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1. INTRODUCTION 
 

One of the key challenge to modern volcanology is 
to identify and characterize volcano activity, based on 
parameters recorded by the monitoring network that 
might be useful for hazard assessment and risk mitiga-
tion. This topic has maximum priority especially for vol-
canoes located close to densely urbanized areas, such as 
Mount Etna volcano, Italy. Mount Etna is nowadays one 
of the best-monitored volcanoes worldwide. A wide 
data set ranging from seismic, geodetic, gravimetry, 
geochemical, video etc., most of them collected in real 
time, were able to set strict constraints on the timing of 
the paroxysmal events which occurred in the last decade 

at Etna volcano [i.e. Aloisi et al., 2018; Bonaccorso et al., 
2011; Greco et al., 2016]. 

Changes in the state of activity as well as in the erup-
tive style of the volcano can be recognized in the geo-
physical and geochemical data collected by this moni-
toring network. The problem is that any change in these 
parameters does not especially imply a significant 
change in volcanic activity. Hence, the characterization 
of volcanic activity based only on one geophysical 
and/or geochemical parameter, may be lead to ambigu-
ous forecasts. One solution to this problem is through 
using a combination of different parameters to reduce 
the level of ambiguity and to enhance the quality of in-
terpretations of the volcano activity. 
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ABSTRACT 
Assessment of the ongoing activity of volcanoes is one of the key factors to reduce volcanic risks. In this paper, two Machine Learning 

(ML) approaches are presented to classify volcanic activity using multivariate geophysical data, namely the Decision Tree (DT) and K-Near-

est Neighbours (KNN). The models were implemented using a data set recorded at Mount Etna (Italy), in the period 01 January 2011 – 31 

December 2015, encompassing lava fountain events and intense Strombolian activity. Here a data set consisting of five geophysical fea-

tures, namely the root-mean-square of seismic tremor (RMS) and its source depth, counts of clustered infrasonic events, radar RMS backscat-

tering power and tilt derivative, was considered. Model performances were assessed by using a set of statistical indices commonly con-

sidered for classification approaches. Results show that between the investigated approaches the DT model is the most appropriate for 

classification of volcano activity and is suitable for early warning systems applications. Furthermore, the comparison with a different clas-

sifier approach, reported in literature, based on Bayesian Network (BN), is performed.



Volcano monitoring aims at the recognition of 
changes in observable parameters before hazardous ac-
tivity develops in order to alert the Civil Defence Au-
thorities. However, up to now, the lack of models for au-
tomatically recognizing the significance of changes in 
multiparametric real-time data, makes their integration 
difficult (or in many cases impossible). Using expert 
tools for real-time volcano monitoring can be helpful in 
enhancing the quality of decision-making processes in 
order to reduce the volcano risk [Cannavò et al., 2017]. 

In order to integrate geophysical parameters there are 
some statistical methods in which a pre-assumption 
about the model is applied and attempts are made to fit 
the data to that model; this means that they are model-
based. The other new solution is through using super-
vised intelligent methods, which can learn from exper-
imental data without any pre-assumption about the 
model. In the last decades, there has been an increasing 
tendency to use intelligent methods in geophysical vol-
canology studies, especially for monitoring the volcano 
activity. For instance, Langer et al. [2009] used Support 
Vector Machine (SVM) and Multi-Layer Perceptron 
(MLP) as pattern classifiers for volcanic tremor data, 
which is extremely useful for monitoring volcanic ac-
tivity at any moment and in whatever condition. They 
investigated the tremor features and their relationship to 
regimes of volcanic activity. Messina and Langer [2011] 
combined various unsupervised pattern recognition 
techniques, self-organizing maps, classic k-means clus-
ter analysis and fuzzy c-means clustering for pattern 
recognition of volcanic tremor data on Mount Etna. 
Brancato et al. [2016] used different kinds of Artificial 
Neural Networks (ANNs) for pattern recognition of Etna 
flank eruption forecasting. Malfante et al. [2017] used 
Machine Learning for Automatic Classification of Vol-
cano-Seismic signatures and presented an automatic 
classification of volcano-seismic events, based on a 
comprehensive signal representation with a large feature 
set. Cannavò et al. [2017] proposed a multivariate prob-
abilistic graphical model for real-time volcano moni-
toring on Mount Etna, based on an extension of a 
Bayesian Network (BN). The resulting probabilistic 
model was able to encoding the conditional dependen-
cies between measurements and volcanic states. 

In this paper, we compare two different ML ap-
proaches, namely the Decision Tree (DT) and the K-Near-
est-Neighbour (KNN) algorithms, in order to find a clas-
sification rule capable of mapping a set of five 
real-valued geophysical features against observed vol-

canic activity, represented in categorical form. The data 
set considered is the one used by Cannavò et al. [2017], 
so that the performances will be easily compared. We fo-
cus on the relationships between geophysical parame-
ters patterns and the volcano status and discuss the 
methodological differences among these classifiers and 
their results. 

The paper is organized as follows: in section 2, the 
problem is stated and the volcanological framework, in 
which the data set was recorded, is described. In section 
3, the methods considered for the problem solution are 
presented. In section 4, we describe how the data set is 
organized for training the classifiers and how the model 
performances will be assessed. In section 5, numerical 
results are presented and the DT and KNN approaches 
compared. The selected classifier will be finally com-
pared with the BN model proposed by Cannavò et al. 
[2017]. In section 6, the capabilities of the proposed clas-
sifier will be illustrated analysing selected episodes oc-
curred on Mount Etna during 2011-2015. Finally, in sec-
tion 7, the conclusions are drawn. 

 
 

2. PROBLEM STATEMENT 
 
The main purpose of this paper is to implement a 

classifier capable of recognizing different phases of the 
volcanic activity which occurred at Mount Etna be-
tween 01 January 2011 and 31 December 2015, through 
a set of geophysical parameters (features) recorded in 
this area by the multidisciplinary monitoring network 
(Figure 1). 

Formally, the input-output representation of the clas-
sifier, that we aim to identify, can be expressed as fol-
lows: 

Y(t) = f(X(t)).                            (1) 
 
Where: 
Y(t) indicates the categorical model output at time t; 
X(t) is the real-valued vector of features measured at 
the same time; 
f is a map representing the unknown classification 
rule. 
In a similar manner to what was done by Cannavò 

et al. [2017], the volcano activity is expressed by a set 
of three different digit classes G = {0,1,2}, where 0 
stands for no activity, 1 for Strombolian activity and 2 
for paroxysmal explosive activity, while the feature 
vector X consists of geophysical data coming from the 
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monitoring networks. Here, with the term Strombolian 
activity we intend burst frequency lower than a fraction 
of minutes and magma jets usually not exceeding tens 
to hundreds meters and weak effusive activity. More-
over, with the term paroxysmal events, we intend lava 
fountains and strong Strombolian eruptions, character-
ized by high burst frequency, up to a few per second, 
and magma jets up to several hundreds of meters, usu-
ally accompanied by the emission of lava flows [An-
dronico et al., 2013]. 

 
2.1. VOLCANOLOGICAL FRAMEWORK AND FEATURES 

DESCRIPTION 
After the flank eruption of 2008-2009, lava fountain 

events and intense Strombolian activity, have charac-
terized activity at Mount Etna. Between January 2011 
and December 2013, a sequence of 44 lava fountain 
events, characterized by powerful gas emission, to-
gether with ejection of lava fragments to heights rang-
ing from tens to hundreds of meters, occurred from a pit 
on the east flank of the South-East Crater (SEC), one of 
the four summit craters of Etna, as well as Strombolian 
activity and intra-crater lava flow emissions at Bocca 
Nuova Crater (BNC) and Voragine (VOR). The location of 
such craters and the area where the measuring stations 
are installed is shown in Figure 1. The main explosive 
activity built a new summit cone, the New South-East 
Crater (NSEC) [Behncke et al., 2014]. No major flank 
eruptions have accompanied this activity. Generally, all 
the 2011-2013 lava fountain episodes from the NSEC 

showed similar main characteristics, with the height of 
the lava fountain reaching 300-1000 m, ash columns 
reaching 5-9 km and associated lava flows 4-6 km 
long, descending the eastern flank of the volcano. 
The average total density rock equivalent (DRE) volume 
of magma emitted during each of the NSEC lava foun-
tains, including both pyroclastic products and lava flows, 
was about 2.5 × 106m3 per event [De Beni et al. 2015]. 
After the 2011-2013 NSEC lava fountains, the eruptive 
activity switched to moderate lava effusion from the 
NSEC toward NE during January-April and July-August 
2014. On 28 December 2014, a further lava fountain 
episode occurred at the NSEC [Gambino et al., 2016]. 
As mentioned in the previous section, for the purpose of 
the present work, the activity of the Etna volcano has been 
categorized by using three different classifications: 
“0” to indicate quiet, i.e. no relevant volcanic activity or 

unknown activity, characterized by low amplitudes 
of all considered features;  

“1” to indicate Strombolian activity, i.e. mildly explosive 
activity, characterized by medium amplitude of 
seismic tremor RMS, shallower source of the seismic 
tremor, clustered infrasonic events, no eruption col-
umn but possible ash emission detectable by the 
Doppler radar; 

“2” to indicate paroxysm, i.e. an energetic activity with 
lava fountains, characterized by high amplitude of 
seismic tremor RMS, shallower source of the seismic 
tremor, eruption column formation and ash emission 
detectable by the Doppler radar. 

For consistency, the observed volcanic activity and 
the corresponding features were re-sampled with a 10 
min sampling rate. 
The main reasons for choosing the five features listed in 
Table 1 are: (i) they are available in real time at a rate 
compatible with early warning purposes; (ii) they are 
usually sensitive to Etna volcanic activity; (iii) they 
roughly represent a summary of all available informa-
tion from the monitoring networks. In Figure 2, the time 
series of activity at Mount Etna during 01 January 2011 
– 31 December 2015, together with the five features used 
are shown. We select this period because Mount Etna ex-
hibited an exceptional variety of explosive activity from 
Strombolian to lava fountain events. Follows, a de-
scription of the five features used:  
- the feature x1 (weighted normalized median of seismic 

tremor; RMS) is based on seismic RMS amplitudes 
which has been routinely used at Istituto Nazionale di 
Geofisica e Vulcanologia (INGV), Osservatorio Etneo, 
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FIGURE 1. Location map of the seismic, acoustic, and tiltmeter 
stations used in this research. The position of 
the Doppler radar (VOLDORAD 2B) is also shown. 
The yellow circles indicate the stations destroyed dur-
ing paroxysmal episodes on 28 February and 11 
November 2013 [after Cannavò et al., 2017]. 



HAJIAN ET AL.

4

for real-time monitoring [Cannata et al., 2013]. This fea-
ture was calculated on the vertical component of the 
signal within 10 min long time windows, recorded by 
19 stations, belonging to the permanent seismic network 
(sampling rate of 100 Hz). The signal was filtered in the 
band 0.5 − 5.5 Hz, which generally includes the relevant 
volcanic tremor information. In order to reduce the di-
mensionality of the model, we averaged the normalized 
RMS time series calculated for each station as per-
formed by [Cannavò et al., 2017]; 

- the feature x2 (normalized volcanic tremor source depth) 
was obtained by a grid search method, based on a spa-
tial seismic amplitude distribution and assuming the 
propagation in a homogeneous medium, within 30 min 
long time windows. The use of relatively long time win-
dows is necessary to reduce the effects of transient 
events (such as long period events, volcano-tectonic 
earthquakes, and regional earthquakes) on the volcanic 
tremor locations [Cannavò et al., 2017; and references 
therein]; 

- the feature x3 (normalized number of infrasonic events) 
was obtained by locating about 160.000 infrasonic 
events, recorded by the permanent infrasonic network 
during 2011-2015; 

- the feature x4 (normalized radar RMS) was obtained by 
processing the total radar echo backscattered by parti-
cles in the atmosphere crossing the beam of the 1.274 
GHz Doppler radar, called VOLDORAD 2B and installed 
in the upper southern flank of the volcano (2600 m 
a.s.l.). This signal is dominated by reflections from par-

ticles, and hence it is sensitive to the formation of 
eruptive columns; it can be used to detect abundant py-
roclastic particles in atmosphere crossing the radar 
beam [Donnadieu et al., 2016]. In particular, periods of 
intense explosive activity producing abundant ash, are 
characterized by sharp increases in the considered time 
series; 

- the feature x5 (normalized tilt derivative) was obtained 
by using the data recorded by the tiltmeter station re-
ferred to a CDB (Figure 1), installed at 10 m depth and 
equipped with a high resolution (< 0.005 µrad) tiltmeter 
[Ferro et al., 2011]. Since tilt data is affected by several 
noise sources (e.g., temperature, Earth tides, local earth-
quakes, and teleseism), we considered its derivative as 
input to the model. 

Overall, the parameters related to volcanic tremor, in-
frasonic events, and ground deformation are sensitive to 
explosive activity, while the radar signal is sensitive to the 
development of sustained ash-rich eruption columns. 
Since the radar signal and infrasound are not affected by 
pure effusive activity, and because lava effusion during 
the considered period was always accompanied by ex-
plosive activity with different intensities, we avoided 
modelling a state of pure effusive activity and included 
it in the eruption states. Table 1 shows the summary of 
the input/output of the model classifier.  

 
 

3. METHODS 
 
In this section, a short description of considered clas-

sification approaches is provided. 
 
3.1 DECISION LEARNING TREE 
Decision learning trees are popular ML algorithms 

belonging to the class of supervised learning algo-
rithms. The main motivations to use Decision Tree (DT) 
is that they mimic the human level thinking and, dif-
fering from SVM and NN, are not black box models. An-
other reason for choosing these algorithms is because 
they are less time consuming with respect to other 
tested clustering approaches. 

In order to illustrate how a DT algorithm works, we re-
port in Figure 3 an attempt to classify the volcanic ac-
tivity based on three features, namely the average seis-
mic RMS amplitude, the radar signal and the tilt 
derivative. The classification tree was obtained training 
the model with a small number of splits (i.e. the number 
of levels of the tree), in order to obtain a rough, but eas-

Representation Description

x1
Weighted Normalized Median 
of seismic tremor RMS (A.U.)

x2
Normalized seismic tremor source 

depth (A.U.)

x3
Normalized number of distances 

of Infrasonic events (A.U.)

x4
Normalized Radar backscatter power 

at Montagnola station (A.U.)

x5 Normalized Tilt derivative (A.U.)

Y State of the volcano activity (A.U.)

TABLE 1. The Machine Learner inputs and output variables with 
related descriptions. AU standing for arbitrary unit. 
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ily, interpretable classification rule. In this example, the 
classification algorithm gives a prominent role to the rms 
feature, which is thus chosen as the root of the tree. Vis-
iting the tree start from the root; in each node of the tree 
a binary condition is indicated by which it is possible to 
make the tree descent, until a leaf is reached. Thus, in this 
example, the class 2 will be assigned to a set of features 
which satisfies the condition rms ≥ 1.44219 and depth ≥ 
1697.37 and radar ≥ 1.94432. However, it is trivial to un-
derstand that the interpretability of the classification rule 
can be done only for trees with a limited number of lev-
els and features. In this paper, classification trees will be 

referred to as fine, when the number of splits is of the or-
der of hundreds, medium, when the number of splits is of 
the order of tens and coarse, when this number is of the 
order of units. 

 
3.2 K-NEAREST-NEIGHBOURS 
The K-Nearest-Neighbours (KNN) method uses obser-

vations in the training set closest to X to form Y. Specifi-
cally, the K-Nearest-Neighbour fits for Y defined as 

 
(2) 

 
where NK(x) is the 

neighbourhood of x, defined as the K closest point x1 in 
the training sample. Closeness implies the use of a met-
ric, which in the simplest case can be the traditional Eu-
clidean distance. However, several alternatives are possi-
ble, such as the Chebshev distance or the Minkowsky 
distance just to mention a few. Of course, the performance 
of a K-Nearest-Neighbours classifier depends on the 
number K of elements in the NK(x) neighbour. Similar to 
the tree classifiers, KNN can be referred to as fine, medium 
or coarse depending on wheter K is of the order of units, 
tens or hundreds, respectively. 

FIGURE 2. From top to bottom: a) time series showing the state of Mount Etna during 01 January 2011 – 31 December 2015; b) seis-
mic RMS amplitudes; c) depth of volcanic tremor source centroid; d) number of distances of spatially clustered infra-
sonic events; e) signal obtained by the Doppler radar VOLDORAD 2B; f) tilt derivative of the signal recorded by the CBD 
station [after Cannavò et al. 2017].

FIGURE 3. Example to classify the volcanic activity in terms of 
three features: average seismic RMS amplitude (rms); 
radar signal (radar); tilt derivative (tilt).



4. TRAINING OF THE CLASSIFICATION MODELS 
AND PERFORMANCE ASSESSMENT 
 
In order to identify the unknown learning rule (see 

Equation 1), described in section (2), the available data 
set, which spans over five years, was organized into two 
subsets: four years of data was considered for training 
the classifier while the remaining one year was consid-
ered for the test. However, in order to avoid bias of the 
model error, the testing year was rotated using the 
leave-one-out approach, described in Figure 4. In the 
Figure, it is schematically indicated that the model er-
ror E was averaged over five iterations. During each it-
eration, one year of the overall data set was left out from 
the training set and considered only for the testing. The 
performance indices to evaluate the error model E, are 
described in the next section (4.1). 

 
4.1 CLASSIFICATION PERFORMANCE METRICS 
In order to assess the performances of a classifier, dif-

ferent metrics can be considered. A popular metric con-

sists in computing a set of indices referred to as the True 
Positive Rate (TPR), True Negative Rate (TNR), False 
Positive Rate (FPR), False Negative Rate (FNR), accuracy 
and so on. Another example of metrics refers to the 
evaluation of the Precision, the Specificity, and the 
Fall-out etc. It is obvious that the choice of metrics in-
fluences how the performance of a ML algorithm is mea-
sured and compared. In this paper we will refer to the 
former metrics mentioned above. 

Given a classification experiment, let us indicate as 
P and N the number of actual positive and actual neg-
ative cases for a given class, respectively, and as TP, TN, 
FP and FN the number of true positive, true negative, 
false positive and false negative cases, respectively, rec-
ognized by the classifier, for the considered class. Thus, 
the following rates are defined: 

 
(3) 

 
 

(4)  
 
 

(5)  
 
 

(6)  
 

The meaning of the above indices can be expressed 
as follows: 

the TPR expresses the proportion of actual positives 
that are correctly classified by the model as belong-
ing to a given class. Best values of TPR approaches 
to 1, while in the worst case TPR approaches to 0. The 
TPR is referred in literature also as specificity or re-
call; 
the TNR expresses the proportion of actual negatives 
that are correctly classified as not belonging to a 
given class. As for the TPR, best values of TNR ap-
proaches 1, while worst values approaches 0. The 
TNR is referred to also as sensitivity or selectivity; 
the FNR expresses the proportion of false negatives 
in a given class with respect to all actual positives in 
the same class. Of course, in the best case FNR ap-
proaches 0, while in the worst case approaches 1; 
the FPR expresses the proportion of false positives in 
a given class with respect to the total number of ac-
tual negatives in the same class. Similar to the FNR 
in the best case FNR approaches 0, while in the 
worst case approaches 1. 
Together with the four indices above, we also con-

sider the index referred as F1, defined as: 
 

(7) 
 

which represents a harmonic mean of precision (p) and 
recall (r). It is trivial to understand that F1 approaches 
1 in the best case and 0 in the worst case. 
 

 
5. NUMERICAL RESULTS 

 
As mentioned in the section 2, in this study two kinds 

of classifiers were considered, namely the DTs and the 
KNNs. In more detail, as a first stage, for each kind of 
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FIGURE 4. Schematic of the Leave-One-Out cross validation 
method used in this study.



classifier different configurations were considered, 
meaning that coarse, medium and fine classifiers were 
trained, in order to select the most appropriate for the 

application. Results obtained considering the TPR and 
the TNR for each class and for each configuration are re-
ported in Tables 2 and 3. Looking at these tables, it is 
possible to infer that the fine Tree classifier is the opti-
mum among the DT classifiers, and similarly, the fine 
KNN is the optimum among the tested KNNs, particu-
larly for the Strombolian and paroxysmal events. A di-
rect comparison between the fine DT and fine KNN is 
shown in Figure 5 which shows that the fine DT classi-

fier outperforms the fine KNN for all the classes and in-
dices (from here, in this paper, the fine DT and the fine 
KNN will be referred to as FDT and FKNN, respectively). 

In particular, the sensitivity of the FDT (Figure 5a) alarm 
is higher than that of FKNN especially for paroxysmal 
activity (class 2). The FPR (fall out) value for Strombo-
lian class (Figure 5c) in FKNN is higher than that of the 
FDT. When the fall out is high for Strombolian class, it 
means that most of the time when the alarm is ’on’, the 
volcano state is quiet or in paroxysmal state. The TNR 
(specificity) of FDT and FKNN (Figure 5b) are very close 
to each other for the Strombolian and paroxysmal 
classes, but for the quiet class, the TNR (specificity) of 
FDT is higher than the FKNN. It is necessary to mention 
that the FNR index was zero for the class 2, for both the 
FDT and FKNN (Figure 5d). The evaluation metric we in-
vestigated for the competition between FDT and FKNN 
was the F1 score, as defined in (Equation 6). The com-
parison between the FDT and FKNN in terms of the F1 in-
dex is shown in Figure 6. As it can be seen the F1 score, 
i.e. the harmonic mean of precision and recall, for the FDT 
is higher than that of FKNN for all activity classes. Thus, 
we selected the FDT as the optimum between the two 
compared approaches. The performance of the selected 
classifier is summarized in Table 4, in terms of a confu-
sion matrix. 

The confusion matrix for continuous estimation of the 
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Activity Quiet Strombolian Paroxysm

Type of DT fine medium coarse fine medium coarse fine medium coarse

TPR 0.8703 0.8792 0.8445 0.6471 0.5083 0.3054 0.5878 0.3104 0.1456

TNR 0.6782 0.4456 0.4102 0.8701 0.6587 0.7645 0.9989 0.7915 0.8432

Activity Quiet Strombolian Paroxysm

Type of KNN fine medium coarse fine medium coarse fine medium coarse

TPR 0.8370 0.8616 0.8551 0.3361 0.2031 0.3309 0.5240 0.2310 0.3985

TNR 0.3569 0.1931 0.2210 0.8372 0.5764 0.66424 0.9984 0.6654 0.7361

TABLE 2. Sensitivity (TPR) and specificity (TNR) for different types of tested Tree Classifiers.

TABLE 3. Sensitivity (TPR) and specificity (TNR) for different types of tested KNN Classifiers.

FIGURE 5. A direct comparison between FDT and FKNN.



ongoing volcano state shows in its main diagonal the per-
centage of events, correctly recognized in each class. 
The table also shows that a percentage of 12.94% of ac-
tual Quiet events (class 0), was recognized by the classi-
fier as Strombolian activity, while none event of this class 
was attributed to class 2. A percentage of 25.69% of 
events belonging to the Strombolian class, were attributed 
to the class 0. Finally, a percentage of 1.06% events ac-

tually belonging to the Strombolian class, were incorrectly 
attributed to the paroxysm (class 2). The most relevant 
drawback of the FDT classifier is that a high percentage 
(74.07%) of events actually belonging to the paroxysm 
(class 2), was attributed to class 1 (Strombolian). 

Referring to the Strombolian class, the FDT esti-
mated no activity (Quiet state) instead of the correct state 
for 25.69% of events which is, nevertheless, better than 
the BN model (about 50%) reported in Cannavò et al. 
[2017]. The main reason that 25.69% of the Strombolian 
class events are confused as quiet state, is due to a few 
but long periods of weak Strombolian activity that is not 
distinctly reflected in any input variables.  

 
 

6. EVALUATION OF THE FDT CLASSIFIER FOR 
SELECTED EPISODES 
 
To test the performance of the FDT classifier, to track 

the actual episodes, we compared the output model 
time series with the true one. As a sample, the FDT re-
sult for the episodes between 30 July 2011 and 31 July 
2011 is shown in Figure 7. This example shows a delay 
between the predicted state of the model and the actual 
state of the volcano. This means that the alarm is on 
with a delay after starting of the Strombolian event. 
Conversely, as it can be seen in Figure 7, the alarm for 
the paroxysmal event is on time. In order to calculate the 
performance of the model for paroxysmal events detec-
tion, we changed the model into a binary classifier, 
which means ’0’ for both Quiet and Strombolian and ‘1’ 
for paroxysmal events. The performance indices of this 
kind of classifier (binary) were calculated for the con-
sidered period 2011-2015, based on the leave-one-out 
cross validation method described in section 4.1. 

Between 19 and 24 February 2013, a series of five 
compound volcano events (both Strombolian and parox-
ysm; labelled each with a tag number) occurred, as 
shown in Figure 8. For each event, the volcano activity 
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TABLE 4. Confusion matrix of the FDT classifier.

FIGURE 6. A direct comparison between FDT and FKNN in terms 
of the F1 index.

FIGURE 7. AFDT classification estimation for the activity of Etna 
between 30 July 2011 and 31 July 2011, note: class 0 
as Quiet, class 1 as Strombolian and class 2 as Parox-
ysm.

FDT Predicted Quiet Predicted Strombolian Predicted Paroxysm

Actual Quiet 87.06% 12.94% 0.0%

Actual Strombolian 25.69% 73.25% 1.06%

Actual Paroxysm 0.0% 74.07% 25.93%



starts with a Strombolian class and then leads to a 
paroxysmal event. In the events 1, 3 and 5 there is an 
advanced time (a time measure of the capability of 
model to predict an event before it happens). The ad-
vance time for events 1 and 5 are greater than that of 
event 3 (Figure 8). Conversely, the event 4 is predicted 
by the model with a delay. Only two false alarms are de-
tected. This example highlights the good ability of the 
FDT model to track all the events starting with Strom-
bolian activity and leading to paroxysmal event. 

In order to estimate the FDT classifier capability to 
detect the beginning of paroxysmal events, we averaged 
the advance time estimated over the whole data set. The 

comparison between the performances of FDT and BN 
proposed by Cannavò et al. [2017], both in terms of ad-
vance time, TPR and FPR are reported in Table 5. It is 
possible to see that these models performs similarly in 
terms of TPR and FPR but the FDT outperforms the BN 
in terms of advance time, which is especially relevant for 
early-warning alarm in order to alert the Civil Defence 
Authorities. 

 
 

7. DISCUSSION AND CONCLUSIONS 
 
The search for a reliable and quantifiable method of 

determining the onset of volcanic eruptions is a key 
challenge for volcanology and has major implications 
sociologically and political as well as geologically.  

Machine Learning methods make no assumptions 
about mechanisms behind geophysical and vol-
canological phenomena, but simply attempt to look for 
relationships between parameters collected in the vol-
canoes monitoring network to map these onto a set of 
outcomes, which are classes of the volcano state. 

In this paper, two categories of Machine Learning 
models were investigated for classification of Mount 
Etna activities, namely the DTs and KNNs. The global 
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FIGURE 8. FDT predicted class activity in a time window between 19 February 2013 and 24 February 2013.

Index FDT BN model

TPR(%) 99.66 99.16

FPR(%) 21.34 23.21

Advance Time 
(min)

55.00 32.16

TABLE 5. Performance for the FDT working style as a binary clas-
sifier to detect paroxysm events calculated by leave-
one-out cross validation, and the Bayesian Network 
(BN).



statistical indices show that the FDT and the FKNN are 
the models with higher performances, compared within 
their own categories (Coarse and Medium). Further-
more, taking into account the F1 score as a measure-
ment of the total performance of precision and recall, 
the FDT outperforms the FKNN. Experimental results 
show that the FDT model is very sensitive to the parox-
ysmal activity, being even able to detect in advance the 
beginning of this kind of activity. We have estimated 
that the mean advance time is about 55 minutes for the 
considered set of paroxysmal events. The advance time 
for events of class 1 (Strombolian activity) has not be 
estimated, because, from early warning perspective, the 
tested models are not enough sensitive to the begin-
ning of this weakly explosive activity. A comparison 
between the results obtained in this work is possible 
only with the ones in Cannavò et al. [2017], since (to 
the best of our knowledge) other studies have not used 
an extensive set of features as in this work. The com-
parison with Cannavò et al. [2017] showed that the per-
formances among the DT and BN approaches are sub-
stantially similar: to a great capacity to detect 
paroxysms (with a positive rate above 99%) is opposed 
a not negligible percentage of false alarms (with FPR 
> 21%, about 1 out of 5 detected paroxsyms was false). 
This suggests that at this stage of the work the set of 
features used is more relevant rather than the applied 
techniques. Therefore, in order to improve the classi-
fier performance, we plan to add some new relevant 
features to the data set. In particular, we expect to con-
sider the gravity signal, SO2 emissions and magnetic 
data. 

In conclusion, we can say that FDT methods are 
promising classification algorithms to associate the 
categorical volcanic activity to a set of features mea-
sured in a given area. The use of such tools in real-time 
volcano surveillance could be helpful for decision-
making processes aimed at reducing volcano risk. 
Specifically, the tool could be useful both for civil de-
fence authorities, who can evacuate on time the sum-
mit area of the volcano, when volcanic activity 
changes, and the aviation authorities in order to avoid 
problems with air traffic.  
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