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Abstract  
 
The catastrophic damages caused by the Jiuzhaigou earthquake in China of August 8, 2017 and the 
Mexico earthquake of September 20, 2017 have revealed some important weaknesses of currently 
operational earthquake-monitoring and forecasting systems. In this work, six time series forecasting 
models were applied to detect pre-earthquake anomalies within infrared outgoing longwave 
radiation. After comparing their prediction results using non-seismic time series data, the 
autoregressive integrated moving average (ARIMA) model was selected as the optimal model, and 
then a new prediction method based on this ARIMA model was proposed. The results show that the 
values observed on July 27 and August 5 before the Jiuzhaigou earthquake in China exceed the 
confidence interval for prediction and reaches the maximum on August 5, 2017. This indicates the 
infrared outgoing longwave radiation (IR-OLR) anomalies before the Jiuzhaigou earthquake in 
China. For the Mexico earthquake, pre-earthquake IR-OLR anomalies are detected on September 14, 
18, and 19, and reaches the maximum on September 14, 2017. This demonstrates that the proposed 
time series forecasting model based on ARIMA could be an effective method for earthquake 
anomalies detection within infrared outgoing longwave radiation. 
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1. Introduction 
 

Earthquake, an abrupt phenomenon in the complex, dynamic earth system, is highly complex and uncertain. As an 
emerging Space-to-Earth observation technology, satellite remote sensing has been applied to various fields of study 
concerned with earthquakes, such as earthquake monitoring and forecasting, earthquake disaster prevention, and 
emergency rescue [Shen et al., 2013]. In this context, people gradually began to apply satellite infrared remote sensing 
to preliminary studies of IR-OLR anomalies appearing before earthquakes. How can we predict earthquakes for areas 
at high seismic risk effectively? On February 2, 2018, China successfully launched its first monitoring and testing 
satellite dedicated to seismological research, called China Seismo-Electromagnetic Satellite (CSES), marking an 
important step to construct an integrated earthquake monitoring system [Shen et al., 2018]. By providing support for 



research in seismology, especially in earthquake prediction, this satellite makes it possible to solve the current major 
problems in earthquake prediction research and opens up new approaches to earthquake monitoring and prediction 
[Cheng et al., 2018]. 

A large number of earthquake cases have shown that there is a “thermal precursor” to earthquakes [Dai et al., 
2016]. Although there is currently no consensus on the mechanism behind seismic infrared anomalies, it is widely 
believed that a large range of thermal anomalies could occur in the period preceding an earthquake. IR-OLR is the 
energy emitted from the Earth to space in the form of thermal radiation after the Earth’s surface absorbs solar 
radiation. This raises two questions: (1) whether IR-OLR anomalies can be used as a precursor in earthquake 
monitoring, and (2) whether they are related to other factors [Prakash and Srivastava, 2017]. Based on the physical 
causes of IR-OLR pre-earthquake anomalies, Sun discussed the relationship between IR-OLR and earthquakes as early 
as 1994 [Sun, 1994], and introduced IR-OLR into the field of earthquake prediction for the first time. In recent decades, 
Chinese researchers have used the IR-OLR data provided by the National Oceanic and Atmospheres Administration 
of the United States (NOAA) to study the relationship between IR-OLR and earthquakes. They have identified 
anomalous IR-OLR changes preceding some typical earthquakes that occurred in China and other parts of the globe, 
such as the Ms 7.8 Tangshan earthquake in 1976, Ms 8.7 Sumatra earthquake in 2004, Ms 8.0 Wenchuan earthquake 
in 2008, and Ms 8.1 Nepal earthquake in 2015 [Liu et al., 1997; Liu and Kang, 2005; Kang et al., 2009; Zhou et al., 2016]. 
On this basis, the researchers put forward different methods for detecting IR-OLR anomalies, such as deviation from 
average, vorticity analysis, wavelet analysis, power spectrum analysis, and statistical analysis, and studied the 
mechanism responsible [Zhang et al., 2018; Dai et al., 2016; Qin, 2012; Ouzounov et al., 2007; Xiong and Shen, 2016; 
LU et al., 2017]. Research findings suggest that IR-OLR has a great potential for application in earthquake prediction.  

Continuous advancements in scientific research have driven significant breakthroughs in earthquake forecasting. 
A major manifestation is that a large number of forecasting methods have been applied to various fields and 
constantly improved in accuracy. Moreover, since the advent of the era of big data, data have gradually become a 
hot topic for research in various fields. Among them, time series is type of data with a very wide range of applications 
[Zhao and Chen, 2016]. Constrained by the physical periodicity of activity of the Sun-to-Earth, the IR-OLR emitted 
by the Earth exhibits periodic variations, especially seasonal variations [Jing et al., 2016; Sedlar et al., 2016], allowing 
IR-OLR to be used as a time series. Thanks to technological progress, people have gradually begun to apply the 
classic ARIMA, neural network and other models to preliminary predictions of earthquake magnitude, time, and 
location by means of time series forecasting [Fu, 2010]. Scholars have tried many methods to predict earthquakes 
in their research. In many domains, predictions are made based on a single model, such as ARIMA and BP neural 
network. For instance, Hikichi et al. [2017] used an ARIMA model to predict the growth in the number of ISO 14001 
certifications in the United States and Zheng [2017] used an improved BP neural network model to predict the water 
quality of a river section in central Liaoning. 

In this study, we discussed the method and theory for IR-OLR time series analysis and analyzed the predictive 
ability of different time series forecasting models. The 1-degree IR-OLR data (IR-OLR) provided by HIRS/4, an advanced 
sensing instrument operational on the NOAA-18, was used as the time series. Earthquake predictions were made using 
six prediction models, including an ARIMA model. Furthermore, the time series forecasting models were tested for 
validity, with the root mean square error (RMSE) of their predictions being used as a measure of accuracy. The results 
show that the pre-seismic IR-OLR anomalies predicted using the time series analysis based on the ARIMA model are 
obviously more accurate than the predictions from the Neural Network Auto-Regressive (NNAR), Seasonal 
decomposition of time series by loess-Exponential smoothing (STL-ETS), exponential smoothing state space model 
with Box-Cox transformation, ARMA errors, trend and seasonal component (TBATS), Naive, and Holt-Winters Models. 
Therefore, the ARIMA model was used to predict the pre-seismic IR-OLR anomalies before the Jiuzhaigou in China and 
the Mexico earthquakes by time series analysis. The experimental results are satisfactory, suggesting that the IR-OLR 
time series analysis based on the ARIMA forecasting model built in this study has high predictive ability and 
considerable potential for wide application. 

The paper is organized into six sections. Section 2 outlines the composition of HIRS/4 and the HIRS/4 OLR data 
products used in this paper. Section 3 describes the principles and process involved in the time series forecasting 
models and the procedure of data preprocessing for IR-OLR time series analysis followed by an evaluation of these 
models. Section 4 provides the results of the comparative analysis of the six time series forecasting models built and 
the results of pre-seismic IR-OLR time series analysis based on the ARIMA forecasting model. Section 5 discusses the 
findings of the study and section 6 presents the conclusions and expectations about future work in this domain. 
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2. Data 
 

2.1 NOAA Fourth Generation High-resolution Infrared Radiation Sounder (HIRS/4) 
 

NOAA-18 is a sun-synchronous polar-orbiting satellite. It uses double-star operation and can pass over a 
given point on Earth four times per day. Turner and Tett [2014] pointed out that the 4th generation HIRS is a 20 
channel passive infrared sensor with a ‘stop and stare’ cross-track scanner and 56 fields of view (FOV) in a single 
swath. It is carried by the MetOp-A satellite which operates in a sun-synchronous orbit with an ascending node 
local time of 21:31. Being flown on MetOp, the HIRS/4 is one of the instruments provided by the NOAA. It is part 
of the payload on MetOp-A and MetOp-B, NOAA-N, and NOAA-N’, but not on MetOp-C, which will carry the 
Infrared Atmospheric Sounding Interferometer (IASI) instrument to take over HIRS/4’s tasks. Developed by NASA 
and ITT based in Fort Wayne, Indiana, USA, HIRS/4 is an atmospheric sounding instrument for measuring 
temperature profiles, moisture content, cloud height and surface albedo. Meanwhile, data from HIRS/4 can be 
used in conjunction with data from the Advanced Microwave Sounding Unit (AMSU) instruments to calculate 
the atmosphere’s vertical temperature profile and pressure distribution from the Earth’s surface to an altitude 
of about 40 km. 

The HIRS/4 uses a single telescope and a rotating filter wheel containing 20 individual spectral filters to 
provide multi-spectral data from one visible channel (0.69 microns), seven shortwave channels (3.7 to 4.6 
microns), and twelve longwave channels (6.7 to 15 microns). Each channel has an instantaneous field of view 
(IFOV) of approximately 7.0 degrees, which is from the spacecraft altitude of 870 km (470 micron) and covers a 
circular area of 10 km (6.2 microns) diameter at nadir on Earth. This is an improvement in resolution over the 20-
km (12.4 microns) HIRS/3 instrument that was flown on NOAA-KLM. An elliptical scan mirror provides a 
cross-track scan in 56 steps of 1.8 degrees per step. The mirror steps then rapidly stop and remain at their 
positions while the optical radiation that has passed through 20 spectral filters is sampled. Each Earth scan takes 
6.4 seconds and covers 49.5 degrees from nadir. IR calibration of the HIRS/4 is achieved by views of space and the 
internal warm target, each viewed once every 38 Earth scans. The instrument measures scene radiance in the IR 
spectrum. The data is also used to determine ocean surface temperatures, total atmospheric ozone, precipitable 
water, cloud height and coverage, and surface radiance [Wang et al., 2006; Kelly, 2007].  
 
 

2.2 The HIRS/4 OLR Data 
 

Turner and Tett [2014] have indicated that the HIRS OLR product was developed in the late 1980s by Ellingson 
et al. [1994] and now provides a continuous data record spanning more than 3 decades [Lee et al., 2007]. It uses 
a multispectral regression technique to estimate OLR from radiances measured by 4 HIRS channels, including 
channels 3, 7, 10, and 12. After a change to HIRS/2 channel 10’s spectral response function in the later HIRS/4, 
the algorithm now uses channels 3, 10, 11, and 12. The Climate Data Record (CDR) product has been validated 
against the Earth’s Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) measurements during 2000 
to 2011. As the data has not been cloud cleared, a corresponding clear sky analysis is not possible, and hence 
CERES-EBAF data is utilized for this purpose [Lee et al., 2007; Lee et al., 2013]. 

The operational HIRS/4 OLR CDR dataset contains daily mean OLR fluxes at the top-of-atmosphere (TOA) 
gridded to 2.5° × 2.5° resolution with global coverage from June 1974 to the present, and to 1.0° × 1.0° resolution 
with global coverage from May 2006 to the present [Jing et al., 2009]. The data set was derived using a 
multispectral HIRS OLR algorithm from the HIRS level 1b dataset provided by the series of satellites ranging 
from the Television Infrared Observational Satellite-N (TIROS-N) to NOAA-19. For the derivation of monthly 
mean, inter-satellite and radiance calibration adjustments were made by employing an empirical diurnal model. 
The data file format is netCDF-4 with CF metadata, and it is accompanied by the algorithm documentation, data 
flow diagram and source code for the NOAA CDR Program. 

As it is just constrained by the physical periodic Sun-Earth activity, the IR-OLR emitted by the earth exhibits 
periodicity, especially seasonality, which makes IR-OLR a good choice as time series. Meanwhile, in order to 
eliminate the interference from human activities during the daytime, this paper used the nighttime OLR (N-OLR) 
data with 1.0° × 1.0°(pixel resolution) by the NOAA-18, and taken Jiuzhaigou earthquake in China and Mexico 
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earthquake as examples, and selected only one pixel of 1.0° × 1.0°(pixel resolution) the N-OLR data centered on 
the epicenter of each earthquakes as the time series studied in this paper. Finally, in order to more intuitively 
describe the time series selected in this study, the locations of the epicenter of the Jiuzhaigou earthquake in China 
and the Mexico earthquake and the location of the pixels studied are clearly shown in Figure 1 and Figure 2. 

Figure 1. Seismic events with ML=7.0 occurred in August 8, 2017. Red star indicates the epicenter of Jiuzhaigou earthquakes 
in China, and the red circle represents the nearest of one pixel of 1° × 1° (pixel resolution) centered on the 
epicenter of Jiuzhaigou earthquakes in China. The image on the right is an enlargement of the red frame in the 
lower left corner, and the blue frame is 1° × 1° (pixel resolution) study area.

Figure 2. Seismic events with ML=7.1 occurred in September 20, 2017. Red star indicates the epicenter of Mexico 
earthquakes, and the red circle represents the nearest of one pixel of 1° × 1° (pixel resolution) centered on the 
epicenter of Mexico earthquakes. The image on the right is an enlargement of the red frame in the lower left 
corner, and the blue frame is 1° × 1° (pixel resolution) study area.



3. Methodology 
 

3.1 Overview 
 

3.1.1 Calculation of non-seismic data values using time series forecasting models 
 

Time series analysis is a statistical analysis method for analyzing and exploring a set of time-ordered data in 
order to predict its future trend. Variations in IR-OLR are strongly associated with geographical location, season, 
total electron content (TEC), and the activities taking place in the interior of the Sun and the Earth. These factors 
contribute to the obvious periodicity, especially seasonality, in IR-OLR [Yun and Jie, 2005]. Application of time 
series analysis to this series allows us not only to take its deterministic components into account, but also to 
calculate the uncertain components of IR-OLR changes, so as to get more accurate non-seismic data value of the 
IR-OLR. The process of modeling and calculating the non-seismic data value of IR-OLR is shown in Figure 3. It 
involves four major steps. The first step is to perform a stationary test (difference methods) to stabilize the IR-OLR 
series. Then a periodic model of the stationary series is constructed. The next step is to select the optimal model 
by using the RMSE accuracy criterion. The optimal model is then utilized to predict non-seismic data values of IR-
OLR. The specific steps are as follows: 

Firstly, a differential operation is applied to the IR-OLR series, with the cycle length s being used as the step 
length. The cycle length (s) is distinguished based on the observation timing chart and the autocorrelation function 
of the observation series, and the periodic difference is given by formula (1): 

 
        ∇� = (1 ‒ 𝐵�) 𝑋� (1) 
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Figure 3. Flow chart showing the process of modeling and predicting non-seismic data value using the time series analysis 
based on the time series forecasting models [Zhang et al., 2013].



In the formula, 𝐵 is a backward shift operator and 𝑋�‒�=𝐵�𝑋, ∇ is a difference operator. If a trend still exists in 
the time series after the periodic difference, the normal difference ∇∇� is then applied to the series 𝓵(t): 

 
            𝓵(t) =∇∇� = (1 ‒ 𝐵)(1 ‒ 𝐵�) 𝑋� (2) 

 
After the difference, the time series forecasting models are used to fit the stationary series. In general, the 

original series can be transformed into a stationary time series by a periodic difference and a normal difference. If 
not, continue the difference until it becomes stationary.  

After modeling is completed, a significance test of the models is carried out. Then, the models that pass the significance 
test are evaluated based on RMSE in order to select the optimal model. The optimal model is used to build model and 
predict the IR-OLR non-seismic series, so as to obtain the non-seismic data values of the IR-OLR to be predicted. 
 
 

3.1.2 Building time series-based forecasting models 
 

In addition to the forecast non-seismic data values, the prediction of the pre-earthquake IR-OLR anomalies also 
requires a reasonable error range for non-seismic data values. In this paper, a more reasonable bound determination 
strategy is proposed for determining the upper and lower bounds of the non-seismic data value range in the time 
series analysis based on the time series forecasting models. The specific steps are as follows: 
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Figure 4. Flow chart illustrating the process of predicting IR-OLR anomalies using the time series analysis based on the 
time series forecasting models [Zhang et al., 2013].



The first step is to select the IR-OLR data that are closest to the epicenter and more than one year before 
earthquake, which can ensure the absence of seismic disturbance. The data cover the period from the 15th to the 
27th months before the earthquakes and are spaced at one-month intervals were used as training datasets, and 
the 5-days spaced data for the 13th months before earthquakes was used as the test set, which starts at the day 
one year before the earthquake and terminates at the 30th day backwards. 

The reasons for choosing this temporal window in this paper are as follows: 
(1) Dai et al. [2009] used IR-OLR to extract the earthquake-related anomaly information from 15 different 

earthquake cases based on wavelet packet method. The results show that different degrees of IR-OLR 
earthquake anomaly information are extracted during 10 months before the shocks, and there is a 
significant correlation between the duration of energy attenuation and earthquake magnitude. Meanwhile, 
Jing et al. [2009] used IR-OLR daily grid data (2.5°) to analyze the mid-term infrared emission anomalies 
related to medium-term and large earthquakes in Sichuan-Yunnan area using wavelet time-frequency 
analysis method. It was found that the anomalies are mainly occurred on half a year to one year before 
earthquakes. Therefore, considering that both the Jiuzhaigou earthquake in China and the Mexico 
earthquake are large earthquakes, and the magnitude of the earthquake is relatively high. In this paper, the 
period from the 15th to the 27th months before the earthquakes and are spaced at one-month intervals 
were used as training datasets, which can effectively avoid a certain degree of interference caused by the 
anomaly of IR-OLR before the earthquake. 

(2) In recent decades, a large number of experts and scholars have studied IR-OLR anomalies such as Lu et al. 
[2014]and Liu et al. [1997] The results show that the IR-OLR anomaly occurs within a few days to one 
month before the earthquake. Therefore, this paper chooses the 5-days spaced data for the 13th months 
before earthquakes was used as the test set, which starts at the day one year before the earthquake and 
terminates at the 30th day backwards, which can improve the detection results of IR-OLR anomalies. 

(3) Before using RST method to analyze TIR at the time of the Abruzzo 6 April 2009 earthquake, Genzano et 
al. [2009] and Pergola et al. [2010] verified that the absence of TIR anomalies in a relatively seismically 
unperturbed period, the confutation phases has been performed by considering the same period (15 March-
15 April) but in a different year (2008). Therefore, in this paper, the same approach is adopted, that is, in 
order to verify that the absence of IR-OLR anomalies in a relatively seismically unperturbed period, the 
confutation phases has been performed by considering the same period (the 5-days spaced data for the 13th 
months before earthquakes was used as the test set, which starts at the day one year before the earthquake 
and terminates at the 30th day backwards) but in a different year. By predicting each modeling forecasting 
models with this temporal window, and the accuracy of each building time series-based forecasting models 
is obtained successively, and then the optimal time series-based forecasting models is selected to improve 
the accuracy of the pre-earthquake IR-OLR anomaly detection. 

 
Finally, the differences between the non-seismic data values for this period and the actual observations were 

calculated. The residual value with 95% confidence level, Δ, was determined by statistical analysis. Then the 
upper and lower bounds of the non-seismic data range can be calculated from the residual value determined and 
the non-seismic data value for the normal period using the equations below: 

 
 

 
(3)

 
 
 
In the formula, is the non-seismic data value predicted by the time series analysis based on a time series 

forecasting model; Δ is the residual value with 95% confidence level for the predicted non-seismic IR-OLR data 
(without disturbance) that is closest to the epicentre; 𝑢𝑝 and 𝑙𝑜𝑤 are respectively the upper and lower bounds of 
the non-seismic data range, the bounds beyond which is considered as anomaly. The overall IR-OLR anomaly 
prediction process is illustrated in Figure 4. 
 
 

  𝑢𝑝 = 𝑂𝐿𝑅���� + Δ 𝑙𝑜𝑤 = 𝑂𝐿𝑅���� ‒ Δ�
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3.2 Data Preprocessing 
 

To ensure the reliability of the model, the IR-OLR data is used to build model is more than one year before the 
selected earthquakes, which were not affected by seismic disturbance. At the same time, in order to verify the 
proposed model, the earthquakes with magnitude of 7.0 or higher are selected. Therefore, the Ms 7.0 Jiuzhaigou 
earthquake in China on August 8, 2017 and the Ms 7.1 Mexico earthquake on September 20, 2017 were selected as 
the case study.  

In accordance with the process steps shown in Figure 1 and 2, the night time IR-OLR data points that were closest 
to the epicenter and more than one year before the Jiuzhaigou in China and Mexico earthquakes were selected for 
modeling. This ensures that the selected data set has not been affected by seismic disturbance. For more reliable 
predictive modeling, the selected IR-OLR series were subjected to stationarity and white noise tests. The unit root 
test was used for the stationarity test in the study. Later, the results of the stationarity test using the IR-OLR series 
of the Jiuzhaigou in China and Mexico earthquakes were obtained.  

The stationarity test results show that the p-value of the unit root of the IR-OLR series for the Jiuzhaigou 
earthquake in China is less than 0.05. This indicates that the IR-OLR series is stationary. However, the p-value of 
the IR-OLR series for the Mexico earthquake being modeled exceeds 0.05, indicating that this series is nonstationary. 
Therefore, it is necessary to make the IR-OLR series for the Mexico earthquake stationary by the first-order 
difference.  

After the first-order difference of the IR-OLR series for the Mexico earthquake, the series is uniformly distributed 
around 0, indicating general stationarity. The later unit root test showed that the p-value is less than 0.05. This 
confirms that the IR-OLR series for the Mexico earthquake becomes stationary. After the stationarity test, the p-
value of the results of white noise test is greater than 0.05 for both earthquakes, indicating that the residual error 
of the fitted model can be detected as white noise. 

 
 
3.3 Time Series Forecasting Models 
 
This study analyzed the prediction principles and process involved in the time series forecasting models, 

including ARIMA, NNAR, STL-ETS, TBATS, Naïve and Holt-Winters.  
The ARIMA model, also known as the Box-Jenkins Model or the B-J model, is a method of time series forecasting 

[Wang and Gu, 2000]. It has the following form: 
 

 

              
(4)

 
 
 
where 𝑥� represents time series data, 𝑥� is related to 𝑥�‒1 (i = 1,2, ... , p); 𝜀� denotes the residual term, which is related 
to 𝜀�‒𝑗 (j = 1,2, ... , q); 𝐵 is a delay operator, and satisfies; 𝐵�𝑥� = 𝑥�‒𝑛 ; p represents the autoregressive order; q is the 
moving average order; 𝑑 is the difference order; ∇ is the difference operator, ∇� = (1‒𝐵)�; Φ(𝐵) represents the 
polynomial of the autoregressive coefficient; Θ(𝐵) represents the polynomial of moving average coefficient; and 𝜀� 
is a white noise series that is independent of 𝑥�‒𝑖 and 𝜀�‒𝑗. 

The model that satisfies equation (4) is ARIMA (p, d, q), an autoregressive integrated moving average model 
which combines the ARMA (p, q) model and the differential operation organically. It is able to provide high-precision 
short-term predictions and does not require highly structured data. To provide a good fit, this model only needs to 
find a regular pattern in the data itself [Mini et al., 2015]. However, as the IR-OLR series is univariate and contains 
a seasonal component, this study used the ARIMA (p, d, q) (P, D, Q) m model proposed by Hyndman and Khandakar 
[2008] to obtain the best model parameter values through automatic predictions. 

The neural network auto-regressive (NNAR) model can be used to model the complex nonlinear relationships 
between input and output variables. In the case of the NNAR model, the lagged value of time series is used as the 
model input, and the output is the predicted value of the time series. Due to the presence of seasonal components 

Φ (𝐵)∇�𝑥� = Θ (𝐵)𝜀� 𝐸(𝜀�) = 0, 𝑉𝑎𝑟(𝜀�) = 𝜎�2 , 𝐸(𝜀�𝜀�) = 0, 𝑠 ≠ 𝑡 𝐸(𝜀�𝜀�) = 0, ⩝𝑠 < 𝑡
�
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in the IR-OLR series, this study used the NNAR (p, P, k) m model proposed by Hyndman and Athanasopoulos [2014]. 
Single seasonal exponential smoothing methods are among the most widely used forecasting procedures in practice 
[Snyder et al., 2002; Makridakis et al., 2010]. Seasonal decomposition of time series by loess-exponential smoothing 
(STL-ETS) model is a time series decomposition method based on robust locally weighted regression. Before fitting 
the STL-ETS model to this time series, smoothing was first performed to explore its overall trend and decomposes 
it to see if the time series is affected by seasonal factors. In this study, the seasonal IR-OLR series data were 
decomposed into trend factors, seasonal factors and random factors [Cleveland et al., 1990; Hyndman et al., 2008]. 
The notation exponential smoothing state space model with Box-Cox transformation, ARMA errors, trend and 
seasonal component (TBATS) model (p, q, {m1, k1}, {m2, k2}, . . . , {mT , kT}) is used for these trigonometric models. 
These models require estimation of the initial seasonal values of 2(k1 + k2 +�+ kT), which is expected to greatly 
reduce the number of parameters required compared to BATS models. The use of trigonometric functions also allows 
modeling of non-integer seasonal frequencies [De Livera et al., 2009]. Additionally, due to presence of a seasonal 
component in the IR-OLR series, the value predicted by the Naive model is equal to the last value of the same season 
(𝑦̂�+ℎ|𝑇 = 𝑦�+ℎ‐, where m is equal to the length of the seasonal period, and k = � �+1). In general, this model has 
better prediction performance for seasonal time series [Makridakis and Hibon 2004; Barot, 2004]. The Holt-Winters 
model is an improvement and development of the moving average method for exponential smoothing. Therefore, 
the Holt-Winters’ three-parameter exponential smoothing model is essentially a high-level exponential smoothing 
model capable of simultaneously dealing with trend and seasonal variations. Moreover, it can properly smooth out 
random fluctuations and predict future values of time series that exhibits both a long-term trend and a seasonal 
pattern [Hyndman and Athanasopoulos, 2018]. In view of the fact that the patterns in the data analyzed in this 
study are consistent with the additive model, an additive model was selected for seasonality and trend and the 
random terms were smoothed [Mini et al., 2015; Elmunim et al., 2015]. 

 
 
3.4 Construction and evaluation of time series forecasting models 

 
In order to make the determination of the parameters in the aforementioned prediction model more convenient 

and more optimal, we utilized existing time series forecasting models in combination with a powerful and widely 
applicable automatic prediction algorithm to simplify the process of determining specific parameters [Hyndman et 
al., 2000]. The steps involved are summarized below. 

First, the time series forecasting models were applied to the appropriate IR-OLR data, and the model parameters 
were optimized to best fit the data in each case. Then, the optimal model was selected according to the RMSE. 
Forecasts were later produced by the optimal model with optimized parameters. By assuming a standard normal 
distribution of the non-seismic data covering 13 months, we obtained the prediction intervals and then estimated 
the 95% confidence intervals for all forecasting models.  

Before the comparative analysis based on RMSE, modeling and prediction processing were performed using time 
series cross-validation. The specific method and principle are as follows: 

First, after verifying the stability and periodicity of the series, prediction was made by using IR-OLR data 
unaffected by seismic disturbance as training datasets. The data cover the period from the 15th to the 27th months 
before the earthquakes and are spaced at one-month intervals were used as training datasets.  

Next, the 5-days spaced data for the 13th months before each earthquake was used as the test set, which starts 
at the day one year before the earthquake and terminates at the 30th day backwards. Then the training set interval 
was adjusted based on the specific test set interval. Take the Jiuzhaigou earthquake in China for example. As this 
earthquake occurred on August 8, 2017, the day one year before (August 8, 2016) was selected as the starting point 
of the test set and the test set interval is between August 4 and 8, 2016. Based on this, the three-months period from 
May 3, 2016 to August 3, 2016 was selected as the training sets. By analogy, we obtained 5-days prediction results 
for different training set intervals (ranging from 4 to 15 months). Later, the test set interval was set at 10 days 
(between August 1 and 8, 2016), and the training set interval was adjusted based on this. Then we obtained 10-days 
prediction results for different training set intervals, ranging from three months (between May 31 to July 31, 2016) 
to 15 months (between May 31, 2015 and July 31, 2016). In this way, the time set interval was adjusted by changing 
the test set interval until the test set interval reached 30 days (from July 10, 2016 to August 8, 2016). Finally, the 30-
days prediction results were obtained for different training set intervals, ranging from three months (between May 

h - 1
m
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9 to July 9, 2016) to 15 months (between May 9, 2015 and July 9, 2016). The training and prediction process was 
performed for the aforementioned six models and the RMSE in building these models were obtained. For 
simplification, we present part of the results in Tables 1 and 2. 
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Table 1. RMSE using STL-ETS forecasting model for IR-OLR series of the Jiuzhaigou earthquake in China (“Testing-Days” 
represents the number of predicting days covered by the test set more than one year before the earthquake, and 
“Training-Months” represents the number of months covered by the training sets more than one year before the 
earthquake. For example, Training = 3 means the training set covers the 3 months from the 13th to the 15th month 
before the earthquake).

RMSE
Testing -Days

5 10 15 20 25 30

Tr
ai

ni
ng

 -M
on

th
s

3 70.69939 53.66312 54.53355 49.09530 51.73416 49.41453

4 65.51219 52.02455 49.27361 43.37863 48.99903 44.85296

5 61.70571 49.72870 46.98914 42.22853 45.20788 42.47066

6 58.14369 43.59647 42.69897 38.48601 42.18839 40.62428

7 49.54800 39.11729 40.77493 36.51870 41.32012 39.93193

8 45.69510 36.95937 39.78831 35.15687 40.26855 39.01711

9 42.60002 34.77980 39.20651 36.16292 39.34666 38.23622

10 43.88628 34.73611 38.81550 36.71580 39.51289 38.62620

11 44.12843 34.75781 37.80052 35.61959 38.76017 37.73360

12 40.25507 33.74355 36.73846 35.32505 38.09493 37.55047

13 38.55228 32.64400 37.28536 35.69527 39.14744 37.75484

14 38.82859 33.38277 37.48180 35.84557 39.24582 37.77083

15 39.64780 33.98388 37.60329 36.16690 39.40084 37.70485

Total RMSE Value 639.20255 513.11742 538.98995 496.39514 543.22688 521.68848

Table 2. RMSE using STL-ETS forecasting model for IR-OLR series of the Mexico earthquake (“Testing-Days” represents the 
number of predicting days covered by the test set one year before the earthquake, and “Training-Months” represents 
the number of months covered by the training set more than one year before the earth- quake. For example, Training 
= 3 means the training set covers the 3 months from the 13th to the 15th month before the earthquake).

RMSE
Testing -Days

5 10 15 20 25 30

Tr
ai

ni
ng

 -M
on

th
s

3 44.69341 45.99259 55.77980 59.90622 53.81908 53.58311

4 55.17317 49.52521 50.72644 50.50717 51.06227 50.06815

5 54.05450 51.58322 50.80719 50.44315 50.38227 46.90536

6 50.83275 49.53280 51.52539 51.93842 52.02079 49.93216

7 50.79362 47.93161 51.53080 51.39728 52.79772 49.90805

8 53.79023 49.85844 52.65923 53.12580 52.16926 48.72981

9 53.19893 48.11639 48.00672 48.44197 48.42407 45.49136

10 53.29158 48.32180 47.21553 49.08096 47.89618 45.37958

11 53.46107 47.44755 46.37520 48.75762 47.92719 44.47552

12 53.66135 46.72269 44.93842 48.87519 46.83378 43.59465

13 52.87081 45.23385 45.43888 48.51338 46.61649 43.41514

14 51.10819 44.92820 46.15601 48.38076 46.26603 44.46791

15 51.85725 45.65447 47.65231 49.46133 47.25164 44.38623

Total RMSE Value 678.78686 620.84882 638.81192 658.82925 643.46677 610.33703



As described above, in order to identify the superior performance of each prediction model and validate the 
models’ predictions, RMSE was used as a performance measure to analyze and compare the accuracy of these models. 
RMSE can be calculated using the equation below [Mini et al., 2015]: 
 

  
(5)

 
 
where 𝜀̂� represents the difference between the observed value and the fitted value of the time series at time t. 
The smaller the RMSE value, the higher the accuracy of the prediction. Conversely, a higher RMSE indicates lower 
prediction accuracy. 
 
 
4. Results 
 

4.1 Analysis of time series forecast results 
 

The time series forecasting models described above were applied to the N-OLR series used as the training sets 
(data covering from the 15th to the 27th month before the Jiuzhaigou in China and Mexico earthquakes). Then the 
total RMSE of the models’ predictions for different training set and test set intervals were obtained for the purpose 
of comparative analysis based on the aforementioned time series cross-validation method and RMSE. More 
prediction results from the models are detailed form Table 1 to Table 12 in supplementary materials. 

Moreover, the RMSE values for different training set intervals within each time interval were added, and the 
resulting total RMSE was used as a criterion to evaluate the validity and accuracy of predictions over different time 
intervals. The values of total RMSE of the six models’ predictions for different time intervals are plotted as curves 
in Figure 5 and Figure 6. 

RMSE =�   �      (𝜀̂�)²� �⁼¹¹ �
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Figure 5. Total RMSE of different time series forecast models using N-OLR time series data of the Jiuzhaigou earthquake 
in China.



As shown in Figure 5 and Figure 6, for both earthquakes and across all time intervals, the traditional ARIMA 
model’s predictions have the lowest total RMSE compared to other five models’ predictions. This suggests that 
the traditional ARIMA method is superior to other prediction models in terms of prediction accuracy. 

Based on the total RMSE curves for the models, the traditional ARIMA model was selected as the optimal 
model for predictive modeling of the Jiuzhaigou in China and Mexico earthquakes. To verify this model, further 
forecasting was performed using the same principle. During verification, the IR-OLR data spaced at one-month 
intervals for the period from the 3rd to the 15th month before the earthquakes were used as the training sets. 
Then the data spaced at 5-days intervals for the month preceding each earthquake was used as the test set, 
which starts at the day before earthquake and terminates at the 30th day backwards. Then the optimal model 
selected was used to predict and the corresponding predictions were obtained. The total RMSE of the ARIMA 
model’s predictions for different training set and test set intervals are provided in Tables 3 and 4. 
Table 3 shows that the prediction for the 20 days before the Jiuzhaigou earthquake in China using 12 months 
series data before the earthquake as the training set has the lowest RMSE, at 34.55936. This suggests that the 
model prediction for the Jiuzhaigou earthquake in China has the highest prediction accuracy when Training 
time = 12 months and Test time = 20 days. For the Mexico earthquake (Table 4), the prediction for the 30 days 
before the earthquake made 12 months before the earthquake (Training time = 12 months) has the lowest RMSE, 
at 50.86853, demonstrating that the model prediction for this earthquake has the optimal prediction accuracy 
when Training time = 12 months and Test time = 30 days.  
Therefore, the selected Training and Test sets that can ensure optimal prediction accuracy were applied to the 
prediction using the ARIMA model. The corresponding predicted values and residual value Δ with 95% 
confidence level were obtained for the two earthquakes.  
 

12

Figure 6. Total RMSE of different time series forecast models using N-OLR time series data of the Mexico earthquake.
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Table 3. RMSE using the ARIMA forecasting model for IR-OLR series of the Jiuzhaigou earthquake in China (“Testing-
Days” represents the number of predicting days covered by the test set before the earthquake, and 
“Training-Months” represents the number of months covered by the training set before the earthquake. For 
example, Training = 3 means the training set covers the 3 months from the 3rd to the 5th month before the 
earthquake).

RMSE
Testing-Days

5 10 15 20 25 30
Tr

ai
ni

ng
-M

on
th

s
3 51.32606 37.14500 53.48049 41.79803 37.26526 45.67913

4 43.81146 36.15453 45.02118 34.85754 39.70786 41.09400

5 47.12847 37.36949 49.11983 35.38469 38.05663 39.13221

6 48.43942 37.30969 42.86397 36.76617 39.89999 41.66374

7 48.28274 37.36016 42.72915 35.38001 38.68308 40.39532

8 47.86303 35.70610 43.32372 35.48380 35.96597 40.44040

9 47.92586 35.65589 45.96839 35.51371 38.63190 40.29022

10 52.25093 35.81567 44.27728 36.30889 38.23835 40.28125

11 49.81789 35.95275 48.83730 35.00349 35.06587 38.74180

12 50.08397 35.05492 44.14352 34.55936 37.63338 40.85396

13 50.05824 36.37167 44.45100 34.87020 37.02080 41.33353

14 50.70885 36.83614 40.70579 35.00012 39.36349 39.12523

15 50.76149 35.57869 43.16789 35.46443 37.99162 39.66195

Table 4. RMSE using the ARIMA forecasting model for IR-OLR series of the Mexico earthquake (“Testing-Days” represents 
the number of predicting days covered by the test set before the earthquake, and “Training-Months” represents 
the number of months covered by the training set before the earthquake. For example, Training = 3 means the 
training set covers the 3 months from the 3rd to the 5th month before the earthquake).

RMSE
Testing-Days

5 10 15 20 25 30

Tr
ai

ni
ng

-M
on

th
s

3 69.42542 69.52783 61.46657 56.57749 53.39246 51.37497

4 71.94064 69.42684 62.15327 56.70479 53.74016 51.85448

5 70.07536 72.38193 61.80438 57.41143 53.81360 50.90722

6 70.13286 70.42201 61.80927 57.07340 53.68803 50.92623

7 69.56415 71.12619 61.64352 56.77809 53.41676 51.25553

8 68.73242 72.73827 61.80935 56.95972 53.76071 51.18903

9 70.37985 72.38807 62.37383 57.57231 53.90978 51.90097

10 75.12840 72.88093 62.50778 57.69928 53.8902 52.06998

11 75.54213 74.67036 61.94378 58.00128 53.40555 51.19684

12 73.34089 73.82053 61.78662 57.92983 52.83774 50.86853

13 75.19341 72.67983 61.78859 57.50427 53.19649 51.99042

14 76.09817 75.14769 62.35135 58.15162 53.33462 52.33966

15 74.73124 73.24156 61.96571 58.31668 53.50870 52.37064



4.2 Analysis of pre-seismic IR-OLR anomalies predicted by the ARIMA model 
 

In order to detect pre-seismic anomalies from the time series of IR-OLR data, a confidence interval was 
determined by calculating the upper and lower bounds based on the predictions and residual value with 95% 
confidence level obtained. Finally, the differences between the calculated upper and lower bounds L and their actual 
values P were obtained as the predictions of IR-OLR anomalies. The prediction results for the Jiuzhaigou in China 
and Mexico earthquakes are shown in Figure 7 and Figure 8, respectively. 

As can be seen from Figure 7 and Figure 8, both the Jiuzhaigou in China and Mexico earthquakes were effectively 
predicted by the ARIMA model. This demonstrates that IR-OLR data can be used as valid, reasonable and reliable time 
series in earthquake prediction and has certain practical value for relevant research. Moreover, the observed values for 
July 27 and August 5 before the Jiuzhaigou earthquake in China exceed the estimated confidence interval for prediction, 
and the maximum (39.44 W/m2) exceed bounds occurred on August 5, 2017. So, we inferred that IR-OLR anomalies 
existed on July 27 and August 5, twelve and three days before the Jiuzhaigou earthquake in China respectively, and the 
intensity of IR-OLR anomalies reached the maximum 3 days before the earthquake on August 5, 2017. 

As can be seen from Figure 8, the observed values for September 14, 18, and 19 before the Mexico earthquake are 
also exceed the predicted confidence interval and the exceed bounds reaches the maximum (50.83W/m2) on 
September 14, 2017. Therefore, we inferred that IR-OLR anomalies occurred one, two and six days before the Mexico 
earthquake respectively, and the intensity of IR-OLR anomalies reached the maximum during six days before the 
earthquake (September 14, 2017). 
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Figure 7. Predictions of IR-OLR anomalies before the Jiuzhaigou earthquake in China.

Figure 8. Predictions of IR-OLR anomalies before the Mexico earthquake.



5. Discussion 
 
In the past few decades, many researchers, such as Chen et al. [2010], have discussed the relationship between 

IR-OLR and earthquakes, and introduced IR-OLR into the field of earthquake predictions. They presented the 
potential relationship between outgoing long-wave radiation anomalies and earthquakes and revealed anomalies 
prior to major earthquakes. Nevertheless, there has been no consensus on the causes of pre-earthquake IR-OLR 
anomalies so far. We believe that the near surface air ionization and latent heat exchange due to humidity variations 
[Pulinets et al., 2006] may cause interactions between the lithosphere–hydrosphere and atmosphere, which is related 
to changes in the near-surface electrical field and gas composition.  

In addition, researchers from China and other countries have also used different processing methods to extract 
IR-OLR data for pre-seismic IR-OLR anomaly detection. For instance, Xiong et al. [2010] proposed a spatial-temporal 
analysis method based on eddy field calculation mean and wavelet maxima for detecting seismic anomalies within 
the outgoing longwave radiation data. Zhou et al. [2016] used a standard deviation threshold to detect earthquake 
anomalies in outgoing longwave radiation data from NOAA. And Sun et al. [2017] applied RST and anomaly index 
algorithms to analyze the characteristics of IR-OLR from satellites, to detect seismic anomalies. Though all the 
methods have produced good results, the results for a given earthquake vary between different methods of the same 
earthquake. Besides, these methods are only applicable to detection of limited pre-seismic IR-OLR anomalies and 
can’t effectively explain the anomalies. 

Considering the limitations of the above-mentioned methods in detecting pre-seismic anomalies, we designed 
a new prediction method based on time series forecasting models (such as the ARIMA, NNAR, STL-ETS, TBATS, 
Naive and Holt-Winters models). This method uses N-OLR data as time series. Later, the prediction results produced 
by the six models based on the time-series cross-validation method were compared against the RMSE, and then an 
optimal model was selected for earthquake prediction. This method can predict pre-earthquake IR-OLR anomalies 
while avoid the limitations of the wavelet-based and other detection methods mentioned above. It has great 
advantages in terms of time, performance and methodology. In terms of time, this method allows us to make 
effective predictions before an earthquake occurs. In terms of performance, the ARIMA model is a well-established 
classical prediction model with wide applications in many areas, and it significantly outperform other models 
analyzed in this study. In terms of methodology, the use of cross-validation and RMSE for accuracy evaluation 
enables the proposed prediction model to deliver more reliable and valid predictions of pre-earthquake IR-OLR 
anomalies. Therefore, the ARIMA based prediction model has the potential to be a useful research tool for prediction 
of pre-earthquake IR-OLR anomalies. 

 
 

6. Conclusions 
 
A new method for predicting pre-earthquake infrared radiation anomalies was proposed based on time series 

forecasting models in this paper. The Ms 7.0 Jiuzhaigou earthquake in China on August 8, 2017 and the Ms 7.1 
Mexico earthquake on September 20, 2017 are analyzed using the proposed method. The following conclusions can 
be reached: 

(1) Among the six basis time series models, the ARIMA model delivered more valid and reliable predictions than 
the other five models, as indicated by the accuracy evaluation based on RMSE.  

(2) Considering the probability of IR-OLR anomalies, the ARIMA model was used to predict IR-OLR anomalies 
for the 20 days (Test time = 20 days) preceding the Jiuzhaigou earthquake in China and 30 days (Test time = 
30 days) preceding the Mexico earthquake. The series covering the 12 months before the earthquakes were 
selected as the time series for prediction. Figures 8 and 9 demonstrate that the ARIMA model has good 
prediction performance for both the Jiuzhaigou in China and Mexico earthquakes. According to the 
predictions, IR-OLR anomalies may have occurred on August 5, 2017 in the case of Jiuzhaigou earthquake in 
China, and on September 14, 2017 in the case of Mexico earthquake.  

(3) This paper reveals that obvious IR-OLR anomalies did exist the twelve and three days before the Jiuzhaigou 
earthquake in China, and the intensity of IR-OLR anomalies reached the maximum during three days before 
the earthquake (August 5, 2017). Moreover, this paper also reveals that obvious IR-OLR anomalies did exist 
the one, two and six days before the Mexico earthquake, and the intensity of IR-OLR anomalies reached the 
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maximum during six days before the earthquake (September 14, 2017). The consistency between the 
observations and predictions demonstrates that anomalous IR-OLR changes will probably occur before 
earthquakes, and it is reasonable to expect that predicting pre-earthquake IR-OLR anomalies by using the 
time series analysis based on the ARIMA model will be a useful approach to imminent earthquake prediction. 
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