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Abstract

Today a CO2 storage/sequestration is an important option for a significant enhancing of CO2 
sinks, to reduce the net carbon emissions into our planet atmosphere. Such storage/sequestration 
is a complex process, dealing with many facets of decision about the site selection, taking into 
consideration the local geological, geothermal, hydrodynamic and hydrocarbon potentials. In such 
multifaceted context, a thermo-poro-elastic nonlinear analytic model of fluid pressure P in deep 
rocks, can play an important role. To analyse these dynamics we here focus on the role of the matrix 
convection, on thermal dynamics and fluid/rock “frictions”. In addition we here show that pressure 
dynamics, induced by an eventual external time or areal forcing can allow simple analytical 
determinations of pressure transients in these deep porous media. Such processes indeed can 
have practical impacts on the CO2 evolution for storage in deep rocks and thus influence the final 
site choice for a deep CO2 injection. In synthesis, this model provides simple characterizations of 
thermo-poro-elastic transients for CO2 storage.

Keywords: Injections of CO2 and their pressure dynamics; Nonlinear thermo-poro-elastic pressure 
transients in fluid saturated porous media; Application to CO2 storage and sequestration

1. The problem

Among the major challenges in mitigating climate change effects is the reduction of the CO2 percentage in the 
atmosphere, which would lead to a stabilization of the today planet CO2 concentration hopefully to be less than 
≈ 550 ppm i.e., twice the pre-industrial level. In more detail, the geological storage and/or sequestration of CO2 
is a particularly important option for significant reductions of the carbon emissions into the planet atmosphere. 
Carbon dioxide sequestration in geological media can indeed be analyzed by many different approaches, as the 
analysis of geological stratigraphic and structural trapping in old oil and gas reservoirs, in solubility trapping res-
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ervoirs of oil, in formation water, in adsorption trapping in un-economic beds and mainly in cavern trapping, in 
salt structures or by mineral immobilization [Gunter et al., 1998].

In addition, these rocks must have the porosity and permeability necessary for a CO2, to prevent or at least to 
delay any CO2 return to the atmosphere for geologically significant times [Hasanvand et al., 2013; Cheng, 2013]. 
Crystalline and metamorphic rocks as granite or clay therefore are not suitable for a CO2 storage or sequestration, 
due to their fractured nature and their low permeability and porosity.

We here discuss general solutions of a 1-D analytic nonlinear model of pressure P and temperature T in fluid 
saturated porous rocks, following a remark by Rice and Cleary [1976] that the local energy must have both kinetic 
and thermal components. In short, we here consider the dynamics of an analytic nonlinear P model that are dealing 
with nonlinear convection, fluid-rock frictions and thermal effects.

We moreover briefly discuss the effects due to the evolution of heat exchanges with the neighboring rocks, or 
eventual local parameter variations. On the other hand, we here give no particular attention to such CO2 seen in 
form of gas, or as a compressible fluid nor in our model equations is considered the CO2 compressibility. Indeed, 
the factor of compressibility Z of CO2 in the temperature range 20°C-100°C and pressure range 1-13 MPa is al-
ways less than 1 (0.13 < Z < 0.97). This implies that CO2 is more compressible than an ideal gas and, therefore, 
incompressibility is not expected for CO2 injection in wells and successive diffusion in rocks of carbon dioxide at 
the above defined P and T conditions. Obviously, this conclusion holds if no exchanges between CO2 and rocks or 
brine occur at depth.

2. Early analyses

The CO2 dynamics in fluid-saturated porous rocks has been already analyzed by computational mathematics 
[Elenius and Johannsen, 2012], simulations of density driven convection [Cheng, 2013, Cheng and Zang, 2010], 
wave analyses of two phases flows [Lambert et al., 2019] among others. We also note that in modeling CO2 storage, 
complex numerical computations are often used [Celia et al., 2015, Andersen and Nielsen, 2018, among others].

 We thus focus on a nonlinear 1-D analytic model, considering nonlinear fluid-rock frictions and thermal convo-
lution, which could be of interest focusing on the deep pressure dynamics in fluid saturated porous rocks. Indeed, 
following a remark by Rice and Cleary [1976] we discuss the solutions of a 1-D analytic nonlinear model of pressure 
P and temperature T in fluid saturated porous rocks.

 In more detail we consider the dynamics of 1-D transients of P from a fluid saturated homogeneous “source” 
rock, with initial pressure P0 + PI as Salusti et al. [2019], and an asymptotic porous medium with a pressure P0 and 
describe their effects on such CO2 injections. In early studies [McTigue, 1986; Bonafede, 1991; Merlani et al., 2001, 
2015; Caserta et al., 2017; Garra et al., 2015] and coworkers examined 1-D models of such transients. In particular, 
a 1-D choice can be valid for a radial transient or from cylindrical perforated segment of a borehole thus forming a 
segment source, or also for a two half-horizon schematization.

About these problems, Mc Tigue [1986] discussed a P-T interaction (Appendix A) as

	
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝐵𝐵

𝜕𝜕!𝑃𝑃
𝜕𝜕𝑥𝑥! + 𝐶𝐶

𝜕𝜕!𝑇𝑇
𝜕𝜕𝑥𝑥! + 𝐴𝐴	

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 	

	 	

� (1)

where A, B, C are functions of geological properties and their physical dimensions in Mc Tigue [1986] and in SI are:

 𝐴𝐴 =
2𝐺𝐺𝐺𝐺𝑏𝑏∗!(1 + 𝜈𝜈∗)31 + 𝜈𝜈#*4

93𝜈𝜈#* − 𝜈𝜈∗4
3𝛼𝛼% − 𝛼𝛼&4 ≈ 10'	

	 	

, 𝐵𝐵 =
2𝑘𝑘𝑘𝑘
𝜇𝜇 =

𝑏𝑏∗!(1 − 𝜈𝜈∗)(1 + 𝜈𝜈∗)!

9(1 − 𝜈𝜈#∗)(𝜈𝜈#∗ − 𝜈𝜈∗)> ≈ 0,1,	

	 	

, 𝐶𝐶 =
4𝐺𝐺𝐺𝐺𝑏𝑏∗(1 + 𝜈𝜈∗)𝛼𝛼%

9(1 − 𝜈𝜈#∗)
≈ 10'	

	 	and where 𝑢𝑢 = −
𝑘𝑘
𝜇𝜇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕	

	 	

 is the Darcy velocity, the porosity is 𝜑, the medium permeability is k, 𝜇 is the fluid viscosity 

parameter, G is the shear modulus, the drained Poisson ratio is 𝜈*, the untrained Poisson ratio is 𝜈𝑢*, 𝛼𝑚(𝛼𝑓) is the 
volumetric thermal expansion coefficient for the solid (fluid) and b* is the Skempton parameter.

about:blank
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3. The energy conservation equation

Following the above remark [Rice and Cleary 1976], for small velocities one can focus on the classical equation 
of thermal energy conservation [Bonafede, 1991]

	
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝐸𝐸

𝜕𝜕!𝑇𝑇
𝜕𝜕𝑥𝑥! + 𝑋𝑋

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑌𝑌( D

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕E

!

	

	 	

� (2)

where in SI the diffusion coefficient is 𝐸𝐸 =
𝐾𝐾)

𝜙𝜙𝜌𝜌$𝑐𝑐$ + (1 − 𝜑𝜑)𝜌𝜌%𝑐𝑐%
≈ 10*+	

	 	

, the convection coefficient is  

𝑋𝑋 =
𝑘𝑘𝜌𝜌$𝑐𝑐$

𝜇𝜇K𝜑𝜑	𝜌𝜌$𝑐𝑐$	 +	(1 − 	𝜑𝜑)	𝜌𝜌%𝑐𝑐%L
≈ 10*-!, and the fluid-rock friction coefficient is 

𝑌𝑌′ =
𝑘𝑘

𝜇𝜇	K𝜌𝜌$𝑐𝑐$ 	+	(1 − 	𝜑𝜑)𝜌𝜌%𝑐𝑐%L
≈ 10*-.	

	 	

. Here KT is the thermal conductivity, 𝜌𝑚 is the rock density, c𝑓 and c𝑚 are 

the fluid and rock heat capacities, discussed in our final Table 1. We stress that are these geologic properties that 
play the dynamical roles. In addition, we note how in equation (2) is considered the nonlinear convection with 
coefficient X, and fluid-rock “friction” with a novel coefficient Y ′ discussed in the Appendix B.

Parameter Abyssal  
Red Clay

Berea
sandstone

Ruhr 
sandstone

Weber 
sandstone

Westerly 
granite

B 2∙10–8 0.5 0.0004 0.002 10–4

E 2∙10–7 3∙10–6 10–6 2∙10–6 2∙10–6

C 8∙10–7 6∙105 104 3∙103 103

A 2∙102 2∙106 106 7∙106 6∙105

X 4∙1015 5∙1011 7∙1015 1014 4∙1020

Table 1. �Material properties of some of the considered rocks in SI. The fluid saturated Abyssal Red Clay data have been 
estimated in McTigue [1986], the Berea sandstone and Rhur sandstone are from Bonafede [1991]. The values 
of the other rocks are from fracturing experiments [Salusti et al. 2019]. Considering however the difficulty of 
estimating these rock properties in situ, we give only the orders of magnitude of the above quantities where the 
field uncertainties can be rather large.

4. The properties of the model solutions

About the solutions of the equations (1) and (2), [Merlani et al., 2011] and dr. Decio Levi (personal communica-
tion, 2018) suggest a simple ansatz, that the solutions of T and P are proportional to x2/t in equations (1) and (2), 
a property to be checked in the following. From this ansatz and equation (1), one obtains a strict relation between 
P, T and the parameter A as

	 𝑃𝑃(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴	𝑇𝑇(𝑥𝑥, 𝑡𝑡) + 𝑓𝑓(𝑡𝑡)	

	 	

.� (3)
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where 𝑓(𝑡) is discussed in the following. This implies that also a thermal transient strictly corresponds to a pres-
sure transient. In addition, from the equations (1)‑(3) we obtain a classical nonlinear Burgers equation for t > 𝜀, as

	
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝐸𝐸

𝜕𝜕!𝑃𝑃
𝜕𝜕𝑥𝑥! + (𝑌𝑌𝑌𝑌 + 𝑋𝑋) C

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕D

!

= 𝐸𝐸
𝜕𝜕!𝑃𝑃
𝜕𝜕𝑥𝑥! + 𝛬𝛬 C

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕D

!

	

	 	

,� (4)

where a short time delay 𝜀 can be due to chemical effects, or to a flux of thin sands a kind of filter cake [Civan, 1998]. 
Moreover, this 𝜀 avoids mathematical pathologies in short-time phenomena. Equation (4) is a model of P transient 
dynamics at a distance x from the CO2 injection well. We remark how 𝛬 = Y A + X, related to the fluid-rock non-
linear convection and to the “frictions” among rocks deformations or fracturing, is the basic parameter for such 
flow evolutions. In more detail, for a small Y this 𝛬 is small and positive, while for a large Y it can be negative, as 
discussed in the Appendix C.

It is of interest that Whitham [1974] analyzes the equation (4) and defines a number

	 𝑅𝑅 =
(𝑌𝑌𝑌𝑌 + 𝑋𝑋)𝑃𝑃

𝐸𝐸 =
𝛬𝛬𝛬𝛬
𝐸𝐸 	

	 	

� (5)

i.e., the ratio of nonlinear terms over the diffusive terms. This R characterizes a linear pressure diffusion for 
R < 8-10, while for R > 8-10 the solution is a sharp and quick impulse (Figure 1). In addition, a scale analysis in the 
Appendix D shows that the effects of the diffusion in equation (5) are small about 1/100 times than these of the 
nonlinear terms.

Figure 1. Sketch for the solutions of the Burgers equation for various values of R.
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5. Solutions of the model

The solution of P transients from the “source” rock injection, with the above initial pressure P = P0 + PI, and P0 
for a large 𝑥 as in Salusti et al. [2019], for t > 𝜀 and a positive 𝛬 are

	 𝑃𝑃(𝑥𝑥, 𝑡𝑡) = 𝑃𝑃/ + 𝑃𝑃0	

	 	

	 0 < 𝑥𝑥; 	𝑡𝑡 < 0	

	 		 𝑃𝑃(𝑥𝑥, 𝑡𝑡) ≈ 𝑃𝑃/ + 𝑃𝑃0 −
𝑥𝑥!

4𝛬𝛬𝛬𝛬	

	 	

	 0 < 𝑥𝑥; 	𝑡𝑡 > 0	

	 	

� (6)

	 𝑃𝑃(𝑥𝑥, 𝑡𝑡) ≈ 𝑃𝑃/	

	 	

	 for large 𝑥 and 𝑡

For a positive 𝛬, these solutions are smaller for increasing distance x from the injection well (Figure 1), in 
agreement with general observations and also among some Zhaoxu et al. [2019] data. For a negative Y we also have 
similar relations, sketched in the two panels of Figure 2. A comparison of data and model is very complex, due to 
the many data now measured but one can compare the model result and some of the Zhaoxu et al. [2019] data.

Figure 2. Intuitive sketch of the solutions for increasing times, for positive and negative parameters X + A Y, respectively. 

6. Practical applications of the novel model solution

The equations (4) and (6) also have simple applications to particularly interesting cases:

a)	 the solutions of (6) correspond to the above ansatz since the solutions are mere functions of 𝑥2/t with a relative 
uncertainties about 10–2, as discussed in Appendix D;

b)	 the equation (3) allows to compute T from the pressures P, then from pressure data one can consider thermal data;
c)	 in this complex situation about depths, places and properties of different rocks, if the CO2 were rather slowly 

injected with a temperature different from that of the aquifer, a resulting novel forcing N(t) can also give time 
dependent front expansion [Andersen and Nielsen, 2018];

d)	 an eventual novel front, and the corresponding P, imply other interesting solutions of equation (6). Indeed, if 
the rock pressure receives a novel forcing N(t), function of the time only, the resulting pressure evolution can 
be described by a simple

	
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = (𝑌𝑌𝑌𝑌 + 𝑋𝑋) C

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕D

!

+ 𝑁𝑁(𝑡𝑡)	

	 	

,� (7)

namely a forced Burgers equation, with simple solutions (Appendix D);
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e)	 all of this suggests to consider that a density difference between the injected CO2 and the brine may lead to a 
buoyant segregation then making reasonable an assumption of vertical equilibrium [Celia et al., 2015] eventu-
ally seen as the discussed case of another external forcing;

f)	 In general, if the natural pressure has a further space-dependent forcing 𝑆(𝑥), the resulting novel evolution 
equation for as well E = 0 will be

	
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = (𝑌𝑌𝑌𝑌 + 𝑋𝑋)C

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕D

!

+ 𝑆𝑆(𝑥𝑥)	

	 	

,� (9)

discussed in the Appendix D;
g)	 Karsten Pruess et al. [2011] moreover discuss how from a geologic storage reservoir some fluids can migrate 

towards the land surface passing through lost faults, or fractures and abandoned wells. These fluids then could 
reach sub-critical conditions at depths shallower than 500-750 m. At this level, and at shallower depths, a 
subcritical CO2 can form a two-phase mixtures of liquid and gaseous CO2, with significant latent heat effects 
during boiling and condensation. And thus, we can eventually generalize the above discussed evolutions. In 
such complex situations one has also to consider the geological media characterizations. The sedimentary ba-
sins, where CO2 storage most often occurs while the sandstone is the dominant rock, generally do not have 
natural fractures allowing perturbations of the general pressure. In contrast, about the crystalline rocks where 
a volcanic or seismic activity can have occurred, these rocks can have natural fractures, eventually causing re-
markable pressure perturbations. Then also from such phenomena one can have critical dynamical effects on 
the actual CO2 injections;

h)	 In turn the mere CO2 injection can be also seen as an external, strongly localized forcing characterized as a very 
strict exponential

	
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = (𝑌𝑌𝑌𝑌 + 𝑋𝑋)C

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕D

!

+ 𝑎𝑎𝑒𝑒*[%(3*3!)]	

	 	

,� (10)

for suitable 𝑎, 𝑥0, 𝑚, again discussed in Appendix D. Thus, we stress that in this way one could enlarge the model 
applications to other natural rock characteristics, or also in further x-dependent phenomena.

7. Applications to some rock examples

We now apply these model results, to check nonlinear effects of CO2 transients in sandstones, the typical rocks 
of the sedimentary basins, often used for CO2 storage and sequestration. In addition, although clay and crystalline 
rocks are not suitable for a CO2 storage/sequestration, for a comparison we sketch the above applications also for 
these rocks. We thus very quickly describe such rock properties, while due to measurement difficulties we focus 
only on the order of magnitude of these thermo-poro-elastic parameters.

Berea Sandstone. This rock of fine-grained sandstone consists of quartz (70%), polycrystalline quartzose rock 
fragments (25%), and feldspar (5%). Its A is about 2⋅106 and X ≈ 5⋅1011 in SI.

Weber Sandstone. This sandstone is originated from fluvial deposits, derived from an ancestral Uplift. Its 
sarkosic lithofacies act as permeability barriers being either cross-laminated or massively bedded. Their A ≈ 7⋅106 
and X ≈ 1014 in SI.

Ruhr Sandstone. This rock is similar to other basins in Europe and North America. These sedimentary rock 
sequences were deposited during early tropical, humid climate coastal plains in an equatorial region. Its A ≈ 106 
and X ≈ 7⋅1015 in SI.

Charcoal Granite. This rock in St. Cloud, Minnesota has a massive, dark brown to dark colors. It is among the 
most ancient known rocks… as the protruding parts of a paleo-structure. Thus, their A ≈ 6⋅105 and X ≈ 4⋅1020 are 
particularly larger than those of the above rocks.

Abyssal Red Clay. These deposits, allogenic in origin, are mostly due to rather ancient Asian aeolian dust. 
These particular red clays are about the 90%, then are Mn, Co, Ni and Cu of autogenic origin [Glasby, 2010]. Its 
A ≈ 2⋅102 and X ≈ 4⋅1015 in SI, are rather similar to these of sandstones.
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Here, we strongly emphasize the need for further field measurements of the thermo-poro-elastic properties in 
such deep rocks, in order to obtain more data sets also for applications of eventual novel models, for discussing 
future models.

8. Discussions and conclusions

Although today many approaches are used to model CO2 storage, often also including complex numerical com-
putations, we discuss here a simple nonlinear analytical model, a generalization of Garra et al [2015]. This model 
describes a theoretical approach to many hydrologic processes, showing how the deep fluid pressure solutions of 
such model finally are functions of

	 𝑃𝑃(𝑥𝑥, 𝑡𝑡) ≈ 𝑃𝑃/ + 𝑃𝑃- −
𝑥𝑥!

4𝛬𝛬𝛬𝛬	

	 	

� (11)

for suitable parameters 𝛬, P0, P1. Thus, our equation (11) describes the dynamics of processes dealing with different 
rock temperatures, pressure evolutions and their dynamic consequences. In addition, this allows one to compare 
critically the results of eventual numerical computations about storage/sequestration of CO2 sites, that we now can 
address also with the results of this nonlinear analytic model.

It is also important that we show how eventual external temporal forcing 𝑆(𝑡), or space forcing 𝑄(𝑥), can per-
turb these dynamics. Indeed, we here show that for such 𝑆(𝑡) or 𝑄(𝑥) one can again have simple model solutions.

In addition, all of this can also be relevant to other practical applications such as for elevate or low temperature 
liquid storages, or also disposal of dangerous waste in porous media [Mc Tigue, 1986]. Thus, the broad implication 
of such novel analytic model is that it provides simple, general assessments for dynamics of thermo-poro-elastic 
transients, also for other applications dealing with the geological reservoir and for the realistic site selections for 
these or similar problems.

Appendices

Appendix A.  Other similar models in the literature

The equation (1) is not the only equation of this type discussed in the literature. [Bonafede and Mazzanti, 1997] 
indeed assume C = 0 in equation (1) and Shapiro and Dinske [2009], and coworkers, analyze an interesting similar 
nonlinear model as

	 C
𝜕𝜕
𝜕𝜕𝜕𝜕 −

𝜕𝜕
𝜕𝜕𝜕𝜕𝐻𝐻(𝑃𝑃)

𝜕𝜕
𝜕𝜕𝜕𝜕D𝑃𝑃 = 0	

	 	

� (11)

Appendix B.  Effects of nonlinear terms

We remark that the equation (2) is the classical equation of energy-heat conservation, with the nonlinear fluid 

“convection” 𝑢𝑢	
𝜕𝜕
𝜕𝜕𝜕𝜕 	𝑇𝑇	

	 	

 and the “work rate” −
𝑘𝑘
𝜇𝜇 C

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑃𝑃D

!

	

	 	

in SI, here considered for rather mild dynamics. For larger 

effects, as rock deformations or fractures [Phillips et al., 2013; Detournay and Garagash, 2003] one can consider a 

different approach 𝑌𝑌 C
𝜕𝜕
𝜕𝜕𝜕𝜕 	𝑃𝑃D

!

	 with an unknown Y. In more detail, the work made by the fluid pressure increases the 

rock temperature, and for moderate perturbations one indeed has a positive Y ′ ≈ k/𝜇 ≈  10–12 in SI [Bonafede et al., 
1991]. On the other hand, rock deformations or fractures, caused by relevant perturbations, can extract from the 
rock some heath Φ and then one can have an energy loss for a rather large Φ as

	 𝑋𝑋′
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑃𝑃

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑇𝑇 − 𝛷𝛷 = 𝑌𝑌′ C

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑃𝑃D

!

− 𝛷𝛷 = 𝑌𝑌 C
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑃𝑃D

!

	

	 	

� (12)
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assuming that such energy loss is somehow related to the fluid energy [Phillips et al., 2013; Detournay and Gara-
gash, 2003]. Thus, a realistic determination of A, C, B, E, Y, Φ is not a simple challenge, and these equations must 
be considered critically.

Appendix C.  Approximate scale analysis

As a rather rough estimate in SI, we assume for sandstones PI ≈ 107, TI ≈ 102, A ≈ 106, B ≈ 0.1, C ≈ 104, E ≈ 10–6 
and X = 1013 for sandstones but X ≈ 1020 for granites (Table 1). From eq. (6), assuming a space scale 𝜆 and a time 
scale 𝜏, for sandstones we have

	
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ≈

10.

𝜏𝜏 ,					𝐴𝐴
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ≈

107

𝜏𝜏 ,					𝐵𝐵
𝜕𝜕!𝑃𝑃
𝜕𝜕𝑧𝑧! ≈

10+

𝜆𝜆! ,					𝐶𝐶
𝜕𝜕!𝑇𝑇
𝜕𝜕𝑧𝑧! ≈

10+

𝜆𝜆!
� (13)

and thus 𝐸𝐸
𝜕𝜕!𝑇𝑇
𝜕𝜕𝑧𝑧! ≈

10*'

𝜆𝜆! 	

	 	

 over 𝑋𝑋
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ≈

108

𝜆𝜆! 	

	 	

 is a very small quantity. All of this confirms that the diffusive terms 

have smaller effects than the nonlinear terms characterized by B and C.

Appendix D.  Solutions of the model equation, forced by time or space external forcing

Considering in general a forcing 𝑁(𝑡) in the Burgers equation such that

	
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = C

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕D

!

+ 𝑁𝑁(𝑡𝑡)	

	 	

,� (14)

the classical solution of the Burgers equation for 𝑁𝑁(𝑡𝑡) = 0	

	 	

 is 𝑃𝑃 = 𝑃𝑃/ −
𝑥𝑥!

𝑡𝑡 	

	 	

 while for a realistic the solution is 

	

𝑃𝑃 = 𝑃𝑃/ −
𝑥𝑥!

𝑡𝑡 + ^𝑁𝑁(𝑡𝑡)𝑑𝑑𝑑𝑑	. Considering also the scale analysis in Appendix C we here do not consider other diffusive 

time terms, since most probably other forcing solutions have been already studied. Indeed, the Burgers equation 
has been deeply examined by mathematicians and similar discussions holds also for another 𝑀(𝑥) case.
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