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ABSTRACT

We consider transversely isotropic media with vertical axis of
symmetry (VTI). Solutions of P-SV equation of motion in a
homogeneous VTI medium contain depth decay factors r, and
1,, which sometimes become complex depending on medium
parameters. In this case, r; and r, are complex conjugates.
Using this property, we obtain dispersion equation of
Rayleigh waves with real terms for a layered VTI half space
through Thomson-Haskell method with reduced delta matrix.
Phase and group velocities as well as surface ellipticity of
Rayleigh waves are computed in real domain for a few oceanic
and continental VTI structutes of the earth. Present compu-
tation in real domain is similar to that in a layered isotropic
half space using the same method. Thus it is presumed that
such computation in a layered VTT half space will allow effi-
cient evaluation of a V'TI structure of the earth.

1. Introduction

Transverse isotropy with vertical axis of symmetry
(VTI) or radial anisotropy of the crust and upper man-
tle has been noted through the incompatibility to fit
Rayleigh and Love wave dispersion with an isotropic
structure [Anderson 1961]. During last few decades this
incompatibility shows the variation of VTTin the upper
mantle of various regions [Kustowski et al. 2008] indi-
cating mantle flow and discriminating different geody-
namic processes and thermo-chemical convective mod-
els [Auer et al. 2015, Khan et al. 2011]. VTT in the crust
has also been seen in several regions [Shapiro et al. 2004,
Raykova and Nikolova 2003, Moschetti et al. 2010]. In
exploration seismology, better seismic images using re-
flection data are obtained with VTT in the subsurface
[Thomsen 1986, Alkalifah and Tsvankin 1995].

The estimation of underground structure using
surface waves is based on an inversion in which ob-
served surface wave dispersion is compared with theo-
retical one for an assumed structure usually with a

horizontally layered medium. In an isotropic layered
half space, computation of theoretical surface wave dis-
persion by Thomson-Haskell matrix method or T-H
method [Haskell 1953] has proven to be a powerful
tool. The restatement of recursive relation in terms of
delta matrix (also called compound matrix or second
order sub-determent) is a significant improvement in
T-H method [Dunkin 1965, Thrower 1965]. This was
further improved by reduced delta matrix [Watson
1970]. Stability of T-H method at high frequencies can
be improved by reduction of deeper layers, whose con-
tributions to dispersion are negligible [Bhattacharya
1987]. The reflection-transmission method in a layered
isotropic half space is a complex arithmetic scheme
proposed by Kennett [1974] which is stable at very high
frequencies. At present it has been developed as a gen-
eralized reflection-transmission coefficient method, or,
in brief RT method [Kennett 1983, Luco and Aspel
1983, Chen 1993]. However, this method is least effi-
cient of all improved methods [Buchen and Ben-
Hardor 1997]; Pei et al. [2008] improved this method to
increase the speed of computation. Efficiency of this
method is low because of complex arithmetic and dis-
persion equations consist of real and imaginary parts,
both of which are to be considered during root finding.

As indicated in the next section, solutions of P-SV
equations in a homogeneous VTI layer contain
exp(ikrj z), where z is the vertical coordinate, k is wave
number and j = 1, 2; r; may be considered as depth-
decay factor. Rayleigh wave dispersion equation in a
layered VTI half space becomes complex when T
becomes complex in one or more layers [Anderson
1961, 1965]. In such a layered half space, Anderson
[1961] and Harkrider and Anderson [1962] computed
surface wave dispersion in a layered VTT half space by
extending the T-H method. Harkrider and Anderson
[1962] replaced complex . in each layer by one from
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equivalent isotropic layer to avoid the computation in
a complex domain. The method of Anderson [1961]
has been improved by doubled T-H method [Ke et al.
2011] and also by delta-matrix method [lkeda and
Matsuoka 2013]. In both the studies, since T becomes
complex in some layers, complex numbers are used in
the computations; as in RT method, roots need to be
evaluated both from real and complex parts of the
dispersion equation. For Love wave dispersion
computation using T-H method in a layered V'TT half
space, there is no such problem and dispersion
equation is obtained with real terms [Anderson 1962].
However, such dispersion computation for Rayleigh
waves is being hampered due to complex terms in the
dispersion equation. On the other hand, the T-H
method for Rayleigh waves and its improvements
[Buchen and Ben-Hardor 1997] in an isotropic
medium are so popular that that it has been used even
to evaluate radially anisotropic medium, where it is
assumed that vertically and horizontally polarised S-
wave velocities (8, and B, ) are different but vertical
and horizontal P-wave velocities (o, and o, ) are
equal; it is also assumed that the fifth parameter n = 1
[Shapiro et al. 2004, Raykova and Nilolova 2003,
Moschetti et al. 2010, Xie et al. 2013]. Xie et al. [2013]
mentioned that this assumption is physically
unrealistic in real assemblages, where S-wave
anisotropy would be accompanied by P-wave
anisotropy with m differing from unity [Babuska and
Cara 1991]. Further, Bhattacharya [2015] has shown
that dispersion curves with such assumption for VTI
structure are close to the correct result for Love waves;
but such assumption is not satisfactory for Rayleigh
waves. It has also been observed that this assumption
overestimates S-wave anisotropy.

When ;i complex in a VTI medium, 7, and 7, are
complex conjugates. Using this property, we get a lay-
er matrix as well as a reduced delta layer matrix, where
each element is real even if . is complex in any layer. In
alayered VTT half space, we obtain a Rayleigh wave dis-
persion equation which remains real with or without
presence of complex 7, in any layer. Dispersion curves
as well as surface ellipticity are computed in real domain
for oceanic and continental layered VTT half space.

2. Basic equations

Let us consider a homogeneous VTI medium with
anisotropic parameters as ., By, &, ¢ and n [Takeuchi
and Saito 1972, Nishimura and Forsyth 1989]. Solutions
of such medium were obtained by Anderson [1961], who
used elastic stiffness coefficients ¢, as medium param-
eters [Love 1927]. These two representations of elastic

parameters are related by o2 [=c,,/p], o& [=c;,/p],
[3%/ [:C44/p:|: BZH [:(511'512)/291 and n [2613/(C11'ZC44):|
[Takeuchi and Saito, 1972); & = BHENUBL), d=(og M(0f;
€ and ¢ are S-wave and P-wave anisotropy respectively.
Let the waves propagate in x-z plane where x is along hor-
izontal plane and z is vertical (upward). Following An-
derson [1961], the displacement components u and w
along x and z axes are written as

[u,w]=[U(z), W(2)] exp[ik(ct-x)] (1)

where c is phase velocity, k is the wave number and

U(z) = Ae"1i% + A,e"72% + B e 117 4 ByekTe”

2
—iW (2) = y, A, "7 + v, 4,eX77% — y, Bie™"E —y, B, e k2" (2)
with
o gt o)
Ty R G
P =(Si£S)/2 1,2 “
Si;=A+B-C, S, =AB, 5325'12—452 (5)

1 n(aﬁ-wswsr

1 - 1 4 5
A=t(ab—c?), B=——(p2-c?), C=
77 (@i = %, gag v =<9 ¢ anby

G =n(ak—28))+B;

When 83> 0, r} is real making 7; to be either pure
real or pure imaginary and is given by

T = %wf[s, +5,]

When 83 <0, r? is complex and given by

, 1
=5 l51 +i 2452 - SE], (6)

As given in Equation (5), 8, is real and so r JZ is com-
plex only when S2 < 0. Using (5), we can write

S2=(A-B)2+Ct—2C(A+B)

Thus $; is negative only if (A+B) > 0. From (5),
S,=(S7- 83)/4. Thus S, is positive when S is negative.
Equation (5) shows that S, can be positive if A and B are
either, both positive or, both negative. Thus to have
(A+B) > 0, both A and B will be positive and (5) shows
that ¢ < min[ay,, B,]. Normally B,, < o, therefore
¢ < By, when 87 is negative.

Sg is a nonlinear function of ¢/, o /By, ¢ andm.
Ina ¢ -n plane the region of negative S or complex r- lies
between two nearly parallel lines (Figure 1). The ¢ and n
values above complex region are rarely observed. With
normal values of ¢ and 7 in the crust and mantle, com-
plex rjz exists when ¢ is low and n is high. In the sub-
surface, ¢ may be very low and  may be very high [Xiao
2004]. Strong VTT has often been noted in organic rich
shales [Sengupta et al. 2015]. As ¢ / By dcreases, the com-
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Figure 1. With o /B, = 1.732 and ¢/, = 0.90, the green shaded
region in ¢ - n plane shows ¢ and 1) values for which 87 is positive
orr JZ is real. White region shows ¢ and 1 values for which §2is

negative or rj2 is complex. ¢ and 1 are anisotropic parameters
[Takeuchi and Saito 1972, Nishimura and Forsyth 1989].

plex region spreads towards both lower and higher
anisotropy. As o,/ By increases, the complex region
is narrower with upper boundary coming down and
lower boundary having a minor change.

When 8 <0, 7 JZ as well as 7, is complex and from

(6)
1
n=5V2/S + st [2fs, - si]} = ki (79
showing r, and r, as complex conjugates. In (7a)

v = V[2yS + Si]anar” = S V[2/5; - 5,] (7b)

Since 83 < 0, (5) shows that 45, > 83, or 2\/(82 )> S,
because both S, and S% are positive. Thus r'and r” are real
and positive.

Inisotropic case E =g =1 =1, Oy = Oy = O and
By = By = B. Thus
A =(0?- 2)/p? B=(p?- ?)/a? and C=a?/p? +p%¥ al-2.

8
Thus
(51,5 = (1—¢*/a®) £ (1—c?/p?) )
and
n=y1-c*/a? =1, and 1, =.[1-c?/p% =15.(10)
Further

y, =r,andy, = 1/7g. (11)

3. Layer matrix

3.1. Formulation

Here we find the layer matrix of a given layer
[Haskell 1953]. The stress components p_, and p__in
terms of U(z) and W(z) are in Anderson [1961]. Thus dis-
placement-stress matrix is written as

[Y(2)] = [E(®)][R] (12)
where
[Y(z)] = [U(z), -iW(2), ip,,/k, p,./k]"
[R]=[A, +B,A,-B,A,+B, AZ-BZ]T‘ (13)
and
coshQ, sinhQ, coshQ, sinhQ,
(E@)] = yls.inh(?_1 ylcosh(?l yzsinhQ:2 yzcosh(?z (14)
X,coshQ, X;sinhQ, X,coshQ, X,sinhQ,
Z,sinhQ, Z,coshQ, Z,sinhQ, Z,coshQ,

Q; = knz, X; = c3 — c3313Y;, Zj = (7}' +)’j)f44 (15)
i3 =nplaf — 2B3), €33 = pPpag, cuq =pBE  (16)

Evaluating Y(-H) and Y(0) from (12) and eliminat-
ing [R] we get

[Y(H)] = [E CH)][EOT'[Y(0)] = [a][Y(0)] ~ (17)

Here H is the thickness of the layer, [Y(-H)] is the
displacement-stress matrix at the bottom of the layer
and [Y(0)] is that at the top. In (17), [a] is the layer ma-
trix given by

[a]=[E(-H)] [E(0)]" (18)
where from (14)
coshQ, —sinhQ, coshQ, —sinhQ,
—y;15inhQ;  y,coshQ, —y,sinhQ, y,coshQ,
[EC=H)1 = XicoshQ, —X;sinhQ, X,coshQ, —X,sinhQ,
—Z;sinhQ; Z,coshQ, —Z,sinhQ, Z,coshQ,
Qj = krjH,
—X5/Xq; 0 1/X:, 0
o] ° Zy/T1s 0 —p/hy,| (19)
EOT =1y ks 0 -1/X; 0
0 —Z, /Ty 0 v1/T12
X=X —-X and Lo =y, —v2Zy (20)
Thus from (18)

la]=

1 1 N N 1 1 n N
~(-X;coshQ + X, coshQ,) —(-Z,sinhQ, + Z;sinh Q) ——(coshQ, —coshQ,) (1, sinhQ, ~7,5inhQ;)
Xy Ty X T

1 " N 1 1 N o
XS Q - XisinhQ) iz cosh Q- ZycoshQ,)  (orsithQ +,5inh )

2

L2 (_coshQ, +coshQ,)
T,

Ao CcomgraohQ) X ZenhQ +XZ0h0) - (XcohQ- XycoshQ) o (X7sinhQ - Xy sinhGy)

Lz, sinhQ-Z,X,sinh@)  Di(coshQ-coshQ) L (-ZsinhQ+ ZysinhQ) - (~Zy,coshQ + Zy,coshQy)
Xy Ty X T

(21
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3.2Casel: S32 0
In this case, 7; is either real or imaginary. We shall re-
arrange the matrix elements of [¢] in (21) so that each ele-

ment becomes real even if 7,is imaginary. Let us denote
G

= (22)
YT
Thus from (3), V=18 From (15), we have
Xj = C3— ‘3337}'29'}' and Z; = cyqri(1 4 gp)
(23)
It may be further noted that
N2 = caami12(g1 — g2) = CaaT172912 (24)

where g, =g, - g,- Now we write the elements of layer
matrix [a] as

1
My = (—=X,coshQ; + X coshQ,),

sthl

+ (1 + )sthz]

12 =g_[ a+g)—

Qi3 = }i (coshQq — cosh@,),

_ 1 sinhQq sinhQ,
Aia = [ -9 >

1
Ca4912 &1 T2

1 : 1
ay; = X_12 (nglrlsthl - Xng TZSlnth);
1
A2 = [9:(1 + gz)coshQ, — g, (1 + g1)coshQ,],
1 i ,
a23 = X_lz (—g1T1Sl7‘LhQ1 + ngZ SlnhQZ)a

Az =292 (_coshQ, + coshQ,),
CasG12

yy = ’; 2 (= + coshQy),
S [—X1(1 + g,)Smhey sthl +X,(1+g,) Sthz]
a3y = — (chosth — X,coshQ;),

sinhQ sinhQ
QAzq = [Xlgz L — X209, z],

C44812

G4y = ?T: [X;(1 + gy)risinhQ, — X1 (1 + g,)135inhQ,],
Uyy = %(1 + g1)(1 + g;)(coshQ, — coshQ,),

Q43 = % [—(1 + g1)risinhQy + (1 + g,)728inhQ,]
yq = 91: [—9.(1 + g1 )coshQq + g, (1 + g;)cosh@Q,].
(25)
Similar elements were also derived by Harkrider
and Anderson [1962]. Note that costh, (sinth)/ 7 and

" sinth are real when 7, is imaginary.

3.3 Casell: $3< 0
In this case r, and r, are complex conjugates and
so Q, and Q, are also complex conjugates and we de-
note
Q,=Q'+iQ"and Q, = Q'-iQ" (26)
where Q' = kr"H and Q" = kr"" H. Substituting in (21)
and denoting
F, = coshQ' cosQ", F, = coshQ'sinQ",
(27)
F, = sinhQ' sinQ", F, = sinhQ'cosQ",

we get the elements of the layer matrix as

L X1+X,
X12

ayy =F —1 F,

L Z1+Z; Z,-2.
Ay = —i==F +=—F,

I12 I12

L X +X.
=i 1Y2+X2V1 F2

X1Y2—=X211
az = - Fy,

X12 X12

]/122"'}’221
az, = F, + I1y Fs,

- Y1tYe
- F

_ Y1~ V2
Qzz = —1L - h,
X12 X12

___:Z2NYa
Uy = —I=—F3,

. 2X1 X,
X12

az, = —i F;,

, X1Z2+X22Z4 F, — X1Z,-X32Z4 F
2 45

Aay =
e T2 T2

X1+X;
F;,
X12

az; = F +1

. X1y +X: X172—X:
Agq =i 1¥2+A211 Fz + 1¥2—4A211 F,}
Fiz T2

= KaZatXs

Z X1Z2—X;
Agq = F; —

Zy
X 2 X F47
12 12

. Z1+Z Z1-Z;
Qy3 = —i it p 4174

X, 2 X12

F,,

]/122 +V2Z1 F.
3

Qs = F — o

(28)
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The pairs (r}, 7)), (Y;, Y,), (X;, X,), (Z,, Z,) etc. are
complex conjugates. Sum of the conjugates is real and
difference is imaginary. Further multiplication of com-
plex conjugates is real. Thus each element of (28) is
real.

4. Dispersion equation

4.1 Solid layers

Let us consider N homogeneous VTI layers num-
bering 1 to N from top to bottom, the Nth layer being
the homogeneous half space. The mth layer is bounded
by (m-1)th interface at the top and mth interface at the
bottom. We use suffix m to show the values in the mth
layer and superscript m in bracket to show the values
at the interface m.

The constants (B)) and (B,), are zero since dis-
placement is zero at infinite depth z =-00. From (12),
we have at the top of Nth layer

[Yy 1NV = [Ey (][4, A, A, A, 1%
or
[, AL Ay, AT =[Ey O [V (N1 (29)

Following Haskell [1953], we use continuity of dis-
placement-stress matrix at interfaces and use the rela-
tion (17) to obtain

[A1vA1,A2'A2,]z = [Ex(0)] May—q] - on [az][a;][Y; (0)]
= [Ex(0)]7*[M] [¥;(0)] = [J1[Y1(0)] 30)

where the displacement-stress matrix [Y, (0)] at the free
surface is

[Y1(0)] = [Up, —iW,, 0, O]T (31)
with U = U(0) and W, = W(0). In (30)

[M] = [ay_] ... [az][a4]
and
[J1 = [En(0)]*[M]. (32)
Equating the rows in (30) and eliminating U, W,
A yand A, ., we get the dispersion equation as

]11 _]21 2]12 _]22
]31 _]4-1 ]32 _]4-2

2N?

(33)

Multiplying both sides of (32) by

b o 1 Al

and using (19) we get

_ X _Z 1 Y2
Ji1—J21 iz —J2z Jiz—Jaz Jia—J2a X120 M2 X T2
o TP )
Jai —Jar Ja2 —Jaz Jaz —Jaz Jaa—Jaa i i . —i ’
(34)

The dispersion equation (33) may be written as

U‘ll _]21)(]32 _]42) - UIZ _]22)(]31 _]41) =0 (35)

Equation (30) also gives surface ellipticity € as

£ = I.JO — _]12 _]22 (36)
—iWy Ji1 = J21

4.2 Liquid layer at the top

Let us consider a liquid layer of density p,,, P-wave
velocity o, and thickness H,, over the above N-layered
VTI half space. The vertical components of displace-
ment and stress in the liquid layer are respectively

W (z) = kryC, cos(kryz)

Pzz(2) = —pw?Cy sin(kryz)

where 1, =+c2faZ -1 [Ewing et al. 1957]. Thus in
equation (30) instead of displacement-stress matrix
[Y, (0)] on free surface, we use the displacement-stress
matrix at the bottom (z = -H,)) of the liquid layer as

Yy (=Ho) = [Up, — ikroCo cos(kroHy) , iCo (@2p /k)sin(krgHy), 0]

Here U, is the horizontal displacement component
in the top solid layer which is just below the liquid layer.
Asin section 4.1, equating the rows in equation (30) and
eliminating Uy Cp AN and A N We get the dispersion
equation as

]12 _]22_]32 _]42_ ]13_]23 _]33 _]4—3
]11 _]21 ]31 _]41 4 ]11_]21 ]31 _]4—1

where

]:0 (37)

w?p pc?
X = mtan(kroHo) = ?tan(kroHo) (38)
Similar dispersion in isotropic layered half space
with same  was obtained by Harkrider (1964). The dis-

persion equation (37) can be written as
Ull _]21)(]32 _]42) - (112 _]22)(]31 _]41)
(39)
—X [(111 _]21)(/33 _]43) - (/13 _]23)(]31 _]41)] =0

If liquid layer is absent H, = 0 and so y = 0; thus equa-
tion (39) has the same form as (35). As in section 4.1, the
surface ellipticity at the top of solid layers is given by

Uo Ji2 =Ja2 | J13 —Jas

=—=- + 40
¢ —iW, Ji1 = Ja1 an_]m )
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. As3 = Q43 , Asq = {33, Ass = Qpz, Ase = Qy2,
5. Delta matrix
We shall now obtain delta (compound) matrix a1 = {—2X1X,(1 + g1)(1 + g2)(1 — ChyChy)
[Thrower 1965, Harkrider 1970] of the layer matrix de- ) T 22
—Sh{Sh,[ X7 (1 + s+ X501+ r{l}c X s
rived in section 3. We shall use a bar to denote a delta 1Sho X (149207, 2(1+ 9" 1}us/ (K12012)
matrix .8 delta matrix of [a] is [a]. Qg2 = 051 , Qg3 = Qy1, Qgq = A31, Ags = Ap1, Qg = QA11-
41
5.1 Casel: S50 5.2 Case II: 5 < 0 1)
Denoting We have already defined F, in equations (27) for
Chj = costh and Shj:(sinth)/rj n =1, 2, 3, 4. Let us further define

the elements of the delta matrix [a@] obtained from the

F,=F F,+F,F,= coshQ'sinhQ', F;=F, F,- F,F,= cosQ" sinQ"
matrix (25) are as follows.

It may be noted that
F,F,-F F,=0.
Thus from (28), the elements of delta matrix [a]
are written as

@y = {~X1(1 + g1) g2 — X2(1 + g2) g1 + ChiChy[X1 91 (1 + g2)+X292(1 + g1)]

—ShySha[X192(1 + g2)15 + X291(1 + g1 )11}/ (X12912)

= — 2 2 _ Zy+ Zy X1¥2 + Xov1 X1+ X2 12, + V220 Zy — Zp X1¥2 — Xovy
@y = {9275 ChyShy — gy 1 ChyShy}/ X1, @ = Ff == X, Bty T, GtTT, X, ¢
@33 = {9192 (X1 + X2) (1 — ChyChy)+Shy Shy[X, 9375 + X237}/ (C4a912X12) _ Y1 — V2 V1t Y2 F
A2 = — Fs—i 6
a4 = {~(91 + g2 + 20192) (1 = ChyChy)—ShyShy[(1 + g2) 9217 + (1 + 91) 9177}/ (X12912) XlZ XlZ
=y . ntr X1Vo+Xov:1 , X1+ Xo2y1v2 , vi— V2 XiV2a—Xova ,
a3 = Fy - Fy — — F
_ I, X12 X1z Thp I, X12
@5 = {ChyShyg1 — ChyShy g2}/ (€4a912)
_ . Vi+V2 Z1+Z. 2(V1Z2+4Y2Z4) Y1i—Y2 Z1—Z: =
a16 = {_glgz(Chl = Chy)* + (g2Shy — nghz)(glrfShl - HZTZZShz)}/(CuglzXlz) A14 = -2 #FZZ + = 3‘2 - #Ff =3
X12 T2 X12T12 X12  T12
Gy = {(1 + g1)X,ChyShy — (1 + g2)X1Ch,Shy}/ 912 » @y; = ChyCh, - _ NV F L Y1tY2 F
Q15 = s Ul
12 12
Azs = {X192ChyShy — X29,Chy Shy}/ (Caab12) 2 2
— v 2, ive 2 iv2)? 2
_ _ a16__X[‘FZ+X[‘F3_X[‘F4’
az4 ={(1+ g1)ChyShy — (1 + g2)ChyShy}/ g1z = @as s 12i12 12012 12z
= — = ) — X1Z7,—-XZ X122+ X027
Ays = —X125h1Shy /(Caag12) z6 = Q15s, Gy = —%FS — l%[‘% ,
12 12
az; = {—(1+ g)A + g2)(X1 + X)(1 — ChyCh;)
ap; = F12 + Fe,z,
2..2 2..2
—ShyShy[(1 + g1)°ri X, + (1 + g2)°15 X13caa/(X129,,)
= _ X1Y2—Xona - X1Y2+XoV1
Q23 =~ 1 Fs+i - Fe,
= — 2 2
Az, = {—(1 + g)r{ChyShy + (1 + g2)15 ChyShy}cas/X12
— Z1—Z. . Z1+Z, —
_ Qp4 == —2F5 — =2 Fg = Gy3,
33 = {X10: (1 + g2) + X29:(1 + g1) — Chy Chy[X, (1 + 91) 92 + X2 (1 + g2)91 F12 r
+ShyShy[X1g2157 (1 + g2) + X217 (1 + 91)1/ (X129 ,,)] = _ _ X=X 2 2 = =
: ! . Azs = = (Ff +F;), (¢ = Qgs,
@34 = {=2(1 = ChyChy)(1 + g)(1 + g2)}
— Z1+Zy X1Zy+X,Z- 27175 (X1 +X: Z1—Zy X1Zy—XpZ,
- - B a31 J— }‘ 2 1 } 2 1F22 + IXZ(FI Z)F32 + }‘ 2 1 j{ 2 1};‘427
—ShiShy[(1 + g1)°rf + (1 + g2)%17 Ycaa/ (X12912) = 833 — 1 2 2 12z 2 1
Ay = a Ay = Q _ _ Z4-Z, .21+ 2,
35 24> 36 = Q1a Gy, = — 222 Fy — iR
12 12
Ay = X1 X2[9:(1 + g2) + 92(1 + g)](Q — ChyChy)
s = F1Z + Yitve X1Z2+X2Zy FZZ _ XatXs v1ZatyeZy F?,Z _ V1TV XaZa-XpZy F42
2 2 2 = Ty X12 X12 Ty Ty X12 ’
+ShyShy[X7 g2 (1 + 213 + X591 (1 + 911}/ (X12912) = @as
— (Z1+22)* 12 42175 o (Z1=23)% o
= 2 2 — = a3y = — F; + F5 — F,
Ay = (G117 X,ChyShy — gor5 X1 ChyShy} /X1, = @3, 34 X12T1z 2 XppTiz 3 XipTip %7
@43 = {—2X1X29192(1 — ChiChy) — ShyShy[XP G575 + X3 93121}/ (C4a912X12) = @za a?,5 = a24. 5 636 = 614,
ﬁ44 = 633, 645 = ﬁ23, ﬁ46 = 613, Aus = X1V2+Xoyy Xa1Za+XpZy o 2X1Xs ViZatyaZy F2 +X1'Vz—x2}’1 X1Z2-X2Z4 F2=a
4 X12 T12 J X12 T12 3 X12 T12 4T
= - 2 2
asy = (X175 (1 + g2)ChyShy — X,17 (1 + 1) ChyShy}caa/Xiz 4, = X o Xvetonp o
Ay = Yoz 5Tl X1z 6 = U325
= 2,.2
s, = {—1{T ShyShy}c,a/X
52 { 172912 1 2} 44/ 12 _ _ (X11a+Xay1)? F2 4+ 4 Yive X1Xz F2 (X1v2—X2v1)? F2 =g
Az =——_— K +4 = -"—Fy —————F; =az,
X12T12 M1z X1z X12T'12
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Qus = Q33 , Qys = A3, Ay = Q13 ,
X4 Zp-Xp7  X1Z2+X27, _ Ty, 5
sy =————Fs —i————F;, a5, = ———=(Fy + F3) ,

X12 X12 X12

Qg3 = A4, Qgq = U3z, Qg5 = Ay, dsg =0g3,

_ L (X1Zp+Xp70)? F2 +4X1X2 217 np  (XaZa—X2Z1)% o

Aer =~ 1. Iz . 3T . 4
X12T12 X12 T2 X12T12

Gez = ds1 , Qg3 = Qg1 , Ogq = 031 , A5 = 21 , g = A11-

(42)

Based on the arguments given below Equation (28),
each term in each of the above matrix element is real.

6. Dispersion equation in terms of delta matrix
We write the equation (34) as
[K] = [P][M] (43)

where

s

Jin=Jo1 Ja=Joo Jiz=Jas Jia—Jo
[x]=
T34 =Taa

a1 n Jaa =T Jis—Jas

and
_X & L n
X12 Tz X2 Tz
[P] = X Z. 1
.- E T E— 1
X12 2 X2 Fiady
Using the properties of delta matrix, from (43) we
get

[K] = [P][M] (44)

where [K] and [P] are (1x6) matrices with elements

Ell = Ull —]21)(]32 _142) - UIZ _fzz)U:n _14_1) )

I?lz = Ul]. _121)(]33 _143) - 013 -122)031 -].1_1) ,CtC.I

[13] = [X1Z2—Xa2Zy 1 XY Meyn  L-dp 1 )’1-?‘2] N
L X1l "X5p” D OP% UPRRMED 79 PPRS PPREEED °P) PP I
and
[M] - [ﬁN_]_] [ﬁN—Z] [ [63] [&2] [El] .

The dispersion equation (39) is written as

Ky —xKi=0

where y = 0 when top liquid layer is absenti.e. when H,
= 0. Using (44), the above dispersion equation can be writ-
ten as

[Pllay-il[ay-2] ... ... .. [@3][@:][&;] = O (45)

where [d,] is a (6x1) matrix given by

- T
[81] = lay; — x@12. @51 — x@yy. A3y — XAz, Gy — Xlaz, sy — XGsz, Ggy — Xgz]]

If ry is complex in the Nth layer, each term of
[P] has a factor i, which gets eliminated in equation
(45). [a_m] has already been seen asreal (m =1, 2, ...,
N-1). Thus the dispersion equation (45) contains all real
terms.

Relationships among the elements of delta matrix
[a] and 1313 = 1314 show that E13 =] 1?14. Following
Harkrider [1964, Equation 74], we write surface ellip-
ticity € from equation (36) as

£= -Klg/’ﬁlz (46)

which is real even if 7, is complex. The above expres-
sion for ¢ is also obtained from equation (40) at the top
of solid layers below the liquid layer.

7. Dispersion equation in terms of reduced delta
matrix

The relationship among the elements of [a_m] have
been indicated in equations (41) and (42); further
1313 =53 14+ Thus the dispersion equation (45) can be
written as

[P](@x-11[ax-2] - . [@][@.][a.] =0  (47)

where the reduced delta matrix [a,] of mth layer is
given by

@y @ 2453 @5 Gge
Qz1  Qzz 2@y3 Qz5 Qe
[@n] =|G31 @32 @33+ d3s G35 Q3e
as;  dsz 2as; QAs5  Gsg
g1 Qs2 2a43 s g,

In equation (47)
[lt:’] = [Pn: Fua 2513:1315:?16]
and
[@1] = [@11 = X@12, @21 — X82z, Aay — XT3z, Ty — XAaz, As1 = XAsa ]}

In terms of reduced layer matrix surface ellipticity

g in equation (46) can be written as
e=-05 K/, (48)
where
R = [Pllay-1)[@y—z] o o o (@)@ )]

withj =2, 3 and [Zl(j)] is the jth column of [51].
8. Computational results and discussions

Based on dispersion equation (47), a FORTRAN
code in real domain is prepared to evaluate phase and
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group velocities; surface ellipticity of Rayleigh waves is
obtained using equation (48). Considering dispersion
equation (47) as f{k,c)=0, group velocity (U) is obtained
using

i Cf /0K,

U=c—k@r/aon.

where the above partial derivatives in the numerator
and denominator are obtained analytically from f. The
code may be shared on request. Using this code, dis-
persion curves are drawn here in Figures 2, 3 and 5 for
a few existing oceanic and continental VTI models.
Through generalized Reflection-Transmission method,
Bhattacharya and Arora [1997] obtained dispersion
equation with complex terms in a layered VTI spheri-
cal earth using a flattening transformation. This
method to get dispersion curves in a layered V'TT half
space works in a complex domain and gives the same
results as from the present code.

——— Phase velocity, Cors -

- = = Group velocity, UVT/ ’

Velocity (km/s)

5 10 20 50
Period (s)

Figure 2. Phase and group velocities of fundamental mode
Rayleigh waves for the isotropic crust over anisotropic upper man-
tle of the Pacific region of age 110+ Myr (Table 1a).

8.1 Oceanic structure

Let us consider a crust and upper mantle structure
of the Pacific region of age 110+ Myr [Nishimura and
Forsyth, 1989]. We consider 5 layers for isotropic crust
over 5 layers of VTIsubcrust (Table 1a). Figure 2 shows
the phase (cyy) and group (U, velocities of funda-
mental mode Rayleigh waves. During computation,
complex 7; appears in subcrustal layers for periods up
to 18 s. The Table 1b gives the numerical values of ¢

VTI
Uy and ¢ which can be used to test other codes.

VT VTP

8.2 Continental structure

As a continental structure, let us consider the VTI
model obtained by Huang et al. [2010] for SW China
using Love and Rayleigh waves up to the period 40 s.

Thickness oy By o 1 p

LayerNo. —ym)  (km/s) (km/s) gm/cm?
1 6.1 1.5000 0.0000 1.0000 1.0000 1.03
2 0.3 2.0000 0.5000 1.0000 1.0000 1.50
3 1.0 5.6000 3.3000 1.0000 1.0000 2.60
4 2.0 6.4000 3.7000 1.0000 1.0000 2.80
5 3.0 7.2000 4.1000 1.0000 1.0000 3.00
6 2.6 8.1780 4.6357 0.9868 1.0000 3.3995
7 5.0 8.1747 4.6232 0.9786 1.0024 3.3924
8 10.0 8.1699 4.6051 0.9666 1.0094 3.3819
9 10.0 8.1677 4.5947 0.9620 1.0176 3.3669
10 0 8.1618 4.6222 0.9712 1.0169 3.3530

Table 1a. Structure of the Pacific region with age 110+ Myr
[based on Nishimura and Forsyth, 1989].

Period (s) cypp (km/s) Uyqq (km/s) -
5.000 1.5078 1.3497 0.9109
10.000 1.7819 1.1842 0.1457
15.000 2.7796 0.8923 -0.2401
20.000 3.9105 3.1159 -0.6831
25.000 4.0378 3.7239 -0.7429
30.000 4.0863 3.8858 -0.7505
35.000 4.1143 3.9625 -0.7483
40.000 4.1333 4.0092 -0.7438
50.000 4.1578 4.0654 -0.7346

Table 1b. Numerical values of phase velocity (c,,1,), group veloc-
ity (Uy,py) and surface ellipticity (¢,,p,) of fundamental mode of
Rayleigh wave at a few sample periods for the oceanic VTI model
in Table 1a.

Il:]ayer Thickness o By By ¢ n ,
0. (km)  (km/s)(km/s)(km/s) gm/cm
1 16.0 5.63 3.25 3.20 0.9695 1.02 2.5
2 16.0 6.15 3.55 3.34 0.8852 1.02 2.7
3 17.0 6.70 3.87 3.63 0.8798 1.02 3.0
4 0 7.70 4.39 4.28 0.9505 1.01 3.3

Table 2a. Example of a VTI continental structure [based on
Huang et al. 2010].

Period (s) ey (km/s)  Uyqy (km/s) -~
5.000 2.9389 2.9264 -0.6765
10.000 2.9716 2.8784 -0.6719
15.000 3.0323 2.8244 -0.6691
20.000 3.1229 2.7448 -0.6664
25.000 3.2457 2.6857 -0.6650
30.000 3.3844 2.7254 -0.6715
35.000 3.5085 2.8842 -0.6914
40.000 3.5996 3.0878 -0.7219
50.000 3.7011 3.3980 -0.7870

Table 2b. Numerical values of phase velocity (c,,), group veloc-
ity (Uy,yyp) and surface ellipticity (g€;) of fundamental mode of
Rayleigh wave at a few sample periods for the continental VTI
model in Table 2a.

For the model, they evaluated only 3, and f3,, consid-
ering § = ¢ =M = 1. We have adopted this model and



RAYLEIGH WAVES IN A LAYERED TRANSVERSELY ISOTROPIC HALF SPACE

Velocity (km/s)

0.15F PN b

Velocity Difference (km/s)

5 10 15 20 25 30 35 40 45 50
Period (s)

Figure 3. (a) Phase velocity (¢, and group velocity (U, of
fundamental mode Rayleigh waves for the continental V'TT struc-
ture in Table 2a. (b) ¢y, and Uy, are respectively phase and group
velocities of fundamental mode Rayleigh waves for an isotropic
structure with ¢ = n = 1 in all the layers in Table 2a. The differ-
ences (€jgq - Cypy) and (Ug - Uyypy) are shown.

considered o; = 1.732f3; and o, = 1.732f; thus
$=[0,/ 01 By or E has no effect on Rayleigh waves.
A small value of 1 has been considered in the adopted
model (Table 2a). For this model Figure 3a shows the
phase velocities (cy,;) and group velocities (U, of
fundamental mode Rayleigh waves. During computa-
tion, complex r, and r, appear at least in one of the
lower layers up to period 39 s. An isotropic model is
considered with ¢ = n = 1 in Table 2a and the corre-
sponding phase velocities (c/5) and group velocities
(Uigp) are obtained. The difference (cg — cypy) is as
large as 0.086 s around the period 26 s; further, the dif-
ference (Ujg — Uy,py) is as large as 0.15 around the pe-
riod 35 s (Figure 3b). Surface ellipticity (¢) is shown in
Figure 4. The table 2b gives the numerical values of
U,

VTI VI
As indicated in the Introduction, there are a few

Cyp and ¢
studies where observed surface wave velocities are ini-
tially inverted to get an isotropic model for which the-
oretical dispersion curves for Love and Rayleigh waves
are plotted along with the observed velocity data. In a
region of positive S-wave anisotropy (B, > By,), these
theoretical velocities for Love waves are lesser than the
observed data, while those for Rayleigh waves are more
than the data on an average. The fit of theoretical
curves to the observed data is improved by considering
S-wave velocity as f;; with § = 1 for Love waves and S-
wave velocity as 3y, with ¢ =1 = 1 for Rayleigh waves
with ;> By, In such a case, we can use the code of a

-0.66 T T

-0.70

-0.74

Surface ellipticity (€)

-0.78

_0.82 I I I I
10 20 30 40 50

Period (s)

Figure 4. Surface ellipticity (¢,,1,) of fundamental mode Rayleigh
waves for the continental VTI structure in Table 2a. Surface ellip-
ticity (g;4p) is also shown for an isotropic structure with ¢ =1 =1
in all the layers in Table 2a.

1.6 T T

Velocity (km/s)

Velocity Difference (km/s)

0.1 0.2 0.5 1.0 2.0 5.0 10.0
Period (s)

Figure 5. (a) Phase velocity (c,.1,) and group velocity (Uy) of
fundamental mode Rayleigh waves for the subsurface VTT struc-
ture in Table 3. (b) ¢4, and Uy, are respectively phase and group
velocities of fundamental mode Rayleigh waves for the isotropic
structure with ¢ =1 = 1 in all the layers in Table 3. The differ-
ences ( ¢igq - Cypp and (Upgq, - Uypy) are shown.

layered isotropic half space. However, Figure 3b shows
that consideration of ¢ # 1 and n # 1 significantly
changes the Rayleigh wave velocities. Thus reducing
Rayleigh wave theoretical velocities only by B,, may
give lower B, than actual and this overestimates S-wave
anisotropy &. This was also explained by Bhattacharya
[2015] through sensitivity of Love and Rayleigh wave
velocities to VTT medium parameters. A similar erro-
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neous estimate of & may be obtained in a region with
negative S-wave anisotropy (;; < By,) for considering

b=m=1

8.3 Subsurface structure

Surface waves have been used for near surface
studies [Socco et al. 2010, Dal Moro 2014]. Considera-
tion of VTI gives better subsurface structure in explo-
ration seismology. In a VTI subsurface, Levin [1979]
considered reflections from interfaces. Thomsen [1986]
derived relations between NMO (normal move out) ve-
locities and anisotropic parameters. These studies en-
couraged to obtain subsurface structure through
anisotropic travel time inversion and NMO velocity
analysis [Tsvankin and Thomsen 1995, Alkalifah and
Tsvankin 1995]. In such studies the five stiff elastic co-
efficients of VTT medium are replaced by a, , and the
Thomsen parameters Y, €, and § given by

Qg = +/C33/p = Ay, Bo = +/Cas/P = Py,

(49)
— Ce6—Casq — C11—C33
2C44 ? 2633
and
5= (c13+€44)*—(c33—C44)* (50)

2c33(C33—Ca4)

These equations can be used to convert Thomsen
parameters to the present representation of VTI pa-
rameters. From equation (49) we obtain ¢ from

2
_C1_ag _ 1
It2er==2"%

Thus o, = o,/ V¢. Further (50) gives

VI(@f = B8 + Dag - F)] - B = cua/p = = V&, say (51)

Hence we obtain, n = VZ/(a} - 2B3), where V7 is
given by left hand side of (51).

Xiao et al. [2004] compared four reflection-travel-
time inversion methods to get VTI subsurface structure
on synthetic data based on a 4-layered structure shown
in Table 3, where the VTI parameters of Xiao et al.
[2004] has been converted to the present representa-
tion; approximate density values have been considered.
Figure 5a shows the phase velocities (c,,p,) and group
velocities (Uyp;) of fundamental mode Rayleigh waves
for this model (Table 3). During computation complex
r, and r, appear at least in one of the lower layers even
up to period 10 s. We obtain phase velocities (cq) and
group velocities (Ug,) for an isotropic model by con-
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sidering ¢ =m = 1 in Table 3. The difference (c;g - ¢\/py)
is as large as 0.43 s around the period 1 s (Figure 5b).
Even at a very low period of 0.1 s, this difference is 0.42
s. The difference (Ugq — Uy qy) is as large as 0.57 around
the period 1.25 s. When period tends to zero, the phase
velocity tends to that of the top layer as a half space.
The phase velocity top VTI layer as a half space is 0.899
km/s using the dispersion equation of Stoneley [1963]
and Vinh and Ogden [2004]; velocity of such a half
space decreases as S5 decreases. While considering the
top layer as an isotropic half space (¢ =1 = 1), we have
phase velocity as 0.9194%f,, = 0.9194*1.4km/s = 1.287
km/s [Ewing et al. 1957]. Thus the difference between
Rayleigh wave velocities of the two half spaces are
0.388 km/s. Grechka et al. [2002] noted that the reflec-
tion data cannot be uniquely inverted for VT parame-
ters without additional information. The large velocity
difference in Figure 5b shows that short period phase
and group velocities can be used to improve the result
of anisotropy in subsurface obtained through
anisotropic travel time inversion and NMO velocity
analysis. The sensitivities of surface wave velocities to
the medium parameters are significant down to about
half the wavelength of the wave [Bhattacharya 2015];
the short period range may be considered accordingly.

Thickness o B
Layer No. (km) (ka} s) (ka/s) ¢ " gm;) cm?®
1 0.5 3.3130 1.400 0.7143 1.1882 2.2
2 0.5 3.4206 1.500 0.7692 1.1523 2.3
3 0.5 3.5055 1.600 0.8333 1.0780 2.4
4 o0 3.7695 1.750 0.8621 1.0395 2.5

Table 3. Example of a VTI subsurface [Xiao et al. 2004].

9. Conclusions

(a) In a VTI medium, when S§ 20, the decay factor
f (j =1, 2) is real or imaginary as in a isotropic
medium.

(b) In a VTI medium, when Sg < 0, the decay fac-
tor 1, becomes complex (j = 1, 2). This occur-
rence depends on the medium parameters and
c. In the ¢ —m plane, the complex region of T is
bounded by two nearly parallel lines for given
¢/By and o,/ By, (Figure 1). The area of this re-
gion decreases with increase of ¢/f, or
o/ By- We find that §2 < 0 only if ¢ < B

(c) We obtain a layer matrix and a delta layer ma-
trix with real elements when 7, is real or imag-
inary. When f is complex, r, and r, are complex
conjugates; using this property, we get these
matrices with real elements.

(d) Using T-H method with reduced delta matrix,
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we obtain Rayleigh dispersion equation (47)
with real terms in a layered VTT half space.

(e) We evaluate Rayleigh wave phase and group
velocities for oceanic and continental VTI mod-
els through dispersion equation (47) (Figures 2,
3 and 5). Surface ellipticity has been evaluated
from equation (48) (Figure 4).

(f) The dispersion equation (47) contains real
terms as in isotropic case. Thus for inversion of
observed surface waves to get VTT structure, it
may not be necessary to simplify the structure
assuming ¢ = m = 1 to compute dispersion
curves of Rayleigh waves with isotropic codes
as has been done in a few studies.

(g) Strong VTT is seen in subsurface particularly
with organic rich shales. Such subsurface shows
significant difference between dispersion
curves of Rayleigh waves for VTT and isotropic
subsurface (Figure 5). Thus short period sur-
face waves dispersion data can be used to im-
prove the VTI parameters of the subsurface in
conjunction with reflection studies in explo-
ration seismology.
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