
1 
 

SUPPLEMENTARY MATERIAL 
 

CRUST DEVELOPMENT INFERRED FROM NUMERICAL MODELS OF LAVA FLOW 

AND ITS SURFACE THERMAL MEASUREMENTS 
 

Igor Tsepelev1, Alik Ismail-Zadeh2,3, Yulia Starodubtseva1, Alexander Korotkii 1,4,  

Oleg Melnik5 

 
1 Institute of Mathematics and Mechanics, Russian Academy of Sciences, Yekaterinburg, Russia 
2 Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany 
3 Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of 

Sciences, Moscow, Russia 
4 Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia 
5 Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia 

 

S1 Influence of linear and nonlinear heat flow at the interface between a lava  

and the atmosphere 

 

Problem (1)-(14) with the boundary condition (15) for linear heat flow and condition (16) for 

nonlinear heat flow is solved numerically. Dimensionless parameters used in Eqs. (15) and 

(16) are Nu = 4, a1=2.593, and a2=18.911. Numerical experiments have been performed for 

three dimensionless injection rates, and the dimensionless injection temperature is 4.4. The 

lava viscosity varies within six orders of magnitude, and . 

 

Figures S1a, S1b, and S1c presents the magnitude of the dimensionless values of the lava 

velocity (upper panels in each figure), the viscosity (middle panels), and the lava temperature 

(lower panels). At higher dimensionless injection rates ( = 10-2, Fig. S1a) and temperature 

advection with the flow, the lava temperature takes the value of the injection temperature 

almost in the entire model domain. The crust (the red part of the model domain seen in the 

viscosity panels of Fig. S1a, as well as S1b and S1c) is thin in both cases of the linear (the 

left panels) and nonlinear (the right panels) heat flow at the upper surface of the model 

domain, although the crust is relatively thicker in the case of the nonlinear heat flow. At 

lower injection rates of 10-3 (Fig. S1b) and 10-4 (Fig. S1c), the crust becomes thicker and 

especially in the case of nonlinear heat flow. 
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Fig. S1. Model dimensionless velocity magnitude, viscosity, and temperature in the case of 

linear (left panel) and nonlinear (right panel) heat transfer at the lava cooling surface 

with the atmosphere for the dimensionless effusion rate 10-2 (a), 10-3 (b), and 10-4 (c). 

 

 

S2 No-slip condition at the lava interface with the atmosphere 

 

We solve numerically the problem (1)-(14) with the following conditions at the boundary . 
This boundary is divided into two parts by point D. We prescribe the free slip 

 at the circular arc connecting points D and E, and no-slip 

 at the circular arc connecting points D and C. The thermal conditions from Eq. (15) 
and from Eq. (16) are used in the case of the linear and nonlinear heat flows at the entire 
boundary , respectively. Dimensionless parameters used in Eqs. (15) and (16) are Nu = 4, 
a1=2.593, and a2=18.911. The numerical experiments have been performed for the 
dimensionless injection rate = 10-2 and smaller, and the dimensionless injection 

temperature is 4.4. The lava viscosity varies within six orders of magnitude, and . 
 

4G

, 0, , 0s s= - =u n n n n n
0=u

4G

1u
6

0 10h =



4 
 

Figure S2 presents the results of modelling for linear (the left panels) and nonlinear (the right 

panels) heat flow: the dimensionless lava velocity magnitude (the upper panel), the logarithm 

(log10) of the dimensionless viscosity (the middle panel), and the dimensionless lava 

temperature (the lower panel). The lava temperature beneath the no-slip area decreases and 

the crust becomes much thicker there compared to the thinner crust beneath the free-slip area 

(also, compare to the case presented in Fig. S1a) at both linear and nonlinear heat flow at the 

cooling surface of the lava flow. 

 

 
 

Fig. S2. Model dimensionless velocity magnitude, viscosity, and temperature in the case of 

linear (left panel) and nonlinear (right panel) heat transfer at the lava cooling surface 

with the atmosphere at the no-slip condition at the part of the interface between the lava 

flow and the atmosphere.  
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S3 Thermal conditions at the lava interface with the atmosphere 

 

Data assimilation is based on the requirement of some physical parameters obtained as the 

solution of a mathematical model (e.g., temperature and heat flux from a lava flow model) to 

match their measurements (e.g., the temperature and heat flow at the interface of lava flow 

with the atmosphere). Normally, assimilations are tested using theoretical models employed 

in inversion schemes and synthetic data to be assimilated. Generating the synthetic data 

requires a theoretical model, which can be identical to, or different from, the one employed in 

the inversion scheme. In the case of using the same model to generate synthetic data and then 

to invert the data, an “inverse crime” is committed (Colton and Kress 1992).  

 

To avoid the “inverse crime”, synthetic data are normally perturbed, and numerical 

experiments are then performed to analyse how well the inverse problem can be solved (e.g., 

Korotkii et al. 2016). Another approach to avoid the “inverse crime” is to employ similar but 

different model to generate synthetic data. We employ in the data assimilation a model, 

which is different from one used in the inversion scheme, but similar in terms of fluid-

dynamics description of lava flows. Hence, we solve numerically Eqs. (1)-(11) with the 

boundary conditions (12)-(15). We obtain hence the synthetic thermal data at the lava 

interface with the atmosphere. The computed heat flux  and temperature T4 at 

boundary  (Fig. S3) are then assimilated into the lava flow to constrain the condition at  

and determine lava temperature, viscosity and velocity.  

 

 
 

Fig. S3. Temperature (solid line) and heat flow (dashed line) at the interface of the lava flow 

and the atmosphere obtained from the solution of the direct problem (synthetic data for 

assimilation). 
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S4 The Navon et al. (1992) test 

 

According to Korotkii et al. (2016), the gradient of the functional can be written in the form: 

, 

where . We have performed the -test by Navon et al. (1992) to verify 

the quality of the gradient of the cost functional with respect to the control variable. For this 

aim we choose the following increment , where  is small. We 

rewrite then the last equation introducing a function of  as 

 . 

For values of  that are small but not too close to the machine zero, one should expect to 

obtain a value for  that is close to 1. For  (see the main text) the values of 

 are shown in Fig. S4. For a value of  between 10-2 and 10−7, a near unit value of  

is obtained. This validates the quality of the adjoint model for use in obtaining the gradient of 

the cost function with respect to the control variable. 

 

 
 

Fig. S4. Verification of the calculation of the gradient of the cost function J (Navon et al. 

(1992) test).  
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