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The model of observation equations is of the form

y=Ax+e, D(y) =Q, (A.1)

Where y is a vector of m observations, A4 is the m X n design matrix, x is a vector of n unknowns.
The m X m covariance matrix @Q,, is written as

Qy = Qo + X1 0% Qk (A.2)

where Q, and Q, k = 1, ..., p are some m X m known cofactor matrices. The unknown variance
components gy, k = 1,...,p can be estimated as 6, = N; 1£,, where the entries of the vector N

and the vector ¥ are [Teunissen and Amiri-Simkooei, 2008]

NP = ~tr(QuQ5PHQ; Q51 P) (A3)
and
¢ =267051Q,05 e — 5 tr(Qo05* P05 PA) (A4)
where Py = I — AN;'ATQ; " is an orthogonal projector. The structure introduced in Eq. (16) is
of the form
Qy=[8 C(,)Z]+ag 2 (A.5)

where C, = s2C is inverted to C;* = s72C~1 = aP. For this application, Q, is the known term

and there is only one unknown variance component, g; = o as we have p = 1. We therefore have
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The covariance matrix Q,, is inverted to
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The projector P4 can be further developed as
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Further, the Q;Q;* simplifies as
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This gives
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The 1 X 1 normal matrix Ng simplifies to

1,1 1
Ns( ) = Ny = Etr(PnPn)

or, finally
1

NI =n, =1 (m— 2tr( N'N) + tr( N;ANN;IN))
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The first terms of £ in Eq. (A.4) can be worked out as
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which gives
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The second term of £, is
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or
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which gives the £ as
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This completes the proof.

The variance component can be estimated as 6§ = Ng 1£,. The equation N6 = £, with terms
from Egs. (A.20) and (A.27) and leaving out the term 20 from the denominators of both sides,
gives:m — 2tr(NgIN) + tr(NgINNZIN) = (éTQ7té)/o? — tr(Nz NN (aP)). This equation

can further simplify to

Ng
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m — 2tr(Ng'N) + tr(Ng NNz (N + aP)) = =5~ (A.28)
0
or finally, the least squares estimate of the variance component 6§ is
AT A—1 4
67 = —2 (A.29)
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