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ABSTRACT
Gravity field reconstruction via the analysis of  kinematic orbit po-

sitions has been proven to provide essential information for Earth 

system research purposes. For this aim, various approaches have 

been developed and applied to exploit kinematic orbits. In addition 

to those existing methods, in this paper we present a new technique. 

By means of  a series of  simulation studies we demonstrate that the 

novel method is comparable with the hitherto proposed techniques. 

As the main difference with existing methods, our approach is 

based on the so-called Lagrange coefficients, i.e., a semi-analytical 

description of  the satellite motion. For this reason, we denote the 

technique to as the Lagrange formalism. The low sensitivity to the 

priori information about the gravity field, and less influence of  the 

polar gap are of  its characteristics. The investigations demonstrate 

that the idea of  the Lagrange method in determining the Earth’s 

gravity field could represent comparable results in term of  quality 

with other approaches.

1. Introduction
In the recent decades, a strong scientific interest 

has emerged aiming to better understand the phys-
ics of  the Earth system. This interest implied (and 
partially still implies) the need for a tremendous 
improvement of  our knowledge about the Earth’s 
gravity field - with respect to both accuracy and (spa-
tial) resolution. Today, thanks to the realization of  
a series of  space gravimetry missions, we are in the 
fortunate situation having highly valuable data sets 
available, which allow us to stimulate progress in the 
Earth system research. Branches of  science which 
make use of  space-borne gravity field information 

include geophysical and geotechnical research [e.g., 
Tassara et al. 2007, Migliaccio et al. 2008], geody-
namic research and seismology [e.g., Mantovani et 
al. 2001, Jordan and Watts 2005, Swain and Kirby 
2006, Chen et al. 2007], oceanography [e.g. Bingham 
et al. 2011, Knudsen et al. 2010], hydrology [e.g., Ta-
pley et al. 2004a, Schmidt et al. 2008, Krogh et al. 
2010], cryospheric research [e.g., Chen et al. 2006, 
Velicogna 2009, Harig and Simons 2012, Jacob et al. 
2012], and sea-level research [e.g., Riva et al. 2010, 
Baur et al. 2013, Jensen et al. 2013].

Space gravimetry is intrinsically connected 
to the satellite missions CHAllenging Minisatel-
lite Payload [CHAMP, Reigber et al. 2002], Gravity 
Recovery And Climate Experiment [GRACE, Tap-
ley et al. 2004b], and Gravity field and steady-state 
Ocean Circulation Explorer [GOCE, ESA 1999, Pail 
et al. 2011]. According to the different observation 
principles underlying these projects, the collected 
measurements can be used to infer different ranges 
of  the gravitational spectrum. In this contribution, 
we have a closer look on High-Low Satellite-to-Sat-
ellite Tracking (HL-SST), which is common to all 
three aforementioned missions. HL-SST means that 
a low-Earth orbiter is tracked by high-altitude Global 
Navigation Satellite System (GNSS) satellites such as 
the Global Positioning System (GPS). The technique 
allows to recover long- to medium-wavelength grav-
itational features up to spherical harmonic degree 
and order (d/o) of  about 100 [e.g., Flechtner et al. 
2010, Prange, 2011].
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A variety of  methods has been proposed to in-
fer gravity field information by analyzing kinemat-
ic orbits derived from HL-SST observations. These 
methods include the energy balance approach [Han 
et al. 2002, Visser et al. 2003], the acceleration ap-
proach [Reubelt et al. 2003, Ditmar and van Eck van 
der Sluijs 2004], the short-arc approach [Mayer-Gürr 
2006], and the celestial mechanics approach [Prange 
et al. 2009]. For more information about these meth-
ods, we refer the reader to the work by Baur et al. 
[2014] and the references therein. The study by Baur 
et al. [2014] showed that - apart from energy bal-
ance - the mentioned approaches provide equivalent 
results against the background of  GOCE real data 
analysis; this finding is in agreement with what has 
been expected from a theoretical point of  view. As 
pointed by Ditmar and van Eck van der Sluijs [2004], 
and later confirmed by others, the energy balance 
approach is characterized by its shortcoming due 
to the fewer number of  the observation equations. 
However, it is valuable to notice that the results are 
obtained from the analysis of  the GPS-derived kine-
matic orbit only. Then, it has not meant that the en-
ergy balance approach should be disregarded for any 
application, e.g., for GRACE LL-SST data analysis or 
computing the combined SST and SGG solution for 
GOCE DATA.

In this paper, we present a new approach for 
gravity field recovery from HL-SST derived orbits. 
It is based on the Lagrange formalism for satellite 
motion analysis [Curtis 2005, Sharifi and Seif  2011]. 
The core feature of  this new approach is that the un-
known gravity field parameters (spherical harmon-
ic coefficients) are computed from a semi-analytical 
description of  the satellite motion. We compare the 
results obtained from the Lagrange method with 
those based on the (point-wise) acceleration ap-
proach [Reubelt 2009, Baur et al. 2012]. In this con-
text, the acceleration approach is representative for 
any of  the hitherto proposed methods for kinematic 
orbit analysis - which, as outlined before, excluding 
energy balance have been shown to be equivalent in 
performance.

We aim at the ability and specific characteristics 
of  the Lagrange formalism in the gravity field mod-
eling in a closed-loop simulation procedure. In this 
approach, the derivative of  the satellite orbit with 
respect to the force parameters is directly computed 
using the semi-analytical formulation instead of  the 
variational equations. Unlike the variational equa-
tion, all derivations (i. e, design matrix entries) have 

been computed for all parameters altogether using 
the proposed formulation. Then, there is no need to 
solve a system of  six differential equations or equiva-
lently six definite integrals by numerical quadrature 
for each parameter as described in Beutler [2004] and 
Beutler et al. [2010]. It could be very useful especial-
ly for modeling the gravity field up to high degree 
to avoid high computation costs. In this paper, any 
observable can be defined for modeling the Earth’s 
gravity field based on the orbit perturbation in situ 
point-wise measurement, whereas Kaula’s perturba-
tion theory analyzes the accumulated orbit pertur-
bation [Mayer-Gürr et al. 2005]. There is an ability to 
write the observation equation by means of  all ele-
ments of  the state vector together. This characteristic 
could be an advantage if  the satellite velocity would 
be directly observed in future missions for example 
using the Doppler shift measurements. In addition, 
by the help of  the semi-analytical formulation of  the 
Lagrange formalism, the orbit perturbation during a 
time sub-interval could be interpreted as mass distri-
bution. This ability enables the proposed approach 
to model the regional gravity field.

2. Methods

2.1 Essentials of  the Lagrange formalism
The Lagrange coefficients (f and g series) have 

initially been introduced for the solution of  the two-
body problem [Curtis 2005]. These coefficients are 
according to a Taylor series expansion of  the posi-
tion and velocity vectors. The solution of  Newton’s 
equation of  motion expressed by means of  the La-
grange matrix L (s0, q) reads

(1)

In Equation (1), s0 and s(t) are the initial state 
vector (position and velocity vectors at t0) and the 
solution of  the equation of  motion (state at arbitrary 
point in time t), respectively; q represent force model 
parameters (for instance, gravity field spherical har-
monic coefficients). In this paper, the position and 
velocity vectors in time t are respectively denoted by 
r(t) and ṙ(t). The solution of  Equation (1) is equiva-
lent to the determination of  the Lagrange matrix. 
This matrix has the structure

(2)

where the arrays F and G contain the Lagrange co-
efficients for the orbital motion in a (non- Keplerian) 

s(t) = L (s0 , q) s0

 L (s0 , q) = F G
!F !G

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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gravitational field. Here and below in this research, dot 
and double-dot placed over variables denote first and 
second time-derivatives, respectively. These arrays and 
their time-derivatives read [Sharifi and Seif  2011].

(3a)

(3b)

(3c)

(3d)

Where coefficients Fn(t) and Gn(t) satisfy the re-
lation as

(4)

The superscript (n) indicates the n-th time-deriv-
ative term, and subscript n denotes n-th term of  the 
n-th term of  the Taylor series in Equation (3). Gen-
erally, as it was shown in [Sharifi and Seif  2011], the 
n-th order derivative of  the position vector has the 
ability to be decomposed into the position and ve-
locity vectors. Then, r(n)(t) could be formulated as a 
linear combination of  matrices multiplied by r(t) and 
ṙ(t). These matrices are denoted by Fn(t) and Gn(t) in 
Equation (4).

By differentiating Equation (4) with respect to 
time, we have

(5)

substituting variable r̈  (t) by r̈  (t) = F2(t) r(t) + G2 (t) ṙ(t) 
based on the Equation (4) and rearranging yield a 
reformulated form of  Equation (5) as

 

(6)
As an alternative, the (n + 1)-order term could 

be easily obtained by advancing the sequence in 
Equation (4) as

(7)

The comparison between Equation (7) and 
Equation (6), give the recursive coefficients defini-
tions

(8a)
(8b)

Equation (8) is a fundamental relation to com-
pute Fn(t) and Gn(t). The initial terms could be easily 
computed based on the position and velocity vectors, 
F0(t) = I and G0(t) = 0; F1(t) = 0 and G1(t) = I, (0 is zero 
matrix and I represents the identity matrix). To find next 
terms of the sequence (n ≥ 2), we need some information 
about the gravitational acceleration acting on the satellite.

As it can be concluded from Equation (8), F2(t)  
and G2(t) coefficients are required for the next terms. 
These coefficients could be resulted from the acceler-
ation vector decomposition into the velocity and posi-
tion vectors according to Equation (4). Based on the re-
lation represented by Sharifi and Seif  [2011), the Earth 
gravitational acceleration could be formulated as:

(9)

Then, it could be found from Equations (9) and (4) 
that F2(t) = (a − b) I + A and G2(t) = 0. In Equation (9), 
A is a diagonal matrix with entries

(10)

The unknown quantities (a, b, e, h, l) can be ex-
pressed as a function of  the satellite position vector co-
ordinates (X(t), Y(t), Z(t)) and the partial derivatives of  
the gravitational potential V with respect to the polar 
spherical coordinates radial distance r, latitude ϕ, and 
longitude λ:

(11a)

(11b)

(11c)

(11d)

(11e)

It is valuable to notice that as the scalars are func-
tions of  the satellite position time series, they are func-
tions of  the time too.

The coefficient matrices of  the Taylor series Equa-
tion (3) are computed based on recursive formulation 
Equation (8), needed substitution have been considered

F0(t) = I
G0(t) = 0
F1(t) = 0

F(t) =    1
n!n=0

∞

∑  Fn(t) | t=t0
(t −t0 )n

G(t) =    1
n!n=0

∞

∑  Gn(t) | t=t0
(t −t0 )n

!F(t) =    1
(n−1)!n=1

∞

∑  Fn(t) | t=t0
(t −t0 )n−1

!G(t) =    1
(n−1)!n=1

∞

∑  Gn(t) | t=t0
(t −t0 )n−1

r(n)(t) = Fn(t)r(t) +Gn(t) !r(t)

r(n+1)(t) = !Fn(t)r(t) +Fn(t) !r(t) + !Gn(t) !r(t) +Gn(t)!!r(t)

r(n+1)(t) = !Fn(t)  +Gn(t) F2 (t)⎡⎣ ⎤⎦r(t)+ Fn(t)+ !Gn(t)+Gn(t) G2(t)⎡⎣ ⎤⎦!r(t)

r(n+1)(t) = Fn+1(t)  r(t) +Gn+1(t)  !r(t)

!!r (t) = a(t)−b(t)( )  I+A(t)⎡⎣ ⎤⎦r (t)

A =
−l 0 0
0 h 0
0 0 e

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a=1
r
 Vr

b= Z
r 2 (X 2 +Y 2)

 Vφ

e= 1
Z (X 2 +Y 2)

 Vφ

h= Z
Y (X 2 +Y 2 )

 Vλ

l= Y
X (X 2 +Y 2)

 Vλ

(12a)
(12b)
(12c)
(12d)
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G1(t) = I
F2(t) = (a(t)-b(t)) I + A(t)

G2(t) = 0
F3(t) = Ḟ  2(t)
G3(t) = F2(t)

F4(t) = F̈  2(t) + F2(t) F2(t)
G4(t) = 2F̈  2(t)

For more details about the Lagrange formalism we 
refer the reader to the work by Sharifi  and Seif  [2011]. 
This formulation has been used for the Earth’s gravity 
fi eld modeling in the next section.

2.2 Gravity fi eld recovery
The motion of  a satellite depends on the forces 

acting on it. For low-Earth orbiters, the dominating 
force can be attributed to the Earth’s gravitational 
attraction. Expressing the gravitational potential by 
means of  a spherical harmonic series with the de-
gree-l and order-m series coeffi cients (also referred to 
as Stokes coeffi cients) C̄       lm and S ̄    lm [e.g., Heiskanen and 
Moritz 1967], we fi nd q = {C̄       lm, S ̄    lm} for the vector of  
force model parameters introduced in Equation (1). 
Given the a priori (or approximate) force parameters q0, 
we seek to fi nd corrections ∆q to q0 in a way that the 
difference between the propagated orbit and the ob-
served orbit becomes minimal in a least-squares sense. 
Denoting the estimated corrections by ∆q̂ , the recov-
ered gravity fi eld parameters obey

(13)

The optimization problem could not be optimally 
applied for entire time span because of  the propaga-
tion error. Then, the long-arc orbit is subdivided into 
equidistant sub-intervals and this procedure is formu-
lated for each sub-interval as demonstrated in Figure 
(1a). The n-th sub-interval is denoted by In in Figure 
(1b). For the sake of  simplicity, based on Einstein sum-
mation convention we rewrite Equation (1) by setting 
tn−1 as the initial time and tn as the desired time for 
sub-interval [tn−1, tn] as

(14)

Then, the minimization problem has been formu-
lated as

(15)

Based on Equation (15), the observable ∆ŝ (tn) is 
written based on the difference between the observed 
and computed orbits for each sub-intervals. In this 

equation, the observed satellite state vector is denoted 
by sobs (tn), and scom (tn, q) is the computed state vector 
obtained from the Lagrange method.

Since the sub-interval is usually larger than the de-
fi ned step-size (h) for solving equations of  motion, the 
equations of  motion have to be solved using a step-by-
step strategy with M = In/h steps on the time interval 
[tn−1, tn]. Then, the computed orbit at tn in a gravity 
fi eld with parameter with force model parameter q, 
denoted by scom (tn, q), reads

(16)

where s(tn − h) is the state vector computed at the previ-
ous step. Based on the strategy illustrated in Figure (1b), 
the sobs (tn −1) the sub-interval In. A priori orbit is propa-
gated using a priori force parameters q0 from tn −1 to tn. 
The priori parameters are updated during the iterative 
process using the non-linear least square approach and 
the computed orbit becomes closer and closer to the ob-
served one until the solution converges to least square 
solution. Linearization of  Equation (15) yields

(17)

Inserting the linearized form of  the state vector 
into Equation (15) yields

(18)

or equivalently

(19)

where ∆l is difference between the observed and com-
puted orbit. As seen in Equation (19), we seek for val-
ues ∆q̂  in such a way that the sum of  squared incon-
sistencies (contained in the misfi t vector d̂ ) fi nds its 
minimum. The solution to this least-squares problem 
reads [e.g., Koch 1999]

(20)

Now, let’s have a closer look at the design ma-
trix H. The design matrix consists of  the derivatives 
of  the satellite state vector with respect to the force 
model parameters.

The derivative of  the i-th element of  the satellite 
state vector at epoch tn with respect to q can be ob-
tained by taking the derivatives of  Equation (16) with 
respect to q (for summary tn − h is replaced by t´):

⌢q = q0 + Δ⌢q

si(tn) = Lij(s (tn−1), q)s j(tn−1)

si
com(tn ,q) = Lij(s

com(tn − h, q),q) si
com (tn − h, q)

Δq̂ = (HTH)-1 HT   Δl

(12e)
(12f )
(12g)
(12h)
(12i)
(12j)
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The superscript “com” has been neglected for  
simplicity. After some reformulation and simplifica-
tions we find that

Seif  et al. [2011] introduced the Lagrangian state 
transition matrix as

(23)

Substituting Equation (23) into Equation (22) re-
sults in

(24)

Equation (24) is the backbone for gravity field re-
covery using the Lagrange formalism. The derivatives 
of  the Lagrange coefficients with respect to the Stokes 
coefficients are given in the Appendix.

2.3 Implementation of  the proposed approach
In addition to the data sampling (dt), there are 

two time spacings needed to be set during the meth-
od implementation, step-size and time sub-interval. 
The orbit propagation step-size (h) in the Lagrange 
formalism is set to 5 s in this paper. The time sub-in-
terval denoted by In is needed to be defined in min-
imizing the problem based on Equation (15). Using 
the larger sub-interval In in the proposed method 
leads to more difference between the computed 
and observed orbits, as illustrated in Figure (1a). It 
means more power of  the observable signal, ∆s(tn), 
that will be useful for modeling the gravity field es-
pecially higher-order harmonics. On the other hand, 
the larger sub-interval, the higher level of  the prop-

agation error in the Lagrange formalism. 1 min is 
known for the sub-interval to be a proper trade-off  
between these factors. As described in Equation (16), 
we need the full satellite state vector at the start of  
each sub-interval to propagate the satellite orbit for 
sub-interval In. The required velocity is numerically 
derived from the time series of  the satellite position 
vectors by using 9-point Newton approach in case of  
the kinematic orbit. Although in the previous section 
the observation equations are formed for satellite 
state vector, only the first three terms of  the state 
vector should be used for the gravity field modeling 

using the kinematic orbit. 
For each sub-interval, three observation equa-

tions are written based on three position compo- 
nents. In order to form the design matrix, the partial 
derivatives of  each observable equation with respect 
to all parameters are generated by using the semi-an-
alytical formulation of  the Lagrange approach. A set 
of  observables is defined as time series of  observables 
collected at time interval over the entire time span, 
I0, I1, ..., IK. The observation equations for sub-inter-
val In are written by the help of  the only observa-
tions at the beginning and the end of  In, sobs (tn-1) 
and sobs (tn), without containing other ones within 
In. Other observed orbit information would be im-
ported into gravity field modeling problem by defin-
ing new sets of  the observables. In order to involve 
all data, we need N = In /dt observable sets. If  the 
first sub-intervals of  the first set starts at t0, one 
of  the i-th set starts at t0 + (i − 1)dt (i = 1, ..., N).  

(21)

(22)

Figure 1. Illustration of  the Lagrange method configuration and 
the principles of  time spacing. (a) The configuration of  the La-
grange approach observable, the first (blue) and second (red) sets 
of  the observables. (b) Principle of  the sub-interval and step-size.

(a)

(b)
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Clm
EGM96 Slm

EGM96

The sub-intervals of  the second set (shown with red 
color in Figure (1a)) is defined by dt time-shifting. As 
an example, for 1 min time interval, 2 sets are defined 
to involve all observables data with 30 sec sampling.

3. Numerical studies
The accuracy and efficiency of  the Lagrange for-

malism for gravity field recovery was numerically as-
sessed in the framework of  a series of  closed-loop simu-
lation studies. All results are based on synthetic CHAMP 
and GOCE orbit data sets, which have been an outcome 
of  the IAG Special Commission 7 (SC7) activities [Ilk et 
al. 2003]. This standard data set was presented to pro-
vide a simple platform for any scientist to validate their 
approach. The unique data set is very useful to compare 
the various approaches for the gravity field modeling. 
The simulated orbits contain gravity field information 
up to d/o 300 using the EGM96 gravity field model 
[Lemoine et al. 1998]. The data is produced using nu-
merical integration over one month by neglecting the 
non-gravitational accelerations. The noiseless data set 
contains position, velocity vectors with a sampling rate 
of  5 s. As the main target of  this manuscript is the grav-
ity field recovery from the satellite kinematic orbit, only 
the position vectors were used as input information. 
In order to investigate the impact of  observation noise 
on the gravity field inference results, we occasionally 
contaminated the (noise-free) SC7 satellite orbits with 
white noise with zero mean and standard deviation 
1 cm in each coordinate. The simulation setup for 
GOCE and CHAMP has been listed in Table 1.

Apart from the absolute performance of  our new 
HL-SST analysis method, we were particularly interest-
ed in its performance relative to the more established ap-
proaches. As outlined in Sect. I, for this purpose the accel-
eration approach has been selected as representative for 
any of  the previously proposed methods. The accelera-
tion approach results presented in this paper are based on 
the implementation as described in Baur et al. [2012] and 

Baur et al. [2014]. The necessary accelerations are derived 
from the satellite orbit by means of  the 9-point Grego-
ry-Newton interpolation as the numerical differentiator. 
The numerical differentiation leads to the temporal cor-
relation between the accelerations derived from the noisy 
orbit, even Gaussian noise. This correlation has been 
considered in the acceleration inversion based on the 
scheme represented in Baur et al. [2012], by help of  the 
segmentation of  the total number of  observation and 
applying the analytical covariance propagation.

Results are displayed in terms of  degree-error root 
mean square (spectral domain representation)

(25)

and geoid hight differences (spatial domain rep-
resentation). Both were computed relative to the
EGM96 model, which for our simulations is the “truth” 
model. Accordingly,

(26)

(27)

holds true. For the sake of completeness, it should be men-
tioned that EGM96 signal amplitudes were computed by 
replacing ∆C̄     lm and ∆S̄    lm with and               respec-
tively, in Equation (25).

3.1 Impact of  a priori gravity field information
As described in Sect. 2.2, gravity field recovery 

using the Lagrange formalism is a non-linear prob-
lem, and hence requires a priori information (in the 
sequel referred to as initial gravity field, IGF) of  
the Stokes coefficients for linearization. In order to 
demonstrate that our Lagrange results are independ-
ent of  the adopted IGF, we conducted the following 
experiment based on analyzing the noisy CHAMP 
orbit with 30 s sampling. All gravity models are re-
solved up to d/o 70.

In a first computation, we considered the 
GGM02S model [Tapley et al. 2005] up to d/o 0 as 
the IGF. In that case three iterations were sufficient 
to get the final solution. The change insolution be-
tween last two iterations was about 10-15 in term of  
RMSl for each degree. In a second computation, we 
used GGM02S up to d/o 2 as the IGF. This time, two 
iterations were needed to end up at the final solu-
tion. Importantly, the final solutions are quite simi-
lar (Figure 2), which demonstrates that the choice of  
the IGF is uncritical. For convenience, we made use 

RMSl =
1

2l+1
   (Δ
m=0

l

∑ Clm
2  +  ΔSlm

2 )

ΔClm  =  Ĉlm   −  Clm
EGM96

ΔSlm  =  Ŝlm   −  Slm
EGM96

Parameter CHAMP GOCE

Noise-free Noisy Noisy

Altitude (km) 449.8 449.8 249.9

Orbit Period (min) 93.6 93.6 89.5

Standard deviation of  
orbit error (m)

0 0.01 0.01

Data sampling (sec) 5 5 and 30 5 and 30

Data period (days) 30 30 30

Maximum resolution of  
retrieval

120 70 90

Table 1. Simulation Setup.
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of  the GGM02S model up to d/o 2 as the IGF for all 
our further investigations.

3.2 CHAMP results
Figure 3 shows the degree-error variances of  re-

covered gravity fields from both the Lagrange method 
and the acceleration approach exploiting the noise-free 
CHAMP orbit. All results were derived from 30 days of  
position information. The originally 5 s sampled simu-
lated observations were used for the studies.

It can be stated from Figure 3 that both approach-
es provide comparable results, whereas the solutions 

based on the acceleration approach are superior, es-
pecially in the short- and middle- wavelengths. The 
increase of  the degree variances near the maximum 

Figure 2. Degree-error variances of  gravity field solutions depend-
ent on a priori information for linearization. Results computed via 
the Lagrange formalism, analyzing the noisy CHAMP orbit with 
30 s sampling.

Figure 3. Degree-error variances of  gravity field solutions ana-
lyzing the noise-free CHAMP orbit with 5 s sampling (orginal 
signal).

Figure 4. Degree-error variances of  gravity field solutions analyz-
ing the noisy CHAMP orbit (σ = 1 cm in each coordinate) with 5 s 
and 30 s sampling.

Figure 5. Actual Error (two top sub-figures) Formal Errors (two 
bottom sub-figures) (in logarithmic scale) of  spherical harmonic 
coefficients analyzing the noisy CHAMP orbit with 30 s sam-
pling; (a and c) Lagrange formalism, (b and d) acceleration ap-
proach.
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resolution of  the recovered gravity fields (l >≈ 115) 
can be attributed to the spectral aliasing (impact of  
the omission error).

Although the two methods behave slightly dif-
ferent, the main message at this stage is that the im-
pact of  “model errors” are well below the impact of  

Figure 6. Geoid height differences (starting at d/o 2 up to d/o 45) relative to EGM96 analyzing the noisy CHAMP orbit with 5 s sam-
pling; (top) Lagrange formalism, (bottom) acceleration approach. Gaussian smoothing with a radius of  500 km was applied to suppress 
high-frequency noise.
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observation noise. In order to demonstrate this, we 
repeated the computations (for 5 s and 30 s sampling) 
with the noise-contaminated CHAMP data set. The 
results are shown in Figure 4. The most striking is-
sue turning out from the analysis of  the noisy data 
set is that the estimate based on the Lagrange for-
malism is clearly comparable with the acceleration 
approach solution. The EGM96 signal is intersected 
at l ≈ 50 and l ≈ 60 by the error curve of  the solu-
tions derived from the acceleration approach using 
the down-sampled and original orbit information, 
respectively. This result is clearly supported by the 
Lagrange findings.

In addition to the presentation of  the degree-error 
variances, Figure 5 displays the error of  each individ-
ual coefficient (difference between the “true” and the 
recovered Stokes coefficients in logarithmic scale). Fig-
ure 5 displays the formal errors (left column) besides 
the empirical errors (right column) of  the estimated 
spherical harmonic coefficients. The patterns of  the 
actual and formal errors are in a good agreement for 
both approaches.

Finally, we assessed the estimated gravity fields in 
the spatial domain, namely in terms of  geoid height 
differences (Figure 6). As expected, the pattern of  the 
Lagrange method solution exhibits equivalent noise 
level with the acceleration approach pattern.

3.3 GOCE results
In order to substantiate our findings from the pre-

vious section, we additionally conducted experiments 
using the simulated GOCE data. Similar to Figure 4 
for the CHAMP case, Figure 7 present the results for 
the case of  GOCE. Because of  the lower GOCE sat-
ellite altitude (250 km opposed to 500 km), and hence 
the possibility to recover higher-degree short-scale fea-
tures, the gravity field was reconstructed up to d/o 90.

The sun-synchronous orbit design of  the GOCE 
satellite implies a data gap in the polar regions. 
Therefore, GOCE-derived gravity field information 
near the poles is rather poor. Transferred to the spec-
tral domain this means that the (near-)zonal Stokes 
coefficients can only be recovered with considerably 
reduced accuracy. For this reason, in Figure 7 coeffi-
cients with m < 5 are excluded.

For the solutions with maximum d/o 90 in Fig-
ure 7, again the Lagrange method result is compa-
rable with the estimate making use of  the accelera-
tion approach (this is in agreement with the findings 
from our CHAMP investigations).

The acceleration approach error curve crosses 
the EGM96 signal curve at degree l ≈ 85; for the La-
grange formalism, the intersection is at degree l ≈ 89. 
Inspecting the error of  each individual coefficient in 
Figure 8 suggests that the influence of  the polar data 
gap is less pronounced for the Lagrange method.

The quality assessment of  the recovered gravity 
fields has been carried out in terms of  geoid height 
differences in the northern near-polar region too in 
Figure 9. In addition, RMS of  geoid height difference 
along parallels has been shown for both approaches 

Figure 7. Degree-error variances of  gravity field solutions ana-
lyzing the noisy GOCE orbit (σ = 1 cm in each coordinate) with 
5 s and 30 s sampling due to the polar data gap, orders m < 5 
were omitted in RMSl computation.

Figure 8. Errors (logarithmic scale) of  spherical harmonic coefficients analyzing the noisy GOCE orbit with 5 s sampling; (a) Lagrange 
formalism, (b) acceleration approach.
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in Figure 10. The current results confirm the finding 
of  Figure 8 about the polar gap. The geoid error of  
the Lagrange solution is less in near-polar regions in 
comparison with the acceleration one.

4. Conclusions
We showed the ability of  the Lagrange formal-

ism for gravity field recovery from HL-SST derived 
kinematic orbits. From our simulation studies we 
conclude that this new method is comparable with 
the acceleration approach (which can be seen as rep-
resentative for the more “conventional” orbit analysis 

methods). Based on one month of  synthetic CHAMP 
orbit data (contaminated by noise), using the La-
grange method we found the signal-to-noise ratio to 
be 1 at spherical harmonic degree l ≈ 60. Making use 
of  the acceleration approach, the noise exceeds the 
signal from similar degree. This qualitative finding 
has been confirmed by analyzing a synthetic GOCE 
data set. The maximum resolvable degrees were 
found to l ≈ 70; moreover, it turned out that the polar 
gap is much less pronounced for the Lagrange for-
malism gravity field solutions compared to the re-
sults exploiting the acceleration approach.

Future work includes the extension of  the for-
malism with regard to the application of  the method 
on real HL-SST orbit data sets.

Acknowledgements. The authors would like to thank editor 
Dr. Federica Riguzzi and anonymous reviewers for their helpful 
comments.

Figure 9. Geoid height differences (starting at d/o 2 up to d/o 70) relative to EGM96 analyzing the noisy GOCE orbit with 5 s sampling 
for the northern near-polar region; (left) Lagrange formalism, (right) acceleration approach.

Figure 10. Geoid error: RMS along parallels, (top) Lagrange for-
malism and (bottom) Acceleration approach.
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Appendix
As outlined in Sect. 2, Equation (12), the Lagrange 
coefficients are functions of  the scalars (a, b, e, h, l) 
and their derivatives. The derivatives of  the Lagrange 
coefficients with respect to the Stokes coefficients (as-
sembled in vector q) are

(28)

where Lij denotes the element of  the i-th row and j-th 
column of  the Lagrange matrix, and p is

(29)

Based on Equation (11), each of  the scalars (a, b, e, 
h, l) has the form

(30)

In this equation, K is a scalar function of  the satel-
lite position (X, Y, Z). The derivative of  the scalar func-
tion H reads

(31)

where Vα is the partial derivative of  the gravitational 
potential with respect to the curvilinear elements, i.e. 
α = {r, φ, λ} holds true.

The first and second time derivatives of  P are

(32a)

(32b)

Considering the chain rule yields

In the equations above, θi represent the curvilin-
ear coordinate system in the Earth-centered inertial 
frame. Finally, the derivatives of  Equation (33) with 
respect to the force parameters become

(34a)

(34b)
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