as

(27)
with an integral range from −v~o to +v~o. The two
integrals in Equation (27) are finite and represented by
I1 and I2, respectively, for the former and latter. Hence,
F{[ J1(v~ot)/t]est}=(1/i~v~o)(2/r)1/2(I1e-i~− I1). This
gives |F {[ J1(v~ot)/t]est }|=|~v~o|-1(2/r)1/2|[(I1

2−
1)cos2(~)−2I1I2cos(~)+I2

2]1/2| Although the magnitude
of  |F{[ J1(v~ot)/t]est}| is dependent upon ~, but it
decreases with increasing ~ in a power-law form of  ~-1.
This means that the complementary solution shows ~-1

source scaling at high frequencies. Of  course, the mag-
nitude of  |F{[ J1(v~ot)/t]est }| is also in terms of  v
and ~o.

The third term of  Equation (21), i.e., Up(p,s) =
−1/2s(s2+1−sy-1), directly shows source behavior of  slip
at a site and can be re-written as −(1−4y2)-1/2{−1/(s+
a)+[1−(1−4y2)1/2]/2(s+b)−[1+(1−4y2)1/2]/2(s+c)},
where a=0, b=−(1/2y)[1+(1−4y2)1/2], and c=−(1/2y)
[1−(1−4y2)1/2]. Obviously, the solution does not exists
when 1−4y2=0 or y=0.5. When 1−4y2≠0 or y≠0.5,
the ILT of  Up(p,s) is

In Equation (28), there are two cases: one with
1−4y2>0 or y<0.5 and the other with 1−4y2<0 or
y>0.5. The respective results are described below.

(i) For 1−4y2>0 or y<0.5:
Let sinh(a) = (ecx/2y− e-cx/2y)/2 and cosh(a) =

(ecx/2y+e-cx/2y)/2. Equation (28) is re-written as

(29)
Obviously, the solution cannot represent a com-

monly known wave and thus is excluded in this study.
(ii) For 1−4y2<0 or y>0.5:
This gives 4y2−1>0. Let q=(4y2−1)1/2, Consider a

right triangle with three sides: the longest side with a
length of  L=(12+q2)1/2 =2y, and the other two with
lengths of  q and 1, respectively. The angle between the
longest side and the side with a length of  1 is set to be i.
Hence, we have cos(i)=1/2y, sin(i)=q/2y, and tan(i)=
q. The tangent term gives i= tan-1(q). Define sin(a) =
(eiqx/2y − e-iqx/2y)/2i and cos(a)=(eiqx/2y + e-iqx/2y)/2.
Replacing up(p,x) by xp(y,t)/Do, p by y/Do, x by ~ot,
and s=~o/2y into Equation (29) leads to

(30)

Obviously, xp(y,t)=0 at t=0. This solution shows a
sine-function-type standing wave. Unlike Equation (21),
Equation (30) has an extra term est, which shows a
temporal increase in the amplitude with a constant of
s-1=2y/~o.

Since the motion starts at t=0, xp(y,t) is null when
t <0 and thus Equation (30) must have the form of
xp(y,t)H(t). The FT of −DoH(t) is Xp1(y,~)=−Do[rd(~)−
i/~]. The first term of  Xp1(y,~) is a delta function of
slip at ~=0, and it does not influence the source dis-
placement spectrum when ~>0. Since the second term
of  Xp1(y,~) exhibits a decay of  motion with ~ in a
power-law function of  ~-1 for the entire range of  ~.
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Figure 3. The plot of  ~*/~o versus v.(28)
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Meanwhile, its amplitude is only Do, it cannot result in
a remarkable effect on the source displacement spectrum.
Define ~*= q~o= (4y2−1)1/2~o be the predominant an-
gular frequency of  the wave. Figure 3 displays the plot
of  ~* versus ~o. Obviously, ~* first increases with ~o
at low ~o and then slightly increases with ~o at high ~o.

Due to the existence of  est, the FT of  the second
part of  Equation (30) cannot be obtained directly from
the FT table. Hence, we must conduct the integration
to get its FT. The integration is made in the range from
0 to TR. The second term of  Equation (30) includes a sine
function with a period of  Tp= 4ry/q~o. As displayed in
Figure 4, the solid plus dotted curve represents the ve-
locity waveform, while the solid curve denotes the dis-
placement waveform. When t = TR, the displacement
at a site reaches the maximum value. Since the wave is
considered to propagate from −y to +y, the motion
stops at the time instant when the velocity is equal to
zero. In Figure 4, Tp and TR are, respectively, the period
of  velocity waveform and the rise time of  displacement
waveform. Clearly, TR is roughly equal to Tp/2, thus
giving ~oTR/2y=r/q. The FT of  estsin(qst −i)/sini
is made from 0 to TR, and the result is

(31)
The absolute value of  Xp2(y,~) is

(32)

At ~=0, |Xp2(y,~)|=(e2rq+1)/~oy=r/~oy(4y2−
1)1/2, which is a function of  both ~o and y. When
(~o/y)2<<2, {~4+[(~o/y)2− 2]~2+~o

4}1/2≈~2−~o
2. This

leads to the existence of  singularity when ~=~o. Nu-
merical tests show that singularity appears when ~o is
lower than a certain angular frequency, ~l, which de-
pends on y. Hence, in order to obtain a small value of
~l=~o/y, the choice of  ~o must be dependent on y.
The larger y is, the higher ~o can be. For example, ~l=
0.4r when y=0.55. Because of  ~o=(ll/tA)1/2=(Kl/m)1/2,
weak coupling between the moving plate and the fault
and/or a low density of  fault-zone materials will lead to
low ~o, thus resulting in singularity.

Figure 5 displays the log-log plot of  |Xp2(~)| ver-
sus ~: (a) for y= 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85,
0.90, 0.95, and 1.00 (from top to bottom) when ~o= 2r;
and (b) for ~o=0.2r, 0.4r, r, 2r, 4r, 6r, 8r, 10r, 12r,
and 14r (from top to bottom) when y= 0.55. To pro-
duce Figure 5, Do is taken to be 1 unit. Since a uniform

fault is considered here, the spectral amplitude is only
a function of  ~ and related source parameters and in-
dependent on the position. Hence, |X (~)|=|Xp2(y,~)|
is displayed in the figure. The values of  |X (~)| are
normalized by respective maximum values. The dashed
line in each diagram has a slope value of  −1. Figure 5b
shows a bump around ~=~o when ~o=0.2r as men-
tioned previously.

Essentially, Figure 5a is similar to Figure 5b. The
spectral amplitude decreases with increasing y as well
as increasing ~o. Higher y as well as larger ~o leads to
smaller spectral amplitude. The difference in spectral
amplitudes between two consequent values of  y de-
creases with increasing y as well as increasing ~o. This
means that at high y an increase in y cannot produce
stronger spectral amplitudes. This phenomenon also
exists for ~o. In Figures 5a and 5b, log(|X (~)|) is almost
constant (exhibiting ~0 scaling) at low ~ when ~ is
lower than a turning one, i.e., the corner angular fre-
quency, ~c, which is located at the tip of  the convex
curve and not displayed in Figure 5, When ~>~c,
log(|X (~)|) monotonically decreases with ~ follow-
ing the respective lines with a slope value of  −1, which
is the scaling exponent.

There are some differences between Figure 5a and
Figure 5b. First, the lines with a slope value of  −1 at
higher ~o are parallel to one another in Figure 5a and
merge together at much higher ~o in Figure 5b. Sec-
ondly, ~c is almost independent on y (see Figure 5a) and
increases with ~o (see Figure 5b).

A comparison between Equation (16) and Equa-
tion (29) reveals that a major difference between the
two equations is the existence of  an exponential term in
Equation (29) and not in Equation (16). Such an addi-
tional effect is frequency- dependent. This makes the
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Figure 4. The solid plus dotted curve represents the velocity wave-
form and the solid curve denotes the displacement waveform. Tp and
TR are, respectively, the predominant period of  the velocity waveform
and the rise time of  displacement waveform.



difference in the results between the two friction laws.
Nonlinearity of  slip-weakening friction, as shown in
Equations (3) - (5), could lead to different results. It is
significant to examine the effect on source displacement
spectrum caused by nonlinear slip- weakening friction
in the future.

Figure 5 clearly show that linearly velocity-weak-
ening friction results in |Xp2(y,~)|~~0 at low ~ and
|Xp2(y,~)|~~-1 at high ~. This is different from ~-square
source scaling as proposed by Aki [1967]. This might be
due to a use of  1-D model in this study and a use of  2-
D model by Aki [1967]. The conventional concept is
that ~-square scaling is caused by the smoothing effect
due to time and fault length and ~-cubic scaling due to
time, fault length, and fault width [cf. Aki and Richards
1980]. However, the present model consists only of  time
and fault length. It seems that time does not causes the
smoothing effect. I assume that ~-square scaling should
be caused by the smoothing effect due to both fault
length and fault width. This must be examined by using
the 2-D model. 

The present results are somewhat different from
those obtained by Shaw [1993], even though using the
same 1-D BK model in the two studies. Unlike his re-
sults, in this study a single ~-1 source scaling law at high
~ is operative for both small and large earthquakes. A
possible reason to cause the difference is that his veloc-
ity- weakening law is nonlinear and more complicated
than the present one. Nonlinearity can produce unex-
pected results. It is significant to analytically and nu-
merically investigate the effect of  different friction laws
on source scaling near future.

The previous studies as mentioned in the section
of  “Introduction” suggest that fractal and/or hetero-
geneous spatial distributions of  fault strengths, dis-
placements etc. on the fault plane are major factors in
affecting scaling of  earthquake source displacement spec-
trum. The present study obviously suggests that linearly
velocity- weakening friction can also play a significant
role on such scaling. The corner angular frequency (~c)
is commonly considered to be a ratio of  the rupture ve-
locity to the fault length [cf. Aki and Richards 1980].
Figure 5 exhibit that ~c increases with ~o, yet is not a
function of  y. This indicates that ~o, which depends on
the mass of  a slider and coupling between a slider and
the moving plate, controls ~c, while the characteristic
velocity or the decreasing rate of  friction with velocity
is not a factor in influencing ~c.

However, two problems should be resolved in the
near future. First, the present study cannot suggest
whether the ~-cubic source scaling holds or not, because
only the 1-D model is taken into account. Secondly, the
present result is valid only for the longitudinal-wave-type
rupture. Included also in earthquake are the shear-wave-
type waves. In order to explore the two problems, a sim-
ilar study on the basis of  the 2-D dynamical spring-slider
mode extended from the 1-D BK model by Wang [2000,
2012] should be performed further.

5. Conclusions
Scaling of  earthquake source displacement spec-

tra is analytically studied based on the continuous form
of  the one-dimensional dynamical spring-slider model
proposed by Burridge and Knopoff  [1967] in the pres-
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Figure 5. The log-log plot of  |X(~)| versus ~: (a) for y=0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, and 1.00 (from top to bottom) when
Do= 1 unit and ~o=2r; and (b) for ~o= 0.2r, 0.4r, r, 2r, 4r, 6r, 8r, 10r, 12r, and 14r (from top to bottom) (from top to bottom) when Do= 1
unit and y=0.55.
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ence of  two types of  friction, i.e., linearly slip-weaken-
ing friction and linearly velocity-weakening friction.
The general solution has the complementary and par-
ticular parts. The complementary solution exhibits ~-1

source displacement spectra for the two types of  fric-
tion. For the particular solution, slip-weakening friction
cannot produce ~-n source displacement spectra, while
velocity-weakening friction results in acceptable spec-
tra. For velocity-weakening friction, the log-log plot of
spectral amplitude versus angular frequency is mainly
controlled by the natural angular frequency, ~o, of  the
system and the (dimensionless) decreasing rate, y, of
the friction law. Essentially, the spectral amplitude ex-
hibits almost ~0 scaling at low ~ and decreases with in-
creasing ~ following a line with a slope value of  −1,
which is the scaling exponent. However, the plots in the
range of  medium ~ are clearly different between ~o<~l
and ~o>~l, where ~l depends on y. For example,
~o<0.4r and ~o>0.4r when y=0.55. For ~o>0.4r, the
spectral amplitude exhibits almost ~0 scaling when ~
is lower than the corner angular frequency (denoted by
~c), and the spectral amplitude monotonically de-
creases with ~ and follows a line with a slope value of
−1 when ~>~c. The corner angular frequency in-
creases with ~o and independent on y. On the other
hand, for ~o<0.4r, the spectral amplitude first exhibits
almost ~0 scaling at low ~, then increases with ~ up to
a peak value, and finally decreases with increasing ~,
following a line with a slope value of  −1, which is the
scaling exponent. The angular frequency associated
with the peak value is almost ~o. Consequently, the
source displacement spectrum shows ~-1 scaling at high
~ when linearly velocity-weakening friction is taken
into account under the condition of  y>0.5.
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Appendix A: The Laplace transformation 
The Laplace transformation (LT, denoted by L), of

a function u, that is, L [u(p,x)]=U(p,s)=∫e-sxu(p,x)dx, in
which the integration is made from –∞ to +∞. The
Laplace transforms of  several functions used in this
study are: L [d2u(p,x)/dx2]= s2U(p,s), L [du(p,x)/dx]=
sU(p,s), and L [1]=1/s. In order to obtain the inverse
Laplace transform (ILT, L-1) of  U(s)=1/(s+a)(s+b)(s+c),
which is the main form in this study, U(s) is first trans-
ferred to −[(b−c)/(s+a)+(c−a)/(s+b)+(a−b)/(s+c)]/
(a−b)(b−c)(c−a). Due to L-1[1/(s+d)] =e-dx,

(A1)

Also used in this study is the following formula:

(A2)
where J1[y] and H[y] denote the Bessel function of  the
first kind with order 1 and the unit step function, respec-
tively, when a>0, In addition, L-1{U(s−a)}= eaxu(x) and
L-1[1/s]=1 are also used in this study.

Appendix B: The solution of  a second-order linear
differential equation

The method to solve a second-order linear differ-
ential equation can be seen in Johnson and Kiokemeister
[1968]. For a second-order inhomogeneous linear dif-
ferential equation:

(B1)

where a, b, and c are three constants, the solution is
U=Uc+Up where Uc and UP are, respectively, the com-
plementary and particular solutions. Uc is the solution
of  a homogeneous form of  Equation (B1), i.e., 

(B2)

Inserting the trial solution Uc= emp into Equation
(B2) leads to am2emp+bmemp+cemp=0. This gives
am2+bm+c=0. Thus, the solutions of  m are m=−b±
(b2−4ac)1/2/2a. Hence, the general form of  Uc is C1e-mp+
C2emp. Let y(p)=emp and z(p)=e-mp. To solve Up, we let

(B3)

The two function y1 and z1 should meet the fol-
lowing conditions: y1’y+z1’z = 0 and y1’y’+z1’z’= f (x),
where y1’=dy1/dp, y’=dy/dp, z1’=dz1/dp, and z’=dz/dp.
Hence, y1 and z1 can be solved from the following in-
tegral equations: y1=−∫[zf (x)(y1’y’+z1’z)/(yz’−y’z)]dp
and z1= ∫ [yf (x)(y1’y’+z1’z)/(yz’−y’z)]dp. Inserting the
related quantities into Equation (B3) leads to the par-
ticular solution.
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