## APPENDIX TO

## 3-D DATA-SPACE JOINT INVERSION OF GRAVITY AND MAGNETIC DATA USING A CORRELATION-ANALYSIS CONSTRAINT

Sheng Liu ${ }^{1,2,3}$, Shuanggen Jin ${ }^{3,4,5}$, Songbai Xuan ${ }^{3}$, Xiang Liu ${ }^{1}$<br>${ }^{1}$ Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China<br>${ }^{2}$ University of Chinese Academy of Sciences, Beijing 100049, China<br>${ }^{3}$ Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China<br>${ }^{4}$ School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China<br>${ }^{5}$ Zhuhai Fundan Innovation Institute, Creative Valley, Hengqin New District, Zhuhai 518057, China

## APPENDIX A

## Algorithm 1 <br> Joint inversion based on the GN method of gravity and magnetic data

## a) Initialization:

Prepare gravity and magnetic data $\boldsymbol{d}_{1}$ and $\boldsymbol{d}_{2}$, reference density model $\boldsymbol{m}_{1}^{\text {ref }}$, reference magnetization model $\boldsymbol{m}_{2}^{\text {ref }}$, the range of density values $\left(\mathrm{m}_{1}^{-}, \mathrm{m}_{1}^{+}\right)$and the range of magnetization values $\left(\mathrm{m}_{2}^{-}, \mathrm{m}_{2}^{+}\right)$. Set the weighting parameters $\mu_{1}$ and $\mu_{2}$ of the correlation-analysis constraints. Calculate the initial regularization parameters $\lambda_{1}^{0}$ and $\lambda_{2}^{0}$ according to the L-curve method, and adopt $\lambda_{1}^{0}$ and $\lambda_{2}^{0}$ to perform separate inversions for gravity and magnetic data. The recovered density model and the recovered magnetization model obtained by the separate inversions are used as the initial density model $\boldsymbol{m}_{1}^{0}$ and initial magnetization model $\boldsymbol{m}_{2}^{0}$ for the joint inversion. Let $\mathrm{k}=0$. Set the maximum number of iterations $\mathrm{k}_{\max }$ and the iteration threshold $\sigma$.

## b) Joint inversion iteration:

While $\left(k<\mathrm{k}_{\max }\right)$ and $\left[\left(\phi_{\mathrm{d}}^{1} \geq \sigma\right)\right.$ or $\left.\left(\phi_{\mathrm{d}}^{2} \geq \sigma\right)\right]$
$\mathrm{k}=\mathrm{k}+1$;
Compute $\boldsymbol{H}_{1, \mathrm{k}}, \boldsymbol{H}_{2, \mathrm{k}}$ according to equation (7) and compute $\boldsymbol{g}_{1}^{\mathrm{k}}, \boldsymbol{g}_{2}^{\mathrm{k}}$ according to equation (9);

Use CG method to calculate $\Delta \boldsymbol{m}_{1}$ and then update $\boldsymbol{m}_{1}^{\mathrm{k}}=\boldsymbol{m}_{1}^{\mathrm{k}-1}+\Delta \boldsymbol{m}_{1}$.

Use CG method to calculate $\Delta \boldsymbol{m}_{2}$ and then update $\boldsymbol{m}_{2}^{\mathrm{k}}=\boldsymbol{m}_{2}^{\mathrm{k}-1}+\Delta \boldsymbol{m}_{2}$.

Impose constraint on physical property model to force $\mathrm{m}_{1}^{-} \leq \boldsymbol{m}_{1}^{\mathrm{k}} \leq \mathrm{m}_{1}^{+}$and $\mathrm{m}_{2}^{-} \leq \boldsymbol{m}_{2}^{\mathrm{k}} \leq \mathrm{m}_{2}^{+}$.

Compute $\phi_{\mathrm{d}}^{1}=\left\|\boldsymbol{d}_{1}-\boldsymbol{G}_{1} \boldsymbol{m}_{1}\right\|_{2}^{2}$ and $\phi_{\mathrm{d}}^{2}=\left\|\boldsymbol{d}_{2}-\boldsymbol{G}_{2} \boldsymbol{m}_{2}\right\|_{2}^{2}$.
End While

## APPENDIX B

## Algorithm 2 <br> The MS-ICG Joint inversion of gravity and magnetic data

## a) Initialization :

Prepare gravity and magnetic data $\boldsymbol{d}_{1}$ and $\boldsymbol{d}_{2}$, reference density model $\boldsymbol{m}_{1}^{\text {ref }}$, reference magnetization model $\boldsymbol{m}_{2}^{\text {ref }}$, the range of density values $\left(\mathrm{m}_{1}^{-}, \mathrm{m}_{1}^{+}\right)$and the range of magnetization values $\left(\mathrm{m}_{2}^{-}, \mathrm{m}_{2}^{+}\right)$. Set the weighting parameters $\mu_{1}$ and $\mu_{2}$ for the correlation-analysis constraints, the initial regularization parameters $\lambda_{1}^{0}$ and $\lambda_{2}^{0}$, and the initial density model $\boldsymbol{m}_{1}^{0}$ and the initial magnetization model $\boldsymbol{m}_{2}^{0}$. Let $\mathrm{k}=0, \mathrm{i}=0$ and calculate $\boldsymbol{w}_{1,0}, \quad \boldsymbol{w}_{2,0}$. Set the maximum number of iterations of the outer loop $\mathrm{k}_{\text {max }}$, the maximum number of iterations for the inner loop $\mathrm{i}_{\text {max }}$, the threshold of the outer loop $\sigma$, the threshold of the inner loop eps and the value of $q$.

## b) Joint inversion iteration:

While $\left(k<k_{\max }\right)$ and $\left[\left(\phi_{d}^{1} \geq \sigma\right)\right.$ or $\left.\left(\phi_{d}^{2} \geq \sigma\right)\right]$ (The outer loop)
$\mathrm{k}=\mathrm{k}+1$.

1) Iteration of gravity data.

Update $\lambda_{1}^{\mathrm{k}}=\lambda_{1}^{\mathrm{k}-1} \mathrm{q}$ and $\boldsymbol{w}_{1, \mathrm{k}}$.

Calculate $\quad \boldsymbol{H}_{1, \mathrm{k}}$ according to equation (7) and $\boldsymbol{g}_{1}^{\mathrm{k}}$ according to equation (9).
Let $\quad \boldsymbol{x}_{1}^{0}=0$ and $\quad \boldsymbol{r}_{1,0}=\boldsymbol{d}_{1,0}=\boldsymbol{g}_{1}^{\mathrm{k}}$.
Calculate $\quad \boldsymbol{t}_{1}^{0}=\left(\boldsymbol{d}_{1,0}^{\mathrm{T}} \boldsymbol{r}_{1,0}\right) /\left(\boldsymbol{d}_{1,0}^{\mathrm{T}} \boldsymbol{H}_{1, \mathrm{k}} \boldsymbol{d}_{1,0}\right)$. Let $\mathrm{i}=0 ;$
While $\mathrm{i} \leq \mathrm{i}_{\text {max }}$ and $\operatorname{sqrt}\left(\boldsymbol{r}_{1, i}^{\mathrm{T}} \boldsymbol{r}_{1, \mathrm{i}}\right) \geq \mathrm{eps}$ ( The inner loop)
$\mathrm{i}=\mathrm{i}+1$.
Update $\boldsymbol{x}_{1}^{\mathrm{i}}=\boldsymbol{x}_{1}^{\mathrm{i}-1}+\boldsymbol{t}_{1}^{\mathrm{i}-1} \boldsymbol{d}_{1}^{\mathrm{i}-1}$.

Calculate $\boldsymbol{d}_{1}^{\mathrm{i}}=\boldsymbol{r}_{1, \mathrm{i}}+\beta_{1}^{\mathrm{i}} \boldsymbol{d}_{1}^{\mathrm{i}-1}$ and $\beta_{1}^{\mathrm{i}}=\boldsymbol{r}_{1, \mathrm{i}}^{\mathrm{T}} \boldsymbol{r}_{1, \mathrm{i}} / \boldsymbol{r}_{1, \mathrm{i}-1}^{\mathrm{T}} \boldsymbol{r}_{1, \mathrm{i}-1}$.
Calculate $\boldsymbol{t}_{1}^{\mathrm{i}}=\left(\boldsymbol{d}_{1, i}^{\mathrm{T}} \boldsymbol{r}_{1, \mathrm{i}}\right) /\left(\boldsymbol{d}_{\mathrm{l}, \mathrm{i}}^{\mathrm{T}} \boldsymbol{H}_{\mathrm{l}, \mathrm{k}} \boldsymbol{d}_{\mathrm{l}, \mathrm{i}}\right)$.
End While
Update $\boldsymbol{m}_{1}^{\mathrm{k}}=\boldsymbol{m}_{1}^{\mathrm{k}-1}+\boldsymbol{x}_{1}^{\mathrm{i}}$.

Impose constraint on density model to force $\mathrm{m}_{1}^{-} \leq \boldsymbol{m}_{1}^{\mathrm{k}} \leq \mathrm{m}_{1}^{+}$.

## 2) Iteration for magnetic data.

Update $\lambda_{2}^{\mathrm{k}}=\lambda_{2}^{\mathrm{k}-1} \mathrm{q}$ and $\boldsymbol{w}_{2, \mathrm{k}}$.

Calculate $\boldsymbol{H}_{2, \mathrm{k}}$ and $\boldsymbol{g}_{2}^{\mathrm{k}}$.

Let $\quad \boldsymbol{x}_{2}^{0}=0$ and $\boldsymbol{r}_{2,0}=\boldsymbol{d}_{2,0}=\boldsymbol{g}_{2}^{\mathrm{k}}$.
Calculate $\boldsymbol{t}_{2}^{0}=\left(\boldsymbol{d}_{2,0}^{\mathrm{T}} \boldsymbol{r}_{2,0}\right) /\left(\boldsymbol{d}_{2,0}^{\mathrm{T}} \boldsymbol{H}_{2, \mathrm{k}} \boldsymbol{d}_{2,0}\right)$. Let $\mathrm{i}=0 ;$

While $\mathrm{i} \leq \mathrm{i}_{\text {max }}$ and $\operatorname{sqrt}\left(\boldsymbol{r}_{2, i}^{\mathrm{T}} \boldsymbol{r}_{2, \mathrm{i}}\right) \geq \operatorname{eps}$ (The inner loop)
$\mathrm{i}=\mathrm{i}+1$.
update parameter $\quad \boldsymbol{x}_{2}^{\mathrm{i}}=\boldsymbol{x}_{2}^{\mathrm{i}-1}+\boldsymbol{t}_{2}^{\mathrm{i}-1} \boldsymbol{d}_{2}^{\mathrm{i}-1}$.

Calculate $\boldsymbol{d}_{2}^{\mathrm{i}}=\boldsymbol{r}_{2, \mathrm{i}}+\beta_{2}^{\mathrm{i}} \boldsymbol{d}_{2}^{\mathrm{i}-1}, \quad \beta_{2}^{\mathrm{i}}=\boldsymbol{r}_{2, \mathrm{i}}^{\mathrm{T}} \boldsymbol{r}_{2, \mathrm{i}} / \boldsymbol{r}_{2, \mathrm{i}-1}^{\mathrm{T}} \boldsymbol{r}_{2, \mathrm{i}-1}$.
Calculate $\boldsymbol{t}_{2}^{\mathrm{i}}=\left(\boldsymbol{d}_{2, i}^{\mathrm{T}} \boldsymbol{r}_{2, \mathrm{i}}\right) /\left(\boldsymbol{d}_{2, \mathrm{i}}^{\mathrm{T}} \boldsymbol{H}_{2, \mathrm{k}} \boldsymbol{d}_{2, \mathrm{i}}\right)$.
End While
Update $\boldsymbol{m}_{2}^{\mathrm{k}}=\boldsymbol{m}_{2}^{\mathrm{k}-1}+\boldsymbol{x}_{2}^{\mathrm{i}}$.

Impose constraint on magnetization model to force $\mathrm{m}_{2}^{-} \leq \boldsymbol{m}_{2}^{\mathrm{k}} \leq \mathrm{m}_{2}^{+}$.
Compute $\phi_{\mathrm{d}}^{1}=\left\|\boldsymbol{d}_{1}-\boldsymbol{G}_{1} \boldsymbol{m}_{1}\right\|_{2}^{2}$ and $\phi_{\mathrm{d}}^{2}=\left\|\boldsymbol{d}_{2}-\boldsymbol{G}_{2} \boldsymbol{m}_{2}\right\|_{2}^{2}$.
End While

