APPENDIX A TO

ON THE PERFORMANCE OF EQUIANGULAR MASCON SOLUTION IN GRACE-LIKE MISSIONS

Abbas Abedini ${ }^{1}$, Wolfgang Keller ${ }^{2}$, Ali Reza Amiri-Simkooei*, ${ }^{*}$
${ }^{1}$ Department of Geomatics Engineering, Faculty of Civil Engineering and Transportation, University of Isfahan, 81746-73441 Isfahan, Iran, e-mail: abbasabedini@eng.ui.ac.ir
${ }^{2}$ Institute of Geodesy, Universitat Stuttgart, Geschwister-Scholl-Str. 24D, D-70174 Stuttgart, Germany, e-mail: wolfgang.keller@gis.uni-stuttgart.de

The model of observation equations is of the form

$$
\begin{equation*}
y=A x+e, \mathrm{D}(y)=Q_{y} \tag{A.1}
\end{equation*}
$$

Where y is a vector of m observations, A is the $m \times n$ design matrix, x is a vector of n unknowns. The $m \times m$ covariance matrix Q_{y} is written as
$Q_{y}=Q_{0}+\sum_{k=1}^{p} \sigma_{k} Q_{k}$
where Q_{0} and $Q_{k}, k=1, \ldots, p$ are some $m \times m$ known cofactor matrices. The unknown variance components $\sigma_{k}, k=1, \ldots, p$ can be estimated as $\hat{\sigma}_{0}=N_{s}^{-1} \ell_{s}$, where the entries of the vector N_{s} and the vector ℓ_{s} are [Teunissen and Amiri-Simkooei, 2008]
$N_{s}^{(i, j)}=\frac{1}{2} \operatorname{tr}\left(Q_{i} Q_{y}^{-1} P_{A}^{\perp} Q_{j} Q_{y}^{-1} P_{A}^{\perp}\right)$
and

$$
\begin{equation*}
\ell_{s}^{(i)}=\frac{1}{2} \hat{e}^{T} Q_{y}^{-1} Q_{i} Q_{y}^{-1} \hat{e}-\frac{1}{2} \operatorname{tr}\left(Q_{0} Q_{y}^{-1} P_{A}^{\perp} Q_{i} Q_{y}^{-1} P_{A}^{\perp}\right) \tag{A.4}
\end{equation*}
$$

where $P_{A}^{\perp}=I-A N_{\alpha}^{-1} A^{T} Q_{y}^{-1}$ is an orthogonal projector. The structure introduced in Eq. (16) is of the form

$$
Q_{y}=\left[\begin{array}{cc}
0 & 0 \tag{A.5}\\
0 & C_{2}
\end{array}\right]+\sigma_{0}^{2}\left[\begin{array}{ll}
Q & 0 \\
0 & 0
\end{array}\right]
$$

where $C_{2}=s^{2} C$ is inverted to $C_{2}^{-1}=s^{-2} C^{-1}=\alpha P$. For this application, Q_{0} is the known term and there is only one unknown variance component, $\sigma_{1}=\sigma_{0}^{2}$ as we have $p=1$. We therefore have
$A \equiv\left[\begin{array}{l}A \\ I\end{array}\right], y \equiv\left[\begin{array}{l}y \\ y_{0}\end{array}\right], Q_{0}=\left[\begin{array}{cc}0 & 0 \\ 0 & C_{2}\end{array}\right], Q_{1}=\left[\begin{array}{cc}Q & 0 \\ 0 & 0\end{array}\right]$
The covariance matrix Q_{y} is inverted to
$Q_{y}^{-1}=\left[\begin{array}{cc}\sigma_{0}^{-2} Q^{-1} & 0 \\ 0 & C_{2}^{-1}\end{array}\right]=\left[\begin{array}{cc}W & 0 \\ 0 & C_{2}^{-1}\end{array}\right]$
The projector P_{A}^{\perp} can be further developed as
$P_{A}^{\perp}=\left[\begin{array}{cc}I_{m} & 0 \\ 0 & I_{n}\end{array}\right]-\left[\begin{array}{c}A \\ I\end{array}\right] N_{\alpha}^{-1}\left[A^{T} I\right]\left[\begin{array}{cc}W & 0 \\ 0 & C_{2}^{-1}\end{array}\right]$
or
$P_{A}^{\perp}=\left[\begin{array}{cc}I_{m} & 0 \\ 0 & I_{n}\end{array}\right]-\left[\begin{array}{l}A \\ I\end{array}\right]\left[\begin{array}{ll}N_{\alpha}^{-1} A^{T} W & N_{\alpha}^{-1} C_{2}^{-1}\end{array}\right]$
and finally
$P_{A}^{\perp}=\left[\begin{array}{ll}P_{11} & P_{12} \\ P_{21} & P_{22}\end{array}\right]$
where
$P_{11}=I_{m}-A N_{\alpha}^{-1} A^{T} W$
$P_{12}=-A N_{\alpha}^{-1} C_{2}^{-1}$
$P_{21}=-N_{\alpha}^{-1} A^{T} W$
$P_{22}=I_{n}-N_{\alpha}^{-1} C_{2}^{-1}$
Further, the $Q_{1} Q_{y}^{-1}$ simplifies as
$Q_{1} Q_{y}^{-1}=\left[\begin{array}{ll}Q & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}W & 0 \\ 0 & C_{2}^{-1}\end{array}\right]=\left[\begin{array}{cc}\sigma_{0}^{-2} I_{m} & 0 \\ 0 & 0\end{array}\right]$
and
$Q_{1} Q_{y}^{-1} P_{A}^{\perp}=\left[\begin{array}{cc}\sigma_{0}^{-2} P_{11} & \sigma_{0}^{-2} P_{12} \\ 0 & 0\end{array}\right]$
This gives
$Q_{1} Q_{y}^{-1} P_{A}^{\perp} Q_{1} Q_{y}^{-1} P_{A}^{\perp}=\left[\begin{array}{cc}\sigma_{0}^{-4} P_{11} P_{11} & \sigma_{0}^{-4} P_{11} P_{12} \\ 0 & 0\end{array}\right]$
and
$Q_{0} Q_{y}^{-1} P_{A}^{\perp} Q_{1} Q_{y}^{-1} P_{A}^{\perp}=\left[\begin{array}{cc}0 & 0 \\ \sigma_{0}^{-4} P_{21} P_{11} & \sigma_{0}^{-4} P_{21} P_{12}\end{array}\right]$
The 1×1 normal matrix N_{s} simplifies to
$N_{s}^{(1,1)}=n_{11}=\frac{1}{2 \sigma_{0}^{4}} \operatorname{tr}\left(P_{11} P_{11}\right)$
or, finally
$N_{s}^{(1,1)}=n_{11}=\frac{1}{2 \sigma_{0}^{4}}\left(m-2 \operatorname{tr}\left(N_{\alpha}^{-1} N\right)+\operatorname{tr}\left(N_{\alpha}^{-1} N N_{\alpha}^{-1} N\right)\right)$
The first terms of ℓ_{s} in Eq. (A.4) can be worked out as
$\frac{1}{2} \hat{e}^{T} Q_{y}^{-1} Q_{1} Q_{y}^{-1} \hat{e}=\frac{1}{2}\left[\hat{e}^{T} \hat{e}_{0}^{T}\right]\left[\begin{array}{cc}W & 0 \\ 0 & C_{2}^{-1}\end{array}\right]\left[\begin{array}{cc}\sigma_{0}^{-2} I_{m} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{c}\hat{e} \\ \hat{e}_{0}\end{array}\right]$
or
$\frac{1}{2} \hat{e}^{T} Q_{y}^{-1} Q_{1} Q_{y}^{-1} \hat{e}=\frac{1}{2}\left[\hat{e}^{T} \hat{e}_{0}^{T}\right]\left[\begin{array}{cc}\sigma_{0}^{-2} W & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{c}\hat{e} \\ \hat{e}_{0}\end{array}\right]$
which gives
$\frac{1}{2} \hat{e}^{T} Q_{y}^{-1} Q_{1} Q_{y}^{-1} \hat{e}=\frac{1}{2 \sigma_{0}^{2}} \hat{e}^{T} W \hat{e}$
The second term of ℓ_{s} is
$\frac{1}{2} \operatorname{tr}\left(Q_{0} Q_{y}^{-1} P_{A}^{\perp} Q_{1} Q_{y}^{-1} P_{A}^{\perp}\right)=\frac{1}{2 \sigma_{0}^{2}} \operatorname{tr}\left(P_{21} P_{12}\right)$
or
$\frac{1}{2} \operatorname{tr}\left(Q_{0} Q_{y}^{-1} P_{A}^{\perp} Q_{1} Q_{y}^{-1} P_{A}^{\perp}\right)=\frac{1}{2 \sigma_{0}^{2}} \operatorname{tr}\left(N_{\alpha}^{-1} N N_{\alpha}^{-1} C_{2}^{-1}\right)$
which gives the ℓ_{s} as
$\ell_{s}=\frac{1}{2 \sigma_{0}^{4}} \hat{e}^{T} W \hat{e}-\frac{1}{2 \sigma_{0}^{2}} \operatorname{tr}\left(N_{\alpha}^{-1} N N_{\alpha}^{-1} C_{2}^{-1}\right)$
$\ell_{s}=\ell_{1}=\frac{\hat{e}^{T} Q^{-1} \hat{e}}{2 \sigma_{0}^{4}}-\frac{\operatorname{tr}\left(N_{\alpha}^{-1} N N_{\alpha}^{-1}(\alpha P)\right)}{2 \sigma_{0}^{2}}$
This completes the proof.
The variance component can be estimated as $\hat{\sigma}_{0}^{2}=N_{s}^{-1} \ell_{s}$. The equation $N_{s} \hat{\sigma}_{0}^{2}=\ell_{s}$, with terms from Eqs. (A.20) and (A.27) and leaving out the term $2 \sigma^{2}$ from the denominators of both sides, gives: $m-2 \operatorname{tr}\left(N_{\alpha}^{-1} N\right)+\operatorname{tr}\left(N_{\alpha}^{-1} N N_{\alpha}^{-1} N\right)=\left(\hat{e}^{T} Q^{-1} \hat{e}\right) / \sigma^{2}-\operatorname{tr}\left(N_{\alpha}^{-1} N N_{\alpha}^{-1}(\alpha P)\right)$. This equation can further simplify to
$m-2 \operatorname{tr}\left(N_{\alpha}^{-1} N\right)+\operatorname{tr}(N_{\alpha}^{-1} N N_{\alpha}^{-1}(\overbrace{N+\alpha P}^{N_{\alpha}}))=\frac{\hat{e}^{T} Q^{-1} \hat{e}}{\sigma_{0}^{2}}$
or finally, the least squares estimate of the variance component σ_{0}^{2} is
$\hat{\sigma}_{0}^{2}=\frac{\hat{e}^{T} Q^{-1} \hat{e}}{m-\operatorname{tr}\left(N_{\alpha}^{-1} N\right)}$

