Appendix A

Derivation of Decoupled Elastic Wave Equations

Qizhen Du^{1,2,3}, Jing Ba^{4*}, Dong Han⁵, Pengyuan Sun⁶, Jianlei Zhang⁶

- ¹ Key laboratory of deep oil and gas, China University of Petroleum (East China), Changjiang West Road 66th, Qingdao, China, 266580
- ² Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China, 266071
- ³ Key Laboratory of Geophysical Prospecting, CNPC, China University of Petroleum (East China) Changjiang West Road 66th, Qingdao, China, 266580
- ⁴ School of Earth Sciences and Engineering, Hohai University, Nanjing, Jiangsu, China, 211100, Corresponding author email: jba@hhu.edu.cn
- ⁵ Sinopec Geophysical Research Institute, Nanjing, Jiangsu, China, 211103
- ⁶ China National Petroleum Corp Bureau of Geophysical Prospecting Inc. Zhuozhou, Hebei, China, 072750

The derivation of the decoupled wave equations is given here. For a better explicit demonstration, we enumerate the following identifies:

$$\begin{cases} \mathbf{k} \times (\tilde{\mathbf{k}}(\tilde{\mathbf{k}} \cdot \tilde{\mathbf{U}})) = 0\\ \mathbf{k} \cdot (\tilde{\mathbf{k}} \times (\tilde{\mathbf{k}} \times \tilde{\mathbf{U}})) = 0 \end{cases}$$
(A-1)

Replacing the wavefield vector in equation (2) with the linear superposition expression above,

we see that

$$\frac{\partial^2 \tilde{\mathbf{U}}}{\partial t^2} + c_p^2 \mathbf{k} (\mathbf{k} \cdot (\tilde{\mathbf{U}}_p + \tilde{\mathbf{U}}_s)) - c_s^2 \mathbf{k} \times (\mathbf{k} \times (\tilde{\mathbf{U}}_p + \tilde{\mathbf{U}}_s)) = 0.$$
(A-2)

Incorporating equations (4) and (5) into equation (A-2), the expression is given by:

$$\frac{\partial^2 (\tilde{\mathbf{U}}_p + \tilde{\mathbf{U}}_s)}{\partial t^2} + c_p^2 \mathbf{k} (\mathbf{k} \cdot (\tilde{\mathbf{U}}_p - \tilde{\mathbf{k}} \times (\tilde{\mathbf{k}} \times \tilde{\mathbf{U}}))) - c_s^2 \mathbf{k} \times (\mathbf{k} \times (\tilde{\mathbf{k}} \cdot \tilde{\mathbf{U}}) + \tilde{\mathbf{U}}_s)) = 0.$$
(A-3)

Taking equation (A-1) into consideration, we obtain:

$$\left(\frac{\partial^2}{\partial t^2} + c_p^2 \mathbf{k}(\mathbf{k}\cdot)\right) \tilde{\mathbf{U}}_p + \left(\frac{\partial^2}{\partial t^2} - c_s^2 \mathbf{k} \times (\mathbf{k}\times)\right) \tilde{\mathbf{U}}_s = 0.$$
(A-4)

In equation (A-4) the first term $\left(\frac{\partial^2}{\partial t^2} + c_p^2 \mathbf{k}(\mathbf{k}\cdot)\right) \tilde{\mathbf{U}}_p$ is proportional to \mathbf{k} , and the second term

 $\left(\frac{\partial^2}{\partial t^2} - c_s^2 \mathbf{k} \times (\mathbf{k} \times)\right) \tilde{\mathbf{U}}_s$ is orthogonal to \mathbf{k} . The two terms are linearly independent. Consequently, each term equals zero.

$$\begin{cases} \frac{\partial^2 \tilde{\mathbf{U}}_p}{\partial t^2} + c_p^2 \mathbf{k} (\mathbf{k} \cdot \tilde{\mathbf{U}}_p) = 0\\ \frac{\partial^2 \tilde{\mathbf{U}}_s}{\partial t^2} - c_s^2 \mathbf{k} \times (\mathbf{k} \times \tilde{\mathbf{U}}_s) = 0 \end{cases}$$
 (A-5)