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1. INTRODUCTION

Pore-fluid flow and electric field are coupled in
fluid-filled porous media due to the electrical double
layer (EDL) with excess charges. As shown in Figure 1,
the pore fluid nearby fluid-solid interface is counter-
charged with excess cations because of the negatively
charged surface of the solid frame. When the pore fluid
is mechanically forced to flow relatively to the solid
frame, some of the excess charges are dragged to move,
thereby causing streaming electric current [Quincke,
1861]. Conversely, an applied electric field forces the
excess charges to move, thereby driving pore fluid flow,
which is referred to as the electroosmosis effect [Wiede-

mann, 1852]. These electrokinetic phenomena have var-
ious applications in geophysical exploration [e.g. Hu et
al., 2000, 2002; Dupuis et al., 2009; Sava and Revil,
2012; Guan et al., 2013, 2015; Monetti et al., 2014; Zy-
serman et al., 2015], hydrogeophysics [e.g. Warden et
al., 2013; Kröger et al., 2014; Ozaki et al., 2014; Ran-
garajan et al., 2014; Desroches and Butler, 2016] and
earthquake warning [e.g. Ishido and Mizutani, 1981;
Pride et al., 2004; Gao et al., 2013, 2016]. More intro-
ductions to electrokinetic phenomena and their appli-
cations in geosciences are available in some tutorials
[e.g. Jouniaux and Zyserman, 2016].

Theoretical research of electrokinetic effects can be
traced back to the well-known Helmholtz-Smolu-
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ABSTRACT
Electrokinetic coupling between pore-fluid flow and electric field arising from the electrical double layer (EDL) has many applications

in geoscience. In this study, we extended the formulas for the dynamic electrokinetic coupling coefficient (ECC) to arbitrary scaled cap-

illaries. These two ECC formulas for the cylindrical and slit apertures, respectively, were derived without the thin or thick EDL assump-

tion used in previous studies, relating to the normalized radius (the ratio of capillary radius to Debye length). By the identical ECC

formulas for streaming current and electroosmosis effects, it is confirmed that Onsager’s reciprocity is generally satisfied for arbitrary

scaled and shaped apertures. This ECC tends to the results using the thick and the thin EDL assumptions respectively with the decrease

and increase of the normalized radius. It is shown that the relative error is less than 10.0% if the normalized radius is less than 0.8 and

is larger than 20, respectively. Otherwise, the thick and the thin EDL assumptions are inapplicable. The high-frequency limit phase of

this ECC increases from 45° to 90° with the decrease of the normalized radius, rather than that remains at 45° under the thin EDL as-

sumption. The linear approximation for solving the Poisson-Boltzmann equation influences the electric potential in the EDL and the ECC,

which increases with the decrease of the normalized radius. If the normalized radius is larger than 7, the error is within 5.0% even

though the linear approximation has been mathematically invalid when the salinity is 0.001 mol/L and zeta potential is -150 mV.



chowski (H-S) equation, first proposed by Von
Helmholtz [1879] and then discussed by Smoluchowski
[1905] systematically. Subsequently, the EDL model was
provided by Gouy [1910] to address the origin of the
excess charges and characterize the charge distribution.
Based on the H-S equation and the EDL model, many
experimental and theoretical attempts have been done
to study the electrokinetic phenomena in various fields
[e.g. Gaudin and Fuerstenau, 1955; Li and De Bruyn,
1966; Cases, 1969; Somasundaran and Kulkarni, 1973;
Reppert and Morgan, 2003; Bordes et al., 2008; Allègre
et al., 2012; Wang et al., 2015]. The original H-S equa-
tion (L0=εζ/η, where ε is the dielectric permittivity of
fluid, ζ is the zeta potential, η is the fluid viscosity) was
proposed for the electroosmosis effects in capillaries to
characterize the ratio of the fluid-flow velocity to the
applied electric field. On this basis, it was extended to
the streaming current/potential effects in capillaries. The
modified H-S equations are collectively referred to as
the electrokinetic coupling coefficient (ECC). Specifi-
cally, it is termed the streaming potential coefficient for
the ratio of the electric-potential difference (electric
voltage) to the applied pressure difference, and is termed
the electroosmosis pressure coefficient for the ratio of
the pressure difference to the applied electric-potential
difference [Pengra et al., 1999]. The H-S equation is also
extended to porous rocks straightforwardly by

L0=ϕεζ/τη [Pride, 1994], where ϕ and τ denote the
porosity and tortuosity, or by other ones with respect
to the permeability, the particle size of the solid-frame,
the pore diameter, or the pore-throat size [e.g. Li et al.,
1995; Glover and Walker, 2008; Glover and Déry, 2010]. 

Experiments have shown that the ECC changes with
frequency [Tardif et al., 2011; Jouniaux and Bordes,
2012]. For time-varying electrokinetic phenomena such
as those generated by elastic waves, the H-S equation
should be extended to frequency-dependent versions.
Three kinds of frequency-dependent ECCs were pro-
vided [Jouniaux and Bordes, 2012], which are the sec-
ond-order vibrational system model [Thomson, 1996],
Packard’s model for capillaries [Packard, 1953; Reppert
et al., 2001] and Pride’s model for fluid-saturated
porous media based on first principles [Pride, 1994;
Walker and Glover, 2010]. These three frequency-de-
pendent ECCs all originate from the H-S equation. At
the low-frequency limit, the Packard’s ECC is exactly
the classic H-S equation L0=εζ/η, and the Pride’s ECC
degenerates to the modified H-S equation L0=ϕεζ/τη.
According to Tardif et al. [2011], all the three models
have the same trend with the experimentally measured
data for Ottawa sandstones, and moreover the pore radii
can be accurately estimated from the Packard’s ECC.
This indicates the rationality of using the H-S equation
to characterize various electrokinetic effects in fluid-
filled porous media.

The classic H-S equation and the frequency-depen-
dent ECC models mentioned above are valid only when
the capillary radius or the pore size is much larger than
the EDL thickness. In this case, the excess charges are
concentrated nearby the solid-fluid interface, the elec-
tric potential changes sharply from the zeta potential at
the shear-slip surface to zero, and thus the ECC is dom-
inated by the zeta potential. Such a thin EDL assump-
tion, however, is not always satisfied, especially for
natural or artificial porous media with low permeabili-
ties, such as mudstone, shale and concrete. According to
Jackson and Leinov [2012], the thin EDL assumption
may be not reasonable even for sandstones (having
higher permeability whose pore radii are generally
larger than 103 nm) if the salinities are lower than 0.001
mol/L. Thus, it is necessary to break the limit of the thin
EDL assumption and extend the frequency-dependent
ECC model to arbitrary capillary/pore scales and salin-
ities. Burgreen and Nakache [1964] and Rice and White-
head [1965] derived the analytical solutions of the
electric potential and electrokinetic flow velocity in
capillary silt and cylindrical capillary with arbitrary
scales, respectively. However, neither of them investi-
gated the influence of the capillary scale on the ECC.
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FIGURE 1. Schematic view of Stern’s electrical double layer
(EDL) model. (a) Charge distribution. (b) Electric po-
tential distribution.



Recently, Fiorentino et al. [2016, 2017] analyzed the ef-
fect of the capillary scale on the streaming potential co-
efficient by using the Lattice Boltzmann method, but
the frequency dependence was not involved and the an-
alytical expression was not obtained. Although Revil
and Mahardika [2013] provided a frequency-dependent
ECC formula for arbitrary pore sizes, their model is not
based on the H-S equation in which they employed the
effective charge density rather than the zeta potential
that widely adopted in previous studies. 

In this study, we derive the formula of the fre-
quency-dependent ECC model for arbitrary
capillary/pore scale by using the H-S equation. To in-
vestigate whether the Onsager’s reciprocity [Onsager,
1931] is still valid for arbitrary scale, we consider both
the streaming current and electroosmosis effects. Be-
sides, we analyze the influences of the Debye-Hückel
approximation [e.g. Pride and Morgan, 1991] on the
electric potential and the ECC by comparing the ana-
lytical and numerical results. The Debye-Hückel ap-
proximation is a linear approximation that is inevitable
to be used for the analytical solutions of the Poisson-
Boltzmann equation.

The rest of this paper is organized as follows. In Sec-
tion 2.1, we briefly restate the Poisson-Boltzmann equa-
tion for the charge distribution and the Navier-Stokes
equation for the pore-fluid flow. In Section 2.2, we de-
rive the ECC formulas for a cylindrical capillary and a
capillary slit, respectively, according to the streaming
current effect. And then the ECC formulas according to
the electroosmosis effect are derived in Section 2.3.
From these ECC formulas, we check the Onsager’s re-
ciprocity. In Section 3.1, we investigate the character-
istics of the static and frequency-dependent ECCs for
capillaries with arbitrary scale and shape and give com-
parisons between our ECC model and the ones under
the thin and thick EDL assumptions, respectively. After
that, we analyze the influences of the Debye-Hückel ap-
proximation on the electric potential and the ECC in
Section 3.2. Finally, we will derive the main conclu-
sions. 

2. FORMULATION

2.1 Basic theory and equations
Figure 1 shows Stern’s EDL model [e.g. Pride and

Morgan, 1991], where there are excess charges in the
EDL composed of the Stern and the diffuse layers. Sup-
pose that all the cations in the Stern layer are firmed
and they don’t give any contribution to electrokinetic
conversions. For the axisymmetric cylindrical coordi-

nate system (r, z), whose origin coincides with the cross-
section centroid of the capillary, the distribution of the
excess charges in the diffuse layer is governed by the
Poisson-Boltzmann equation [Gierst, 1966],

(1)

where 
1. ρe (r) = -2evn0 sinh (veψ (r)/kbT) is the charge density, 
2. ψ (r) denotes the electric potential varying with co-

ordinate r, 
3. ε is the dielectric permittivity which is treated as a

constant in this study, 
4. v, n0 and T are ionic valence, ionic number and

kelvin temperature, respectively, 
5. e = 1.6 x 10-19 C is the electron charge 
6. and kb = 1.3810 x 10-23 is the Boltzmann constant. 

The following two boundary conditions are also
needed to solve Equation (1), 

(2)

where r = R is at the shear-slip surface as shown in Fig-
ure 1.

Considering the electrolyte solution as a Newtonian
fluid, the flow is governed by the Navier-Stokes equa-
tion, 

(3) 

where u(r) is the flow velocity dependent on the coor-
dinate r, t is time, P and E are the fluid pressure and
the electric field in the capillary, respectively, ρ and η
are density and viscosity of the fluid, respectively. The
second and third terms on the right side of Equation (3)
denote the pressure gradient and the electric field force
applied to the fluid, respectively. According to Equation
(3), the fluid flow can be caused by both the pressure
difference and the electric field due to the electrokinetic
effect. 

2.2 Streaming-current ECC
In this subsection, we derive the frequency-depen-

dent ECC for the streaming current effect caused by an
applied pressure difference along the capillary axis. In
this case, the third term on the right side of Equation (3)
vanishes. To solve Equation (3) without ρe (r)E and
apply the boundary condition u(r) = 0, we can obtain
the fluid flow velocity u(r) driven by the pressure dif-
ference.

The solution of u(r) depends on the cross section of
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the capillary. Different-shaped capillaries have differ-
ent velocity distributions along the r-direction. In this
study, we consider two typical-shaped capillaries, which
are the cylindrical capillary and the capillary slit, to ide-
alize the circular aperture and the flat crack in porous
media, respectively. For the cylindrical capillary, the
fluid velocity driven by a sinusoidal pressure gradient
∂P/∂z = -Aexp(i ωt) is,

(4)

where i = √-1 = , constant A is the amplitude of the
pressure gradient, k = √i ωρ/η, ω is angular frequency,
and I0 is the modified Bessel function of zero order
[Biot, 1956].

The fuild flow carries the excess charges in
the diffuse layer, resulting in the streaming current

. As discussed before, the charge
density ρe(r) can be obtained once the electric potential
ψ(r) is solved from Equations (1) and (2). As it is a tran-
scendental equation, there is no analytical solution of
Equation (1). In previous studies [e.g. Pride and Mor-
gan, 1991; Jackson and Leinov, 2012], the Debye-
Hückel approximation  
is used to linearize the right hand side of Equation (1),
as long as the term                   is small enough. In Sec-
tion 3.2, we will delve deeper into the applicable con-
dition of this linear approximation by analyzing its
influences on the ECC. By solving Equations (1) and (2)
with the linear approximation, the analytical solution of
ψ(r) and ρ(r) for the cylindrical capillary are obtained as
[Abramowitz and Stegun, 1964], 

(5)

(6)

where is the Debye length charac-
terizing the EDL thickness [Kirby and Hasselbrink,
2004].

Substituting Equations (4) and (6) into the average
streaming current density , it
yields

(7)

Thus, the streaming-current ECC L12 = Js/∇p in the
cylindrical capillary is written as,

(8)

It is seen that Equation (8) depends on the normal-
ized radius (the ratio of capillary radius to Debye length
R/d). When R/d → ∞, Equation (8) reduces to the
Packard’s ECC that derived under the thin EDL assump-
tion [Packard, 1953; Reppert et al., 2001].

Note that the ECC is independent of conductivity,
which is different from the streaming potential coefficient
for the ratio of the streaming potential to the pressure dif-
ference [e.g. Pengra et al., 1999; Reppert et al., 2001;
Tardif et al., 2011]. Dividing Equation (8) by the conduc-
tivity, it yields the streaming potential coefficient [Jouni-
aux et al., 2000]. For porous and fractured rocks, the
conductivity is the sum of the fluid conductivity and the
surface conductivity [e.g. Revil et al., 2014].

Similar to the case of the cylindrical capillary men-
tioned above, we can obain the ECC for the capillary
slit. In this case, the governing equations changes from
the axisymmetric cylindrical coordinates to the 2D rect-
angular coordinates. Thus Equation (3) without the elec-
tric field force reduces to,

(9)

To solve Equation (9) with u(R) = 0 , the flow veloc-
ity motivated by ∂P/∂z = -Aexp(i ωt) is obtained as, 

(10)

To solve Equations (1) and (2) in the 2D rectangular co-
ordinates, the electric potential and the charge density
are respectively given by 
and [Kirby and Has-
selbrink, 2004]. Then the average streaming current
density is written as 

(11)

Thus, the streaming-current ECC for the capillary slit
is given by

(12)

Similar to Equation (8), Equation (12) also depends on
the ratio of capillary radius (half width) of capillary slit
to Debye length.

2.3 ELECTROOSMOSIS ECC
For the electroosmosis effect driven by an applied

electric field, the fluid-flow velocity is governed by Equa-
tion (3) when the second term on its right side vanishes.
Suppose the sinusoidal electric field along the capillary
axis is E = AE exp(i ωt), the electroosmosis-flow velocity
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uE (r) is obtained as follows, by solving Equation (3) with-
out ∂P/∂z and using Equation (6) and the boundary con-
dition uE (r) = 0,

(13)

Substituting Equation (13) into the average flow ve-
locity , it yields

(14)

Then the electroosmosis ECC  is written as

(15)

By comparison, it is seen that Equations (8) and (15)
are identical, that is L12 = L21. This indicates the correct-
ness of our derivations.

Moreover, we prove that the Onsager reciprocity [On-
sager, 1931] of the frequency-dependent ECC is still avail-
able for arbitrary scale, although it has been
verified under the thin EDL assumption by Pride [1994].
When ω → 0, Equations (8) and (15) is simplified as

(16)

which is the static ECC for the cylindrical capillary.
When R/d → ∞, Equation (16) degenerates into the H-S
equation [Jouniaux and Bordes, 2012].

For the capillary slit, the electroosmosis-flow veloc-
ity uE (r) is governed by

(17)

Using the same method in cylindrical capillary, the
electroosmosis-flow velocity and thus the electroosmo-
sis ECC for the capillary slit are obtained as 

(18)

(19)

Equations (12) and (19) are also identical, which indi-
cates that the Onsager reciprocity is still available for the
capillary slit. Because it has been verified
for the two extreme shapes, we deduce that the Onsager
reciprocity is available for capillaries in any shape.

When ω → 0, Equations (12) and (19) is simplified as

(20)

which is the static ECC for the capillary slit. 
When R/d → ∞, Equation (20) degenerates into the

H-S equation, which is the same as that of Equation
(16).

The above-derived ECC formulas for capillaries can
be extended to fluid-saturated porous media. When pore
channels are regarded as tortuous capillary bundles,
Equations (15) and (19) can be rewritten straightfor-
wardly into

(21)

(22)

where F = τ/φ is the formation factor. Equation (21)
originating from the ECC for the cylindrical capillary is
applicable to the porous media with circular apertures.
Equation (22) originating from the ECC for the capil-
lary slit is applicable to the porous media with flat
cracks. 

3. ANALYSIS

3.1 ANALYTICAL RESULTS
In this subsection, we analyze the characteristics of

the static and frequency-dependent ECCs and give
comparisons with the Packard’s model. Without special
explanations, we employ the kelvin temperature
T = 298 K (25°C), ionic valence ν = 1, salinity
Cf = 0.001 mol/L (the ionic number is calculated by
n0 = 1000NaCf where Na = 6.02·1023 is Avogadro con-
stant), density ρ = 1000 kg/m3, viscosity η = 0.001 Pa · s
and dielectric permittivity ε = 80ε0 (ε0 = 8.85·10-12 F/m
is the vacuum dielectric constant) of the pore fuild.

According to these parameters, the Debye length
d = 9.72 · 10-9 m.

Figure 2 shows the variations of the static ECCs with
the normalized radius (R/d ) for both the two different-
shaped capillaries. The longitudinal coordinate is nor-
malized with respect to the ECC with the thin EDL
assumption. It is seen from Figure 2(a) that the normal-
ized ECCs for cylindrical capillary and capillary slit
monotonically increase with the increase of R/d and
gradually tends to 1.0. It indicates that the static ECCs
presented in this study tend to the ECC with the thin
EDL assumption. when R/d=20 and R/d=60 respectively,
the static ECCs for the two different capillaries are about
90% and 95% of the one in the thin EDL assumption.
This result approaches to those given by Jackson and
Leinov [2012] and Fiorentino et al., [2016], where the
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application conditions of the thin EDL assumption is
R/d>24 and R/d>52, respectively. Thus it confirms that
the thin EDL assumption is applicable if the capillary
radius is several ten times of the Debye length or more. 

In Figure 2(a), when R/d is about less than 10, the
normalized ECCs start to decrease significantly with the
decrease of R/d. As a result, the discrepancy between
our static ECCs and that under the thin EDL assumption
increases significantly, while our static ECCs gradually
tend to the ECCs under the thick EDL assumption. Fig-
ure 2(b) gives comparisons between the static ECCs in
this study and the ones based on the thick EDL as-
sumption. It is found that the ECCs under the thick EDL
assumption overestimate the static ECCs. This overesti-
mation increases with R/d. When the overestimation is
up to 10%, the R/d is calculated about 0.5 and 0.78 for
the cylindrical capillary and the capillary slit, respec-
tively. This basically agrees with Jackson and Leinov
[2012] where the thick EDL assumption is applicable
when R/d<0.81. Besides, the static ECC for the capillary
slit is larger than that for the cylindrical capillary. The
reason is that the interface of the capillary slit is larger
than that of the cylindrical capillary with the same
cross-sectional area. Thus the average flow velocity and

then the ECC of the former are higher than that of the
latter.

Figure 3 shows the variations of the frequency-de-
pendent ECC with frequency. The solid line denotes the
variation in amplitude, while the dashed line denotes
the variation in phase. The three panels on the left are
for the cylindrical capillaries with R/d=0.6, 10 and 50
from top to bottom, while the three ones on the right are
for the capillary slits. For R/d=0.6, the thick EDL as-
sumption is applicable, while for R/d=50, the thin EDL
assumption is applicable. For R/d=10, however, neither
of the two assumptions are reasonable. It is seen that
the amplitudes as well as the phases have same varia-
tion trendencies for the capillaries with different radii or
cross-sectional shapes. The amplitude decreases
smoothly (basically unchanged) starting from the static
ECC first, then decreases sharply until the inflexion
point, and finally decreases smoothly to zero. As men-
tioned above, the capillaries with different radii or
cross-sectional shapes have different static-ECC values.
The frequency corresponding to the inflexion point in-
creases with the decrease of R/d. In the upper two pan-
els for R/d=0.6, this frequency is on the order of 10 GHz.
Such a high frequency is far out of the frequency range
in exploration geophysics. Nevertheless, the frequency
of interest may be up to this order in the fields of non-
destructive examination, bio-MEMS and so on.

The ECC phase reflects the response delay between
the mechanical and electromagnetic fields of the time-
varying electrokinetic effects. As shown in Figure 3, the
phase increases from zero with frequency. It increases
smoothly first at low frequencies, then increases sharply
until the inflexion point, and finally increases smoothly
to the high-frequency-limit value after the inflexion
point. It is found that this high-frequency limit phase
increases with the decrease of R/d. This characteristic is
different from that of the Packard’s ECC, which is inde-
pendent of the capillary radius and remains at 45°. In
Figure 4, we compare the variations of the high-fre-
quency-limit phase with R/d between the two different
shaped capillaries. The results are identical with each
other at any radius, indicating that the high-frequency
limit phase is independent of the cross-sectional shape
of the capillary. With the decrease of R/d, the high-fre-
quency limit phase increases from 45° to 90°.

Figure 4 is divided into three regions according to
the applicable conditions of the thin and thick EDL as-
sumptions mentioned above. The two shadow regions
(R/d<0.81 and R/d>24) denote the scales that the thick
and thin EDL assumptions are applicable, respectively,
while the white area (0.81<R/d<24) denotes the scale
between them. For the two scales of R/d<0.81 and

FIGURE 2. Variations of the static ECCs with the normalized ra-
dius R/d for the cylindrical capillary (red solid line)
and the capillary slit (black solid line). (a) 0<R/d<60
(b) Comparisons to those with the thick EDL as-
sumption (dashed lines) until R/d=1. 

(a)

(b)
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0.81<R/d<24, the high-frequency-limit phase basi-
cally keeps at 90°. For R/d>24, however, it decreases
from 90° to 45° with the increase of R/d. Until
R/d>105, it approaches to 45°, which is the high-fre-
quency-limit phase of the Packard’s ECC under the
thin EDL assumption. Thus if the high-frequency-limit
phase is considered, obviously a higher R/d than that
for the static ECC is necessary to the thin EDL as-
sumption.

In Figure 5, we compare the real and imaginary
parts of the ECC presented in this study with those of
the Packard’s ECC for different R/d. It is seen that the
discrepancies in both the real and imaginary parts in-
crease with R/d. By comparison, the discrepancy of
the real part is relatively larger than that of the imag-

inary part, especially at low frequencies. The reason
can be found from the ECC formulas derived in this
study. The two terms dI1(R/d)/RI0(R/d) and 1-d2-k2 in
Equation (8) reflect the modification to the Packard’s
model. The first term is independent of the imaginary
part, while the second term is negligible at low fre-
quencies. Besides, the maximums of the imaginary part
for the two models correspond to the same frequency,
which is referred to as the transition frequency that sep-
arates the low-frequency viscous flow from the high
frequency inertial flow [Tardif et al., 2011]. For cylin-
drical capillaries and capillary slits, the transition fre-
quencies are expressed by ωt=8η/ρR2 and ωt=3η/ρR2,
respectively, which are independent of the EDL and the
electric characteristics.

FIGURE 3. Amplitudes and phases of the frequency-dependent ECC. Panels (a), (c) and (e) are for the capillary slits with R/d=0.6, 5
and 50, respectively. Panels (b), (d) and (f) are for the cylindrical capillaries with R/d=0.6, 5 and 50, respectively.

(a) (b)

(c) (d)

(e) (f)



3.2 NUMERICAL SOLUTIONS
As stated above, the approximation

has been used to obtain the
analytic solution of the Poisson-Boltzmann equation
[Pengra et al., 1999; Reppert et al., 2001]. This approx-
imation is mathematically valid if the term νeψ/kBT is
less than 1.0. Thus it is applicable if the absolute value
of the zeta potential (the maximum of ψ(r) is less than
25 mV when ν=1 and T=298 K (25°C) [Pride, 1994].
Nevertheless, experimental measurements show that
there are many porous rocks whose |ζ| is much larger
than 25 mV and even reaches to 200 mV, meanwhile,
their ionic valence ν is possiable to be larger than 1.0
[Glover et al., 2012]. In these cases, the approximation

is inapplicable becasue
νeψ/kBT is larger than 1.0. Although alternative ap-
proximations such as
can be used if νeψ/kBT is larger than 1.0 [Levine et al.,
1975], it is inconvenient in practice to employ piece-
wise ECC formulas for νeψ/kBT>1.0 and νeψ/kBT<1.0,
respectively.

Recently, Fiorentino et al. [2016, 2017] numerically
solved the Poisson-Boltzmann equation without either
of the approximations mentioned above. They analyzed
the effects of the linear approximation on the electric
potential and the static streaming potential coefficient.
In this subsection, however, we investigate the effects
on the static and frequency-dependent ECCs as well as
the electric potential distribution. We also numerically
solve the Poisson-Boltzmann equation without any ap-
proximation and compare the difference between the
numerical solutions and the analytical solutions with
the linear approximation. In view of the similar char-
acteristics of the ECC for capillaries with different cross-

sectional shapes, we only consider the case of capillary
slits below.

In Figure 6, we compare the electric potential distri-
bution and the frequency-dependent ECC between the
numerical and analytical solutions. The zeta potential
ζ = -60 mV is employed. By calculation, the maximums
of the term νeψ/kBT and sinh(νeψ/kBT) are 2.33 and
5.10, respectively. Thus, the linear approximation can-
not be adopted. Figures 6(a) and 6(b) are the compar-
isons for R/d=0.62 (R=6 nm), which show obvious
discrepancies between the two solutions. In Figure 6(a),
the potential difference of the numerical solution from
the shear-slip surface to the capillary center is 15 mV
(from -45 mV to -60 mV), which is larger than the an-
alytical solution. This result is similar to that of Figure
11(a) in semi-log scale given by Fiorentino et al. [2016].
It means that the electric charges calculated by the nu-
merical method are larger than that of the analytical
method, resulting in a larger electrokinetic conversion.
As a result, the real and imaginary parts of the numer-
ical solutions for the ECC are significantly larger than
those of the analytical solutions as shown in Figure 6(b).
Figures 6(c) and 6(d) are the comparisons for R/d=10.3
(R=100 nm), in which the discrepancies are extremely
small. This indicates that the discrepancies decrease
with the increase of R/d. When R/d is large enough, the
effect of the linear approximation on the ECC is negli-
gible although it is already mathematically invalid.

In Figure7, we compare the electric potential and
ECC for different zeta potential with R/d=10.3. Figures
7(a) and 7(b) are the comparisons for ζ = -100 mV, while
Figures 7(c) and 7(d) are those for ζ = -200 mV. It is
shown that the discrepancies in both the electric po-
tential and ECC increase with the increase of |ζ|. From
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FIGURE 4. Variations of the high-frequency limit phase with the
normalized radius R/d for the cylindrical capillary
(red dotted line) and the capillary slit (black solid
line). The horizontal axis is separated into the three
regions of R/d<0.81, 0.81<R/d<24 and R/d>24. 

FIGURE 5. Comparisons of the present frequency-dependent
ECC (solid line) with Packard’s model (dotted line) for
three different radii of 1000 (black), 50 (red) and 10
(blue) times of the Debye length respectively. 

sinh νeψ kBT( ) ! νeψ kBT

sinh νeψ kBT( ) ! νeψ kBT

sinh νeψ kBT( ) ! exp νeψ kBT( ) 2
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FIGURE 6. Comparisons of the results between the numerical (black line) and the analytical (red line) solutions for ζ= -60 mV. (a) and
(b) are the electric potential distribution and the frequency-dependent ECC for R/d=0.62 (R=6 nm), respectively, while (c) and
(d) are those for R/d=10.3 (R=100 nm). 

FIGURE 7. Comparisons of the results between the numerical (black line) and the analytical (red line) solutions for R/d=10.3 (R=100
nm). (a) and (b) are the electric potential distribution and the frequency-dependent ECC for ζ= -100 mV, respectively, while
(c) and (d) are those for ζ= -200 mV. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)



Figure 7(d) for ζ =-200 mV, it is seen that the discrep-
ancy of the ECC’s real-part is only about 5.0% and that
of the ECC’s imaginary-part is much smaller. Among
the estimated zeta-potential for 269 samples given by
Glover et al. [2012], only three of them exceed -150 mV
and only one exceeds -200 mV. Thus, the linear ap-
proximation is applicable in practice when the salinity
is higher than 0.001 mol/L, except for capillaries with
extremely small radii. Since the effect of the linear ap-
proximation on the ECC’s real part is relatively larger at
low frequencies, Figure8 shows the discrepancy of the
static ECCs between the numerical and analytical meth-
ods with different R/d. The dash line denotes the dis-
crepancy between the two results. It is seen that the
discrepancy is less than 5.0% for about R/d>7 and
ζ = -150 mV, and increases significantly with the de-
crease of R/d.

4. CONCLUSIONS

In this study, we have theoretically derived the fre-
quency-dependent ECC with dependence on the nor-
malized radius R/d (the ratio of the capillary/pore radius
to the Debye length). When compared with previous
studies, the present ECC can be used with arbitrary cap-
illary/pore scale, and thus is not restricted to the thin or
thick EDL assumption. We have considered two differ-
ent cross-sectional shapes, which are the cylindrical
capillary and the capillary slit, thus these ECC formula
can be extended to porous media with circular aper-
tures and flat fractures, respectively. We have proved
that the Onsager reciprocity of the streaming current
and electroosmosis ECCs is satisfied for arbitrary capil-
lary/pore scales and cross-sectional shapes.

According to these ECC formulas, we have calculated
the applicable conditions of the thin and thick EDL as-
sumptions, which are R/d>20 and R/d<0.8, respectively.
For realistic rocks, the thin EDL assumption may be in-
applicable to sandstone with low salinities and the thick
EDL assumption may be inapplicable to mudstone and
shale with high salinities. The results also show that the
ECC of flat fractures is always larger than that of cir-
cular apertures with identical pore scales and the high-
frequency limit phase of the ECC does not remain at 45°
as the Packard model, but increases monotonically from
45°to 90° with the decrease of the normalized radius.
By numerically solving the Poisson-Boltzmann equa-
tion, it is found that the effects of the linear approxi-
mation on the electric potential distribution and the ECC
increase with the decrease of the normalized radius.
Even if the linear approximation has already been
mathematically invalid, it is still applicable to realistic
rocks except for R/d<7 with |ζ| larger than 150mV.
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