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Abstract 

Using detrended fluctuation analysis (DFA) we find that all continents are persistent in temperature. 
The scaling exponents of the southern hemisphere (SH) continents, i.e., South America (0.77) and 
Oceania (0.72) are somewhat higher than scaling exponents of Europe (0.70), Asia (0.69) and North 
America (0.64), but the scaling of Africa is by far the highest (0.86). The reason for this is the location 
of Africa near the equator.  
The scaling exponents of the precipitation are much smaller, i.e. between 0.55 (Europe) and 0.68 
(North America). The scaling exponent of Europe is near that of the random noise (0.5), while the 
other continents are slightly persistent in precipitation. We also show that the persistence disappears 
in all time series when shuffling the data randomly, showing that persistence is not an intrinsic 
property of the estimator. 
We find that the monthly temperature is the more persistent the more wide area is analyzed. The 
persistence of precipitation is also increasing as a function of area, although not so clearly. Furthermore, 
our analysis shows that the persistence of the temperature decreases poleward in both hemispheres. 
The persistence of precipitation is also highest at equatorial zones, and decreases poleward, but is less 
dependent on the latitude than temperature. It seems that the persistence of the precipitation is more 
dependent on the corresponding climate type than the persistence of the temperature. 
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1. Introduction

Several studies have been published on the long-range temporal correlations of temperature, usually by studying
the Hurst exponent (H) of the temperature anomalies. H is also called scaling exponent, α, which we will use in this 
study. Scaling exponent is a measure of the rate of the statistical dependence of the points as a function of their 
distance in the time series. The value α = 0.5 is the scaling exponent of random fractional Brownian noise. If α >0.5 
for the time series, we say that it is persistent, and has longer-rate memory, while the value α <0.5 means anti-
persistence in the behavior of the time series. The majority of the studies use local temperature records, and give 
exponents around 0.7 varying between 0.5-0.8 [Bodri, 1994; Pelletier and Turcotte, 1997; Koscielny-Bunde et al., 
1998; Mann, Bradley and Hughes, 1998; Eichner et al., 2003, Fraedrich and Blender, 2003; Monetti, Havlin and 
Bunde, 2003; Bunde et al., 2004; Király, Bartos and Jánosi, 2006; Zhang and Zhao, 2015]. So all the above-mentioned 
studies show, at least, some persistence in atmospheric temperature. It is interesting to note that for islands, the 



exponent shows a broader distribution, varying from 0.65 to 0.85, with an average value close to 0.8 [Eichner et al., 
2003]. Some studies report scaling exponents up to ≈1 for oceans [Bunde and Havlin, 2002; Fraedrich and Blender, 
2003; Zhang and Zhao, 2015]. 

Varotsos, Efstathiou, and Cracknell [2013] studied the monthly means of the hemispheric temperature anomalies 
of land surface air 1880-2011 measured at heights of 1.25–2 m at meteorological stations [Hansen et al., 2010]. 
They obtained scaling exponents 0.75 for northern hemisphere (NH), 0.73 for southern hemisphere (SH) and 0.80 
for global anomaly. They also studied zonal temperature anomalies, but used yearly averaged data, which consists 
only 131 values. Their analysis gave scaling exponents between 0.51-0.79. According to their studies, the exponents 
were gradually increasing as a function of latitude and more pronounced at the southern hemisphere. As we show 
later, our results are opposite such that scaling exponent decreases poleward and somewhat similarly at both 
hemispheres. This is because we use monthly averaged data, and consequently longer time series with finer 
resolution. According to many studies, the analyzed time series must be long enough to get reliable results, because 
the scaling is determined as an asymptotic behavior [Caccia et al., 1997; Weron, 2002; Rea et al., 2009; Grech and 
Mazur, 2013].  

Shao and Ditlevsen [2016] studied the scaling of glacial and interglacial temperature time series, and found that 
glacial time series shows multifractal structure with generalized Hurst exponent αq changing with the moment q. 
For example, they found α-2 ≈1.4 and α2 ≈1.2. On the other hand, the behavior of Holocene temperature time series 
is monofractal with scaling exponent α ≈0.7, in line with other studies mentioned earlier. They, however, studied 
only local monthly record from Oxford and Prague as last 150-year temperature measurement. Furthermore, the 
Holocene record they used was less than 600 points. 

Recently Blesić, Zanchettin, and Rubino [2019] made a comprehensive analysis of near-surface air temperature 
anomalies of Met Office HadCRUT4 and the NASA GISS Land–Ocean Temperature Index (LOTI) datasets and found 
that, excluding polar and parts of sub-polar regions (because of their substantial data inhomogeneity), the global 
temperature pattern is long-range autocorrelated. In their analysis, they found that scaling exponent decreases 
when going from equatorial towards higher latitudes. They confirmed the existence of a land–ocean contrast in 
persistence [Bunde and Havlin, 2002; Fraedrich and Blender, 2003] with marine data showing an appreciably more 
pronounced long-range persistence than land data. Their analysis is based only on second order polynomial 
detrended fluctuation analysis (DFA2). 

There are fewer studies about the persistence of precipitation, and controversy about the (non)existence of the 
short or long-term correlation (persistence) in the precipitation data [Fraedrich and C., 1993; Pelletier and Turcotte, 
1997; Fraedrich and Blender, 2003; Kantelhardt et al., 2006; Bunde et al., 2013; Ault et al., 2013]. This is because 
precipitation is part of a very complex circulation of dry and moist air masses. Another reason for the controversy 
is that the time resolution and length of the data vary in different analyses. At least it seems that the persistence 
of the precipitation is scale dependent. For example, Yang and Fu [2019] studied hourly-based precipitation and 
found that there is a crossover at the timescale of 200 hours such that scaling exponent is about 0.74 below this 
timescale and about 0.54 above this timescale. Markonis and Koutsoyiannis [2016] examined all available 
precipitation records over Europe with length above 200 years, as well as the CRU gridded data and found a mean 
for α coefficient close to 0.6, suggesting very weak long-term persistence for their annually averaged data. 

In this article, we study temperature and precipitation anomalies extending from local to continental, 
hemispheric and global averages. Using detrended fluctuation analysis (DFA), we find that the scaling exponent 
increases when going from local records to averages of the wider areas. As far as we know this is a new result not 
reported in the earlier literature. Especially, the analyses of precipitation consist new insights.  

We use monthly averaged data in all scaling analyses and for the years 1910-2019 if not otherwise stated. This 
paper is organized as follows. Section 2 presents the data and methods used in this study. In Section 3, we study 
persistence of the continental temperature and precipitation and in Section 4 the regional temperature and 
precipitation anomalies of the United States. In Section 5 we show that the wider the analyzed area, the more 
persistent the temperatures and precipitations. In Section 6 we present zonal and hemispheric analyzes of 
persistence in temperature and precipitation, and give our conclusions in Section 7.
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2. Data and methods 
 
2.1 Data 
 
We use data from NOAA (National Oceanic and Atmospheric Administration) web site for US local and regional 

temperature and precipitation analysis (for regions, see Figure 1) and for hemispheric and continental temperature 
analysis (NOAA_2020), and for land-ocean temperature analysis NASA GISS Land–Ocean Temperature Index (LOTI) 
data. For continental precipitation analysis, we use data from University of East Anglia Climatic Research Unit: 
CRU TS4.01 (Harris and Jones, 2017). For zonal scaling analysis (temperature and precipitation), we use monthly 
averaged data for 1900-2017 (Willmott and Matsuura, 2018, Terrestrial Air Temperature and Terrestrial Precipitation 
for land area: 1900-2017 Gridded Monthly Time Series V 5.01, added 6/1/18). In zonal analysis, both hemispheres 
are divided into four latitude zones 0-24, 24-44, 44-64 and 64-90 degrees. The local data for Australia, UK, Czech 
and Finland are retrieved from http://www.bom.gov.au/climate/, https://www.metoffice.gov.uk/research/climate/, 
https://www.chmi.cz/historicka-data/pocasi/praha-klementinum? and https://www.ecad.eu, respectively. 
For comparison to land measurements, we use Gistemp Land-Ocean Temperature Index [LOTI, Lenssen et al., 2019]. 

Monthly temperature (in Co) and precipitation (mm) anomalies are calculated by subtracting the average value 
of the corresponding month of the base period from the monthly temperature values. We normalize the data such 
that the base period is the whole interval, i.e., the mean value of the anomalies is zero. We do this to confirm that 
there is no bias outside the base period [Sippel et al., 2015; Lenton et al., 2017]. There are also other methods to 
deseasonalise the data [Varotsos, Assimakopoulos, and Efstathiou, 2007], but the afore-mentioned method is the 
most common. 

2.2 Rescaled range and detrended fluctuation analysis 
 
The rescaled range (R/S) analysis was first developed to study the fluctuation of water reservoirs [Hurst, 1951; 

Feder, 1988], but it soon became a favorite method as a measure of long-term memory of time series. Let us have a 
time series y (i), i=1, 2,…, N. For each time lag τ (1≤ τ ≤N), we can define the cumulative departure from the mean 
 

         , (1) 
where 
 

      (2) 
 

We define the range of the cumulative deviation from the mean as 

𝑋(𝜏) =�     (𝑦(𝑖) − �𝑦��)� �₌₁
1 ��𝑦�� =    �     𝑦(𝑖)� �₌₁
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Figure 1. Climate regions of the USA (from NOAA National Centers for Environmental information, Climate at a Glance: 
Regional Mapping, published January 2019, retrieved on February 5, 2019 from https://www.ncdc.noaa.gov/cag/). 

http://www.bom.gov.au/climate/
https://www.chmi.cz/historicka-data/pocasi/praha-klementinum
https://www.ecad.eu


Jouni J. Takalo

4

                   , (3) 
 

R presents the maximum deviation inside the lag time τ. We then calculate the standard deviation in this time 
interval 

              
     , (4) 

 

The rescaled range is defined as the ratio R/S, which should scale asymptotically with the lag τ by the power law 
                 𝑅/𝑆 ∝ 𝜏�      , (5) 

 
where α is called the Hurst exponent [Taqqu, Teverovsky, and Willinger, 1995; Valverde, Castellanos, and Quintanilla, 
2003]. Hurst exponent α = 0.5 describes increments of the random walk process (known also as Brownian motion) 
with no correlation between past and future. If the exponent α is greater than 0.5, the system is persistent, and the 
closer the exponent is to one the longer is the memory of the system. If the exponent α turns to be smaller than 0.5 
the system is said to be anti-persistent, i.e. high values tend to follow small values and vice versa. 

When applying the R/S analysis the time series needs to be stationary [Kantelhardt et al., 2002; Graves et al. 
2017; Garcin, 2017]. Time series of the temperature anomalies are, however, not strictly stationary; the variances 
of the anomalies do not change much, but the means increase, of course, mainly because of global warming. That 
is why the temperature anomaly data do not fulfill the demand for strong stationarity, but they are trend-stationary. 
For this reason, we use a refined method to calculate Hurst exponents by the detrended fluctuation analysis (DFA), 
which is suitable also for non-stationary time series. For time series y(ti), i = 1,…,N let 𝑦� be the mean value of the 
whole interval. We calculate the cumulative sum, i.e., sum of the deviations from the mean 

 

         . (6) 
 

Next we divide Y(tk) into non-overlapping segments each of length L. Elements of Y(tk) are renamed as Yj,l (tk), 
where j = 1,2,...,L and l = 1,2,...,m, where m is the number of segments. Hence k = (l − 1) L + j and N = L• m. Each 
segment (𝑌*,�) is now fitted with a polynomial of order n, i.e., (𝑃*� ,� (𝑡�)). An average fluctuation measure for all 
segments of length L is determined as 

      .  (7) 

 
After calculating the fluctuation measure F(n,L) for different values of L it should scale as with the length L by 

the power law 
            𝐹(𝑛, 𝐿) ∝ 𝐿�                       , (8) 

 
for large values of L. The global scaling exponent α is here calculated with a robust regression using bi-squared 
weight function [Habib et al., 2017]. The confidence interval is calculated as 
 

                                     , (9) 
 
where t is t-test value with confidence level 95% and corresponding degrees of freedom, s denotes standard 
deviation, and N the number of points in the regression analysis. In DFA the scaling exponent is conventionally 
marked by α, but it is the same as H (after Hurst) used traditionally in R/S analysis. 

The problem with experimental data is the asymptotic nature of scaling. As stated earlier this is why we use 
always (if possible) time series with more than 1000 data points, which is long enough for reliable analysis [Caccia 
et al., 1997; Weron, 2002; Rea et al., 2009; Grech and Mazur, 2013]. Therefore, we use monthly average data to get 
enough data points for the scaling analysis. 

𝑌(𝑡�) =�     (𝑦(𝑡�) − (𝑦�))� �₌₁

𝐹(𝑛, 𝐿) =�     �    �     (𝑌�,� − 𝑃�� ,�)²�½1 �� � �₌₁ � �₌₁

±𝑡 · �/√𝑁

𝑆(𝜏) = �   �    [𝑦(𝑖) − �𝑦��]²�½� �₌₁

𝑅(𝜏) = max  𝑋(𝑖) − min  𝑋(𝑖)



Figure 2a shows F(n,L) for the temperature anomalies 1895-2017 of Upper Midwest region of the USA as a 
function of scale (L) and n = 1,..,6 (called DFAn). Notice that for small scales there is deviation from the linear 
dependence, i.e., F(n,L) is too small. This problem tends to over-estimate the scaling exponent, especially for short 
time series. Notice that in this case DFA6 behavior is strange at small scales. To correct this behavior we use the 
modification suggested by Kantelhardt et al. [2001]. The correction term is defined by 
 

          
(10)

 
 
for L’ ≈ N/20 with N the length of the time series. Here 〈…〉 denotes the average of different sequences. It turns out 
that correction term depends only weakly about α. Therefore, we can use uncorrelated data for determining the 
correction term, 𝐾 �½   (L). This is obtained most easily by analyzing the randomly shuffled version of the corresponding 
time series, because the long-range correlations are destroyed in this operation. The modified version of the 
fluctuation measure is now 
 

              . 
(11) 

 
Figure 2b shows the modified fluctuations Fmod (n,L) of the Upper Midwest region anomalies 1895-2017 as a 

function of scale L. The changes in the fluctuations are mostly seen in the small scales and higher polynomials. 

Figure 3 shows how the polynomial fitting works for the cumulative sum of North America temperature anomaly 
during 1910-2017. Figure 3a shows the cumulative sum for the whole interval (blue curve) with ten fitted second 
order polynomials (black curves) using length L = 130 (months). The detrended anomaly, i.e., the residual of 

𝐹��� (𝑛,𝐿) = 𝐹(𝑛,𝐿) 𝐾𝑛 (𝐿)½

𝐾��   = �[𝐹(𝑛,𝐿)]²�𝐿'� �[𝐹(𝑛,𝐿')]²�𝐿�

5

Persistence of temp and precipitation

Figure 2. a) Average variation F(n, L) as a function of scale (L) for the temperature anomalies 1895-2017 of Upper Midwest 
region of the USA for regular (unmodified) DFAn analyzes. b) Same as figure a), but calculated with modified DFAn. 



cumulative sum minus polynomial 𝑌�,� − 𝑃�²,� , j = 1, 2,..., L and k = 1,2,..,10 is shown as red curve in figure 3a and as 
magnified (red time series) and compared to the original anomaly (blue time series) in figure 3b. In this paper we 
use n =  2, 3, 4, 5 in DFAn analysis, because first order polynomials seem to under-fit, at least, in the longer segments 
(it finds only linear trends), and sixth order has difficulties in short segments (overfitting) probably due to Runge-
effect. Runge phenomenon occurs as an oscillation at the edges when fitting equispaced time series with higher 
polynomials [Runge, 1901]. This effect can be minimized using denser set of points at the edges. We, however, use 
in the next analyses DFAn with n = 2, 3, 4 and 5, which seem to work well as seen from the Figure 2b. 

2.3 Fractional Gaussian noise 
 
Before starting the analyses of natural data we analyzed the used DFA method for generated fractional 

Gaussian noise (FGN) with different values of H. We calculate fractional Brownian motion from the 
autocovariance function 
 

         
(12)

 
 
through circulant matrix embedding method [Caccia et al., 1997; Kroese and Botev, 2015]. Figure 4 shows 
measurements of scaling exponents (α) for of ten realizations of FGNs with known α. The average values for 
measured scaling exponent are nearest to the theoretical value for α = 0.5 and for α = 0.9, and somewhat smaller 
than theoretical value for α = 0.6, 0.7 and 0.8. In the table 1, we show the average values and the root mean square 
deviations (RMSD), i.e., the difference between measured values and predicted value for all values of α. While the 
used method is known to be robust, it is evident that the variation in the values of α is mainly due to inaccuracy of 
the DFA method. 

𝐶(𝑘) =       (|𝑘 + 1|²� − 2|𝑘|²� + |𝑘 − 1|²�), 𝑘 = 1, 2, 3,...�₂ ²
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Figure 3. a) Profile of North America (NA) temperature anomalies with piecewise second order polynomial fittings. 
b) Original NA temperature anomaly (blue) and detrended temperature anomaly (red).



3. Temperature and precipitation anomaly analysis of continents 
 
In order to study the accuracy of the used method, modified DFA, we calculate ten estimates for the continental 

temperature and precipitation scaling exponents. Figure 5 shows the scaling exponents for ten estimates of the 
continental temperature anomalies of 1910-2016 (blue stars), and precipitation anomalies (black circles) of 1910-
2016, and 95% confidence bars as red lines. Note the magnification for Europe DFA3 only to show that the points 
are clearly inside the limits. We show here only DFA3 and DFA4 in Figure 5a and b, respectively, but calculate the 
average values using also DFA2 and DFA5. The most striking feature is the high value of for Africa. The average of 
all 40 estimates is α = 0.862 with standard deviation 0.015, which is well inside the error limits calculated from 
formula 9, which are of the order of 0.02-0.03. (We use here standard deviation instead of RMSD, because we do not 
know the predicted value a priori). The high value is caused by the situation of Africa within 30 degree on both 
sides of equator. It is understandable that this leads to smaller variation of the anomalies compared to other 
continents, and consequently more persistent behavior of the temperatures. The scaling exponents of SH continents 
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Table 1. Values of measured scaling exponents and their RMSDs for generated Gaussian noises with α = 0.5, 0.6, 0.7, 0.8 
and 0.9.

Gen α 
Meas α 0.5 0.6 0.7 0.8 0.9

DFA2 0.500 0.588 0.685 0.777 0.902

RMSD 0.029 0.026 0.036 0.032 0.029

DFA3 0.504 0.587 0.679 0.762 0.896

RMSD 0.029 0.033 0.037 0.045 0.022

DFA4 0.502 0.586 0.677 0.767 0.894

RMSD 0.016 0.035 0.037 0.039 0.022

DFA5 0.503 0.586 0.672 0.767 0.888

RMSD 0.012 0.033 0.039 0.040 0.025

Figure 4. DFAn analyzes with n = 2, 3, 4 and 5 for ten realizations using H = 0.5, 0.6, 0.7, 0.8 and 0.9.



are 0.723 (std = 0.0079) for Oceania and 0.766 (0.026) for South America. Note that southern hemisphere scaling 
exponents are somewhat higher than scaling exponents of NH continents, i. e. Asia, α = 0.691 (std = 0.032), Europe, 
0.701 (0.0095) and North America, 0.637 (0.011). We can say that Africa has high persistence and the other southern 
hemisphere continents moderate persistence (long-term correlation) in their temperatures. On the other hand, the 
northern hemisphere continents are only somewhat persistent. The relatively higher standard deviations of South 
America and Asia are due to different results for different order polynomials (n) in DFAn. Note for example, that the 
scaling exponents of DFA3 and DFA4 for Europe are almost the same but lower than 0.7 and higher than 0.7 for 
Asia, respectively. 

The scaling exponents of the precipitations are much smaller than the scaling exponents of the temperatures, 
except for North America. The average values for the scaling exponents of four DFAs are Africa, 0.600 (std = 0.009); 
Asia, 0.598 (0.012); Europe, 0.547 (0.0038); North America 0.675 (0.0087); Oceania 0.667 (0.028) and South America 
0.624 (0.017). The reason for the high standard deviations for southern hemisphere continents is again the same as 
stated earlier for SA temperature scaling exponent. Interestingly, there is a slight persistence in precipitation for 
all other continents than Europe. In order to see if the persistence is real and not due to estimator itself, we randomly 
shuffled the anomalies of the temperature and precipitation. Figure 5c and d show the scaling exponents of the 
shuffled anomalies of temperature (blue stars) and precipitation (black circles) for DFA3 and DFA4, respectively. The 
scaling exponent are near the value 0.5 as expected for the random time series. Note, however, that the distributions 
of the anomalies may differ from Gaussian distribution. Nevertheless, we use log-log linear piecewise fitting for 
the scaling exponent in all our analyses, and adjust the scaling regime depending on the length of the time series. 
For example, visually this means in the unmodified DFAn (n = 2,3,4 and 5) that the scaling region in Figure 2a could 
be L from 11 to 150, but for modified DFA of Figure 2b the region could be somewhat wider, i.e. L = 7-150. Note that 
while lower polynomials work better with short intervals L, they work worse for long L. This is especially seen for 
DFA2 with L >100. 

4. USA regional temperature and precipitation anomalies 
 
As it turned out that North America is the only continent, which has persistence similar for temperature and 

precipitation, we analyze next the climate regions of USA. Figure 7 shows the temperature and precipitation anomaly 
scaling exponents of DFA2, DFA3, DFA4 and DFA5 analyses for all nine contiguous US continental climate regions 
(see Figure 1, note that Alaska is missing) in 7a, b, c and d, respectively. The blue stars show the temperature anomaly 
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Figure 5. a) and b) Scaling exponents of the continental DFAn analyzes for ten measurements of precipitation and 
temperature anomalies using n = 3 and 4, respectively. c) and d) Five measurements for randomly shuffled time 
series of the same anomalies using n = 3 and 4, respectively.
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scaling exponents calculated with the modified DFAn and the red vertical bars show the 95% significance of the 
results (calculated from formula 9). Note that the scaling exponents increase slightly with increasing fitting 
polynomial. It is, however, clear that OV (Ohio Valley), S (South) and SE (Southeast) have the smallest values for the 
temperature scaling exponents, i.e. 0.58, 0.60 and 0.58 on the average, respectively. These values are quite near the 
exponent for random noise 0.5. The other regions have scaling exponents: NE (Northeast) 0.63, NRaP (Northern 
Rockies and Plains) 0.61, NW (Northwest) 0.66, SW (Southwest) 0.66, UM (Upper Midwest) 0.64, and W (West) 0.66 
on the average. These regions show weak persistence in the temperature during 1910-2019. Note that the 
westernmost climate regions, NW, W and SW, have highest and equal scaling exponent, although they belong to 
diverse climate areas [Kottek et al., 2006, Peel et al., 2007], (see also Figure 6).  

The black circles show the corresponding DFAn values for the precipitation anomalies. It is evident that the 
persistence of the precipitation is smaller than the persistence of temperature for other climate regions than OV, S 
and SE. These regions have scaling exponents almost the same size for both temperature and precipitation 
anomalies. Note that S and SE belong totally, and OV partly to the warm oceanic/humid subtropical and partly to 
humid continental climate area [Kottek et al., 2006, Peel et al., 2007, Chen and Chen, 2013]. From the other six 
climate regions, the northern climate regions NE, UM and NW have largest difference between persistence of 
temperature and precipitation. Note especially, that NE has precipitation scaling exponent smaller than 0.5. NRaP 
is the only region belonging mainly to cold semi-arid climate type, and has smallest difference in persistence of 
temperature and precipitation (except OV, S and SE). The southwestern climate regions W and SW are very near each 
other also in the persistence of precipitation. We may say, however, that all the other regions, except NE, are slightly 
persistent in monthly precipitation.  

The lower panels of the figures show scaling exponents for five measurements of randomly shuffled precipitation 
anomalies (circles) of NE, NW, S, SW, and W, and for five measurements of randomly shuffled temperature anomalies 
of NRaP, OV, SE and UM (triangles). It is clear that the slight persistence, which exists, at least, in some temperatures 
is due to long-range correlation and not to the intrinsic property of the estimator itself. 

Figure 6. Köppen-Geiger climate types of North-America, Europe and Australia (from Peel, Finlayson, and McMahon, 
[2007]). The analyzed local sites are marked in the map. The symbols are explained in Table 2.



5. Local to global anomalies 
 
In this section, we calculate scaling exponents starting from local area (citywide) and going through statewide 

and countrywide to hemispheric land temperature anomalies. Figure 8 shows the scaling exponents of the anomalies 
for Greenville (Gr, average α = 0.56), South Carolina (SC, α = 0.58), Southeast (SE, α = 0.58), USA (α = 0.60), and 
Northern hemisphere (NH, land area, α = 0.71). The scaling exponents increase monotonically when going from local 
to larger areas, although the exponent of the whole USA is smaller than exponent of Southeast region for DFA4 and 
DFA5. This may be due to bad fitting with higher polynomials for the temperature anomaly of the USA. This is also 
the reason why we should calculate the scaling exponent as an average of several polynomial fittings. However, it 
is likely that the reason for the equal scaling exponents of Southeast and contiguous USA is the diversity of the 
climate regions of the USA. The precipitation anomalies show still better monotonic increase with the size of the 
measured area. The average scaling exponents of the precipitation anomalies are for Greenville (α = 0.52), South 
Carolina (α = 0.55), Southeast (α = 0.57), USA (α = 0.60) and Northern hemisphere land area (α = 0.67). It is evident 
that the temperature and precipitation of Greenville, and perhaps precipitation of South Carolina, have no 
correlation. Note also that the error bars of Greenville are very wide. Southeast and contiguous USA are slightly 
persistent in precipitation and temperature. Note that Southeast and USA have scaling exponents of temperature 
and precipitation very near each other, i.e. precipitation exponent is higher than exponent of temperature for DFA2, 
about equal for DFA3, but vice versa for DFA4, and DFA5. This situation is still clearer for the whole North America, 
with precipitation being more persistent than temperature, as shown in the continental scaling of Figure 5. 
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Figure 7. Blue stars (black circles) show the temperature (precipitation) anomaly scaling exponents of DFAn analyzes with 
a) n=2, b) 3, c) 4 and d) 5 for the US climate regions. The red lines show the 95% confidence limits calculated from 
formula. The lower panel of the figures show scaling exponents of the five realizations of randomly shuffled 
data for precipitation anomaly (triangles) of five regions, and temperature anomaly (squares) of four regions.
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In order to test if similar increase in persistence occurs in the southern hemisphere we have calculated scaling 
exponents for eastern Australia regions. The local site is Mildura, where measurement for temperature and 
precipitation measurement are available at least from 1910. Figure 9 shows the scaling exponents of temperature 
(blue stars) and precipitation (black circles) anomalies for Mildura, New South West (NSW), Eastern Australia (EA), 

Figure 8. Scaling exponents for Greenville (Gr), South Carolina (SC), Southeast (SE), USA and Northern hemisphere land 
area (NH) of DFAn analyzes with n = 2,3,4 and 5 for temperature anomalies (blue stars) and precipitation 
anomalies (black circles).

Figure 9. Scaling exponents for Mildura, New South Wales (NSW), Eastern Australia (EA), Australia and Southern 
hemisphere land area (NH) of DFAn analyzes with n=2,3,4 and 5 for temperature anomalies (blue stars) and 
precipitation anomalies (black circles).



the whole Australia and Southern hemisphere land area (SH). Because Mildura is located near the border of NSW 
and Victoria, we also show scaling exponent of Victoria (temperature as a cross and precipitation as a square). It 
seems that scaling exponent increases (on the average) as a function of area, except between the Eastern Australia 
(Queensland, NSW and Victoria) and the whole Australia. This is probably due to the heterogeneity of the Australian 
climate regions with deserts covering largest part of the country. The dominant climate type by land area is Arid B 
(77.8%), followed by temperate C (13.9%) and tropical A (8.3%) [Peel, Finlayson, and McMahon, 2013], (see also 
Figure 6). The average scaling exponents for temperature anomalies are: Mildura, 0.65, NSW, 0.70, Eastern Australia, 
0.73, Australia, 0.73, Southern hemisphere, 0.76. The corresponding values for precipitation anomalies are Mildura, 
0.61; NSW, 0.65; EA, 0.66; Australia, 0.64; SH, 0.67. Note that both temperature and precipitation anomaly scaling 
exponents for Victoria are at the same level as the scaling exponent of precipitation for NSW. This is interesting, 
because both states have similar mixture of climate types. Victoria is located, however, south, i.e. poleward from 
NSW, and has thus lower scaling exponent for temperature than NSW. We tested this hypothesis by analyzing the 
latitudes S35-S30 (latitudes of NSW), and latitudes S40-S35 (latitudes of Victoria) for the whole Australia and it 
showed scaling exponents about 0.71 and 0.67, respectively (not shown here). The exponents are slightly higher 
than those for NSW and Victoria alone, because the area is wider, i.e. constitute longitudes E115-E155. Note that 
NSW and Victoria have quite similar scaling exponent for precipitation, showing that precipitation is less dependent 
on the latitude. Mildura itself is located at dry semi-arid climate region (see Figure 6, where we show approximate 
locations of the analyzed local sites and Table 2). We, however, see that there is a weak persistence in precipitations 
and weak to moderate persistence in temperatures for different areas of Australia. 

 
Table 2. Main Köppen-Geiger climate types and their sub-types [after Chen and Chen, 2013]. 

 
 
From the third continent, Europe, we use three examples, Oxford in United Kingdom, Prague in Czech Republic, 

and Sodankylä in Finland. European countries are small (in area) compared to USA and Australia, and usually belong 
to only one climate sub-type. United Kingdom belongs to mild temperate oceanic climate type similar to NSW in 
Australia, and is near that of southeastern USA (see map in Figure 6). Czech belongs to humid continental area, 
with snow in winter, very similar to northeastern USA. Finland represents here the only (mainly) subarctic region, 
and Sodankylä is a small place in Lapland above northern polar circle. 

The DFA3 and DFA4 scaling exponents of the temperature and precipitation anomalies are shown in Figure 10 
for UK Oxford (UK), Prague (Czech) and Sodankylä (Finland), from top to bottom, respectively. 

We see a monotonic rise in the exponents of the temperature anomalies as a function of the area size, except that 
Czech has slightly smaller exponent than Prague. There exists a slight persistence in temperature for these places 
(countries). Precipitation anomalies behave differently such that the whole country has smaller scaling exponent 
than local region, except for Czech. It is, however, clear that the scaling exponents of the precipitation are near 0.5 
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Major group Sub-types

A: Tropical Tropical rain forest: Af
Tropical monsoon: Am

Tropical wet and dry savanna: Aw
B: Dry Desert (Arid): BWh, BWk

Steppe (Semi-arid):Bsh, Bsk
C: Mild temperate Mediterranean: Csa, Csb, Csc

Humid subtropical: Cfa, Cfb
Oceanic: Cfb, Cfc, Cwb, Cwc

D: Continental (Snow) Humid: Dfa, Dwa, Dfb, Dwb, Dsa, Dsb
Subarctic: Dfc, Dwc, Dfd, Dwd, Dsc, Dsd

E: Polar Tundra: ET
Ice cap: EF
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in all cases including that of the whole Europe. We may deduce that the long-term precipitation in unpredictable, 
except, of course in the case of seasonal variations. 

6. Anomalies of the latitude zones 
 
For the zonal scaling analysis, we use monthly averaged data for 1900-2017 [Willmott and Matsuura, 2018]. 

Table 3 lists the number of stations used in 2010 in temperature and precipitation measurements. The number of 
stations has varied from about 1500 (in 1900) to over 18000 (2010) for temperature and up to 40000 (in 1970) for 
precipitation, and vast majority of them are continental northern hemisphere stations.  

The station temperatures were spatially interpolated to a 0.5-degree-by-0.5-degree latitude/longitude grid on 
land area, which consists of 85794 points, 49606 in NH and 36188 in SH (K. Matsuura, private communication). Note 
that, although equatorial zones had smaller amount of stations, there were lot of oceanic stations. It is clear, that 
because of the much larger heat capacity of water compared to air, the oceans smooth the temperature variation, 
and consequently cause long-range correlation in the temperatures.  

Figure 11 shows the scaling exponents of temperature and precipitation for the seven latitude zones of the 
northern and southern hemispheres (the zone S90-S64 is omitted due to only few measurements, especially in the 
first half of 20th century). The most striking feature is the high scaling exponent on both sides of the equator, i.e., 
0.95 and 1.02 on the average for temperature anomaly and 0.77 and 0.72 for precipitation anomaly of latitudes 

Figure 10. Scaling exponents for Oxford, United Kingdom (uppermost panels), Prague, Czech (middle panels) and 
Sodankylä, Finland (lowest panels) with Europe and Northern hemisphere land area (NH) of DFAn analyzes 
with n = 3 and 4 for temperature anomalies (blue stars) and precipitation anomalies (black circles).



(EQ)-N24 and S24-EQ, respectively. The high values are due to equatorial climate with lot of humid rainforest areas 
in both sides of the zero latitude [Kottek, 2006]. Note, that they have also the widest 95 % confidence limits, at least 
for temperature. The scaling exponents of other zones are 0.67 and 0.61 (N64-N90), 0.70 and 0.59 (N44-N64), 0.68 
and 0.55 (N24-N44), 0.71 and 0.62 (S44-S24) and 0.68 and 0.56 (S64-S44) on the average for temperature and 
precipitation anomalies, respectively. The reason for even higher scaling exponent around the equator, compared 
to scaling exponent of Africa, is that relatively many measurements are from stations surrounded by ocean. The 
scaling exponents of temperature anomalies decrease when going poleward from equatorial region for both northern 
and southern hemisphere. 

Note that the behavior of the scaling exponents as a function of latitude is opposite to the results by Varotsos, 
Efstathiou, and Cracknell [2013], who used only 131 data points of yearly averages in their study of temperature 
anomalies. On the other hand, our temperature results are in line with the scaling of temperature anomalies by 
Blesić, Zanchettin, and Rubino [2019]. Király and Jánosi [2005] obtained similar results for station wide temperature 
measurements of Australia. The scaling exponent of the precipitation also decreases when moving southward in the 
southern hemisphere. On the contrary, the scaling exponent of the precipitation anomalies behaves differently in 
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Table 3. The amount of stations (2010) used in the temperature and precipitation zonal analyses [Willmott and Matsuura, 
2018].

Latitude Temperature stations Precipitation stations

N64-N90 600 558

N44-N64 6320 6711

N24-N44 8846 13025

EQ-N24 1073 990

S24-EQ 613 911

S44-S24 822 3692

S64-S44 42 34

Figure 11. Scaling exponents for the zonal DFAn analyzes of temperature and precipitation with n = 2, 3, 4 and 5.
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the northern hemisphere such that it is in minimum at the zone N24-N44 and increases then towards northern 
pole, although the increase is small. However, while the precipitation is random in the zone N24-N44, there is a slight 
persistence in the zones N44-N64 and N64-N90. 

As the result especially for precipitation in the northern hemisphere seems so interesting we studied separately 
scaling exponent longitudinally at the sites of continents, i.e. longitudes 60E-160E (Asia and Australia), longitudes 
15W-45E (Europe and Africa), and longitudes 165W-60W (North America) and longitudes 90W-30W (South America). 
Figure 12 depicts the results of these analyses. It seems that the randomness of the zone N24-N44 is due to the scaling 
exponent of precipitation mainly in Asia. These latitudes include very different types of climate from mountains to 
rainforest and deserts in Asia, i.e., the area is very heterogeneous. The largest part of this area undergoes summer 
monsoon, which is, of course, predictable, but this periodical phenomenon has been removed from the analyzed data. 

Figure 12. Scaling exponents for the zonal DFA3 analyzes a of temperature and precipitation a) for longitudes 60 to 150 
b) for longitudes -15 to 45 and c) for longitudes -165 to -60 for northern hemisphere and -90 to -30 for southern 
hemisphere. (Note that panel b does not have zone S64-S44).



Another zone, which is longitudinally varying is N44-N64. Its precipitation scaling exponent is at lowest, i.e. fully 
random (0.5), in North America. These latitudes in North America include mainly Canada and northern part of USA. 
They belong to continental snowy humid climate region with partly warm, partly cool summer. This seems to be 
combination, which leads to very random precipitation. In the temperature anomalies, the most striking detail is 
that only for longitudes 15W-45E the scaling exponents neatly decrease from equatorial regions poleward. 

Figure 13 shows that if the ocean surface temperatures are included together with the land surface temperatures 
in the hemispheric and global temperature data the persistence increases considerably. The land temperatures in 
the Figure 13 are from NOAA (2020) database for 1910-2019 (green squares), and Willmott and Matsuura V 5.01 
database for 1910-2017 (blue stars) and Land-Ocean temperatures from Gistemp Land-Ocean Temperature Index 
(LOTI) for 1910-2019 (magenta triangles) [Lenssen et al., 2019]. The scaling exponents for LOTI data are 0.88, 0.97 
and 1.0 for northern hemisphere, southern hemisphere and globally, respectively. The corresponding land surface 
temperature values are 0.74 (WM) and 0.73 (NOAA), 0.88 (WM) and 0.90 (NOAA), and 0.76 (WM) and 0.79 (NOAA) 
for NH, SH and globally, respectively. 

7. Conclusions 
 
We have studied the long-term correlation of temperature and precipitation of the continents using detrended 

fluctuation analysis (DFA). We showed that the persistence (correlation) in temperature of Africa is by far higher 
than other continents. The scaling exponent for Africa temperature anomaly is 0.86. The other southern hemisphere 
continents, South America (scaling exponent, α = 0.77) and Oceania (0.72) have also higher temperature scaling 
exponents than the northern hemisphere continents: Asia (0.69), Europe (0.70) and North America (0.64). We can 
say that Africa is strongly persistent, South America and Oceania moderately persistent and the NH continents 
considerably persistent in temperature. On the other hand, North America (0.68) and Oceania (0.67) have slightly 
higher scaling exponents of the precipitation anomalies than the other four continents: Africa (0.60), Asia (0.60), 
Europe (0.55) and South America (0.62). We, furthermore, have shown that the persistence is due to the long-term 
correlation in the data and is not an intrinsic property of the estimator itself. We note that Europe is hardly persistent 
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Figure 13. Scaling exponents of three different datasets, Land-Ocean Temperature Index for 1910-2019 (LOTI), NOAA 
land surface temperature anomalies for 1910-2017 (NOAA), and Willmott-Matsuura temperature anomalies 
of land stations (WM).
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in precipitation, Africa and Asia slightly persistent and North America and Oceania considerably persistent in 
precipitation. Note that, although the zone N44-N64 of North America is random in precipitation, North America 
as a whole includes also southern part of USA and Middle American countries and thus is considerably persistent 
in precipitation. 

We showed that the scaling exponent α of the temperature anomaly increases when going from local to wider 
area averages. For example, the scaling exponent successively rises for Greenville, South Carolina, Southeast, USA, 
North America and Northern hemisphere land area anomalies. This phenomenon may be somewhat due to 
measurement noise being smoothed when extending the measured area. We, however, also suppose that local 
sudden changes are reduced when widening the area of investigation thus leading to more persistent overall 
behavior of the climate. This is not always so straightforward, especially for precipitation, if the climate of the larger 
region is heterogeneous and consists of different climate types. 

We also studied the temperature and precipitation anomalies of the climate regions of the United Sates. We find 
an interesting difference in the behavior in temperatures for Ohio Valley, South and Southeast, i.e., the oceanic 
subtropical region, from other regional areas of the USA. The temperature scaling exponents of these regions are 
smaller than the scaling exponents for other US climate regions, showing that the temperatures of the three regions 
are less persistent compared to other regions. On the other hand, the persistence of the precipitation of these 
regions is slightly higher than the other regions. 

The scaling exponents of the temperature anomalies decrease from equatorial zones poleward in both 
hemispheres. The exponents of the latitudinal zones are between 0.67-0.71 for S64-S44, S44-S24, N24-N44, N44-
N64 and N64-N90, but the two equatorial zones S24-EQ and EQ-N24 have scaling exponents 1.02 and 0.95, 
respectively. These high values are due to the equatorial tropical climate type all over the world at these latitudes. 
The scaling exponents of precipitation anomaly are between 0.72 and 0.77 for S24-EQ and EQ-N24, respectively, but 
for other zones between 0.55 and 0.62. The smallest value 0.55 belongs to zone N24-N44. The diversity of the climate 
types in Asia leads to non-persistence in precipitation on the Asian part of the zone N24-N44. In addition, the value 
0.56 for zone S64-S44 is due to the different climate types in South America in that zone. It seems that the persistence 
of the precipitation is more dependent on the corresponding climate type than the persistence of temperature. 

We are using linear piecewise log-log fitting, which seems to work well in climate analysis. It should, however, 
be noted that recently, especially in biophysical applications, new methods have been developed to prevent biasing 
of measurement noises in evaluating anomalous diffusion exponents in subdiffusive (α <0.5), diffusive (α ≈0.5) 
and superdiffusive (α >0.5) processes. These studies consider trajectories of microscopic particles in living organs 
and other complex systems, and are somewhat different field of research than the present study [Jeon, Barkai, and 
Metzler, 2013; Kepten et al., 2015; Lanoiselée at al., 2018; Briane, Kervrann and Vimond, 2018; Bo et al., 2019; Weron 
et al., 2019; Janczura et al., 2020]. 
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