APPENDIX TO

3-D DATA-SPACE JOINT INVERSION OF GRAVITY AND MAGNETIC DATA USING A CORRELATION-ANALYSIS CONSTRAINT

Sheng Liu^{1,2,3}, Shuanggen Jin^{3,4,5}, Songbai Xuan³, Xiang Liu¹

¹ Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China
² University of Chinese Academy of Sciences, Beijing 100049, China

- ⁷ Oliversity of Chillese Academy of Sciences, Deijing 100049, Chilla
- ³ Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
- ⁴ School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

⁵ Zhuhai Fundan Innovation Institute, Creative Valley, Hengqin New District, Zhuhai 518057, China

APPENDIX A

Algorithm 1 Joint inversion based on the GN method of gravity and magnetic data

a) Initialization:

Prepare gravity and magnetic data d_1 and d_2 , reference density model $\mathbf{m}_1^{\text{ref}}$, reference magnetization model $\mathbf{m}_2^{\text{ref}}$, the range of density values $(\mathbf{m}_1^-, \mathbf{m}_1^+)$ and the range of magnetization values $(\mathbf{m}_2^-, \mathbf{m}_2^+)$. Set the weighting parameters μ_1 and μ_2 of the correlation-analysis constraints. Calculate the initial regularization parameters λ_1^0 and λ_2^0 according to the L-curve method, and adopt λ_1^0 and λ_2^0 to perform separate inversions for gravity and magnetic data. The recovered density model and the recovered magnetization model obtained by the separate inversions are used as the initial density model \mathbf{m}_1^0 and initial magnetization model \mathbf{m}_2^0 for the joint inversion. Let k=0. Set the maximum number of iterations \mathbf{k}_{max} and the iteration threshold σ .

b) Joint inversion iteration:

While $(k < k_{max})$ and $[(\phi_d^1 \ge \sigma) \text{ or } (\phi_d^2 \ge \sigma)]$ k = k+1;

Compute $\boldsymbol{H}_{1,k}$, $\boldsymbol{H}_{2,k}$ according to equation (7) and compute \boldsymbol{g}_1^k , \boldsymbol{g}_2^k according to equation (9); Use CG method to calculate $\Delta \boldsymbol{m}_1$ and then update $\boldsymbol{m}_1^k = \boldsymbol{m}_1^{k-1} + \Delta \boldsymbol{m}_1$.

Use CG method to calculate Δm_2 and then update $m_2^k = m_2^{k-1} + \Delta m_2$.

Impose constraint on physical property model to force $m_1^- \le \boldsymbol{m}_1^k \le m_1^+$ and $m_2^- \le \boldsymbol{m}_2^k \le m_2^+$.

Compute $\phi_{d}^{1} = \|\boldsymbol{d}_{1} - \boldsymbol{G}_{1}\boldsymbol{m}_{1}\|_{2}^{2}$ and $\phi_{d}^{2} = \|\boldsymbol{d}_{2} - \boldsymbol{G}_{2}\boldsymbol{m}_{2}\|_{2}^{2}$.

End While

APPENDIX B

Algorithm 2 The MS-ICG Joint inversion of gravity and magnetic data

a) Initialization:

Prepare gravity and magnetic data d_1 and d_2 , reference density model $\mathbf{m}_1^{\text{ref}}$, reference magnetization model $\mathbf{m}_2^{\text{ref}}$, the range of density values $(\mathbf{m}_1^-, \mathbf{m}_1^+)$ and the range of magnetization values $(\mathbf{m}_2^-, \mathbf{m}_2^+)$. Set the weighting parameters μ_1 and μ_2 for the correlation-analysis constraints, the initial regularization parameters λ_1^0 and λ_2^0 , and the initial density model \mathbf{m}_1^0 and the initial magnetization model \mathbf{m}_2^0 . Let k=0, i=0 and calculate $\mathbf{w}_{1,0}$, $\mathbf{w}_{2,0}$. Set the maximum number of iterations of the outer loop \mathbf{k}_{max} , the maximum number of iterations for the inner loop \mathbf{i}_{max} , the threshold of the outer loop σ , the threshold of the inner loop eps and the value of \mathbf{q} .

b) Joint inversion iteration:

While $(k < k_{max})$ and $[(\phi_d^1 \ge \sigma) \text{ or } (\phi_d^2 \ge \sigma)]$ (The outer loop) k=k+1. 1) Iteration of gravity data.

Update $\lambda_1^k = \lambda_1^{k-1} q$ and $\boldsymbol{w}_{1,k}$.

Calculate $\boldsymbol{H}_{1,k}$ according to equation (7) and \boldsymbol{g}_1^k according to equation (9).

Let
$$\mathbf{x}_{1}^{0} = 0$$
 and $\mathbf{r}_{1,0} = \mathbf{d}_{1,0} = \mathbf{g}_{1}^{k}$.

Calculate $t_1^0 = (d_{1,0}^T r_{1,0}) / (d_{1,0}^T H_{1,k} d_{1,0})$. Let i=0;

While $i \le i_{max}$ and $sqrt(\mathbf{r}_{l,i}^{T}\mathbf{r}_{l,i}) \ge eps($ The inner loop)

Update $x_1^i = x_1^{i-1} + t_1^{i-1} d_1^{i-1}$.

Calculate $d_1^{i} = r_{1,i} + \beta_1^{i} d_1^{i-1}$ and $\beta_1^{i} = r_{1,i}^{T} r_{1,i} / r_{1,i-1}^{T} r_{1,i-1}$.

Calculate $\boldsymbol{t}_{1}^{i} = (\boldsymbol{d}_{1,i}^{T}\boldsymbol{r}_{1,i}) / (\boldsymbol{d}_{1,i}^{T}\boldsymbol{H}_{1,k}\boldsymbol{d}_{1,i}).$

End While

Update
$$m_1^k = m_1^{k-1} + x_1^i$$
.

 $\label{eq:model} \text{Impose constraint on density model to force} \quad m_1^- \leq \textit{\textbf{m}}_1^k \leq m_1^+.$

2) Iteration for magnetic data.

Update $\lambda_2^k = \lambda_2^{k-1} q$ and $\boldsymbol{w}_{2,k}$.

Calculate $\boldsymbol{H}_{2,k}$ and \boldsymbol{g}_{2}^{k} .

Let
$$\mathbf{x}_{2}^{0} = 0$$
 and $\mathbf{r}_{2,0} = \mathbf{d}_{2,0} = \mathbf{g}_{2}^{k}$

Calculate $t_2^0 = (d_{2,0}^T r_{2,0}) / (d_{2,0}^T H_{2,k} d_{2,0})$. Let i=0;

While $i \le i_{max}$ and $sqrt(\mathbf{r}_{2,i}^{T}\mathbf{r}_{2,i}) \ge eps($ The inner loop)

i=i+1.

update parameter $x_{2}^{i} = x_{2}^{i-1} + t_{2}^{i-1} d_{2}^{i-1}$.

Calculate $d_2^i = r_{2,i} + \beta_2^i d_2^{i-1}, \quad \beta_2^i = r_{2,i}^T r_{2,i} / r_{2,i-1}^T r_{2,i-1}.$

Calculate $\boldsymbol{t}_{2}^{i} = (\boldsymbol{d}_{2,i}^{T}\boldsymbol{r}_{2,i}) / (\boldsymbol{d}_{2,i}^{T}\boldsymbol{H}_{2,k}\boldsymbol{d}_{2,i}).$

End While

Update $\boldsymbol{m}_2^k = \boldsymbol{m}_2^{k-1} + \boldsymbol{x}_2^i$.

 $\label{eq:magnetization} \text{Impose constraint on magnetization model to force} \quad m_2^- \leq \textit{\textbf{m}}_2^k \leq m_2^+.$

Compute $\phi_{d}^{1} = \|\boldsymbol{d}_{1} - \boldsymbol{G}_{1}\boldsymbol{m}_{1}\|_{2}^{2}$ and $\phi_{d}^{2} = \|\boldsymbol{d}_{2} - \boldsymbol{G}_{2}\boldsymbol{m}_{2}\|_{2}^{2}$.

End While