Appendix A

Derivation of Decoupled Elastic Wave Equations

Qizhen $\mathrm{Du}^{1,2,3}$, Jing $\mathrm{Ba}^{4 *}$, Dong Han ${ }^{5}$, Pengyuan Sun ${ }^{6}$, Jianlei Zhang ${ }^{6}$

${ }^{1}$ Key laboratory of deep oil and gas, China University of Petroleum (East China), Changjiang West Road 66th, Qingdao, China, 266580
${ }^{2}$ Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China, 266071
${ }^{3}$ Key Laboratory of Geophysical Prospecting, CNPC, China University of Petroleum (East China) Changjiang West Road 66th, Qingdao, China, 266580
${ }^{4}$ School of Earth Sciences and Engineering, Hohai University, Nanjing, Jiangsu, China, 211100, Corresponding author email: jba@hhu.edu.cn
${ }^{5}$ Sinopec Geophysical Research Institute, Nanjing, Jiangsu, China, 211103
${ }^{6}$ China National Petroleum Corp Bureau of Geophysical Prospecting Inc. Zhuozhou, Hebei, China, 072750

The derivation of the decoupled wave equations is given here. For a better explicit demonstration, we enumerate the following identifies:

$$
\left\{\begin{array}{l}
\mathbf{k} \times(\tilde{\mathbf{k}}(\tilde{\mathbf{k}} \cdot \tilde{\mathbf{U}}))=0 \tag{A-1}\\
\mathbf{k} \cdot(\tilde{\mathbf{k}} \times(\tilde{\mathbf{k}} \times \tilde{\mathbf{U}}))=0
\end{array} .\right.
$$

Replacing the wavefield vector in equation (2) with the linear superposition expression above, we see that

$$
\begin{equation*}
\frac{\partial^{2} \tilde{\mathbf{U}}}{\partial t^{2}}+c_{p}^{2} \mathbf{k}\left(\mathbf{k} \cdot\left(\tilde{\mathbf{U}}_{p}+\tilde{\mathbf{U}}_{s}\right)\right)-c_{s}^{2} \mathbf{k} \times\left(\mathbf{k} \times\left(\tilde{\mathbf{U}}_{p}+\tilde{\mathbf{U}}_{s}\right)\right)=0 . \tag{A-2}
\end{equation*}
$$

Incorporating equations (4) and (5) into equation (A-2), the expression is given by:

$$
\begin{equation*}
\frac{\partial^{2}\left(\tilde{\mathbf{U}}_{p}+\tilde{\mathbf{U}}_{s}\right)}{\partial t^{2}}+c_{p}^{2} \mathbf{k}\left(\mathbf{k} \cdot\left(\tilde{\mathbf{U}}_{p}-\tilde{\mathbf{k}} \times(\tilde{\mathbf{k}} \times \tilde{\mathbf{U}})\right)\right)-c_{s}^{2} \mathbf{k} \times\left(\mathbf{k} \times\left(\tilde{\mathbf{k}}(\tilde{\mathbf{k}} \cdot \tilde{\mathbf{U}})+\tilde{\mathbf{U}}_{s}\right)\right)=0 . \tag{A-3}
\end{equation*}
$$

Taking equation (A-1) into consideration, we obtain:

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial t^{2}}+c_{p}^{2} \mathbf{k}(\mathbf{k} \cdot)\right) \tilde{\mathbf{U}}_{p}+\left(\frac{\partial^{2}}{\partial t^{2}}-c_{s}^{2} \mathbf{k} \times(\mathbf{k} \times)\right) \tilde{\mathbf{U}}_{s}=0 . \tag{A-4}
\end{equation*}
$$

In equation (A-4) the first term $\left(\frac{\partial^{2}}{\partial t^{2}}+c_{p}^{2} \mathbf{k}(\mathbf{k} \cdot)\right) \tilde{\mathbf{U}}_{p}$ is proportional to \mathbf{k}, and the second term $\left(\frac{\partial^{2}}{\partial t^{2}}-c_{s}^{2} \mathbf{k} \times(\mathbf{k} \times)\right) \tilde{\mathbf{U}}_{\mathrm{s}}$ is orthogonal to \mathbf{k}. The two terms are linearly independent. Consequently, each term equals zero.

$$
\left\{\begin{array}{c}
\frac{\partial^{2} \tilde{\mathbf{U}}_{p}}{\partial t^{2}}+c_{p}^{2} \mathbf{k}\left(\mathbf{k} \cdot \tilde{\mathbf{U}}_{p}\right)=0 \tag{A-5}\\
\frac{\partial^{2} \tilde{\mathbf{U}}_{\mathrm{s}}}{\partial t^{2}}-c_{s}^{2} \mathbf{k} \times\left(\mathbf{k} \times \tilde{\mathbf{U}}_{s}\right)=0
\end{array}\right.
$$

