
1

ANNALS OF GEOPHYSICS, 65, 4, RS424, 2022; doi:1044.01/ag-8766 
OPEN ACCESS

Assessment of noise in InSAR timeseries using 
least squares variance component estimation
Sasan Babaee1, Masoud Mashhadi Hossainali*,1, Sami Samie Esfahany2

(1) Department of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran
(2) School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Iran

Article history: received November 25, 2021; accepted March 24, 2022

Abstract

In recent decades, Interferometric Synthetic Aperture Radar (InSAR) has progressed as an effec‑
tive and reliable tool for monitoring the surface deformations of the earth. Despite the potential 
of this method for deformation monitoring, the quality description of InSAR timeseries in terms 
of precision and noise structure and, consequently, the precision of the InSAR‑derived parameters 
(e.g., displacement and its velocity) are still somewhat ambiguous. In this paper, we propose to es‑
timate the precision and noise structure of the final InSAR products in a well‑established method‑
ology called multivariate Least Squares Variance Component Estimation (LS‑VCE). The advantage 
of this methodology is its capability to simultaneously account for both spatial and temporal noise 
structures in spatiotemporally correlated data such as InSAR timeseries. Although this methodolo‑
gy has been already used extensively for GNSS data, its application on InSAR data has been limited 
to very simplified scenarios. Also, due to the large data volume and the ambiguities in the InSAR 
noise structure estimation, the application of LS‑VCE requires some algorithm modification/ad‑
aptation. Here, to demonstrate the applicability of the proposed framework, we applied it on the 
deformation timeseries derived from the Sentine‑l data over the city of Tehran, Iran. The results 
show that applying the multivariate LS‑VCE method in our case study improves the velocity-rate 
precision by about 50% compared with the case where the noise parameters are not considered. In 
addition, the results confirm the fact that InSAR timeseries are highly correlated in time and space. 
It should be noted that the observed spatial correlation should be differentiated from the well-
known spatial correlation imposed by atmospheric components. In fact, due to the atmosphere 
filtering step, the noise structure of the final results would be different from the statistical charac‑
teristics of a raw atmospheric signal. The proposed methodology is not case study dependent and 
can be used as an appropriate approach to provide the precision (as a quality descriptor) of the 
timeseries InSAR products.

Keywords: Radar Interferometry; InSAR; Least Squares Variance Component Estimation (LS‑VCE); 
Spatio-Temporal Correlation; Covariance Matrix
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1. Introduction

Monitoring and analysis of gradual surface displacements are key factors in recognition of the behaviour of the 
earth’s deformation. Multi-temporal SAR interferometric timeseries methods use a multitude of satellite radar 
images to estimate the spatio-temporal evolution of surface deformation [Hanssen 2001; Berardino et al. 2002; 
Lanari et al. 2004]. An important issue regarding the InSAR‑derived displacement timeseries is their noise struc‑
ture [Hanssen, 2001; González and Fernandez, 2011]. The noise in SAR timeseries should be analysed to obtain 
an accurate assessment of the model parameters, describing the earth displacement, e.g.,  the site velocity. The 
importance of this issue is also revealed when one encounters the estimation of the precision of the InSAR‑derived 
geo‑model parameters, e.g., earthquake and volcano source parameters.

A challenging aspect of quality description of final InSAR timeseries is that the initial noise structure of data 
are affected and modified by various spatial or temporal filtering steps applied in timeseries InSAR algorithms. 
In other words, the spatio-temporal filtering steps, which effectively mitigate the decorrelation and atmospheric 
noise, alters the initial spatio-temporal characteristics of these noise components. Therefore the common and 
well-studied stochastic models of initial noise components (e.g., pure atmospheric signal or decorrelation noise) 
cannot accurately describe the precision of final/processed InSAR timeseries. Also, it should be noted that, as the 
filtering step and its setting vary from case to case, it is challenging to derive a generic analytical formulation for 
the precision and quality description of InSAR deformation timeseries.

To provide the noise structure of InSAR timeseries (either before or after filtering steps), many efforts have 
been made for modelling the noise components and their statistical properties [Davenport and Root, 1958; Luci‑
do et al., 2009; Dainty, 2013; Samiei Esfahany, 2017]. For example, one of the first studies conducted by Hanssen 
[2001] introduced a mathematical framework to evaluate the fundamental source of errors in each interferogram 
based on the coherence factor and the spatial analysis of atmospheric variability. Later, Guarnieri and Tebaldini 
[2007] proposed a hybrid Cramer‑Rao bound for the InSAR‑based deformation estimates based on a coherence 
matrix and a simple atmospheric disturbance model. González and Fernandez [2011] presented a method based on 
spatio-temporal correlation in interferograms accompanied by the Monte Carlo manner for calculating interfero‑
grams covariance matrices and propagate them to unknown displacement parameters. Agram and Simons [2015] 
have developed a simple multi-interferograms error propagation to estimate a full spatio-temporal noise covari‑
ance matrix using a network of interferograms. Samiei‑Esfahany and Hanssen [2017] presented a general closed-
form equation for the interferometric phase covariance based on the nonlinear error propagation of SAR statistics 
and only for decorrelation effects. We can also refer to Cao et al. [2018], that proposed a methodology to construct 
the covariance matrix of atmospheric signal in InSAR timeseries.

Despite the previous studies to evaluate and assess the noise variability and its structure in raw InSAR timeseries 
(i.e., before spatio-temporal filtering) [Hanssen, 2001; Guarnieri and Tebaldini, 2007; González and Fernandez, 
2011; Mehrabi et al., 2019], the noise assessment of final InSAR timeseries has been remarkably overlooked so 
far. Most of the works mentioned above provide an estimate of the interferogram noise model and investigate its 
impact on the formation of the timeseries. However, the issue of error propagation (from the raw timeseries to 
the final filtered timeseries) has received less attention due to the complexity of the processing steps, incomplete 
information on the initial noise structures, and a non‑comparative strategy of filtering among different software 
tools and algorithms. So, it is desirable to have a generic quality description approach that is independent of the 
applied processing algorithm.

In this paper, we presented a data-derived approach to estimate the precision of the final InSAR deformation 
timeseries, using multivariate Least Squares Variance Component Estimation (LS‑VCE). The value of multivariate 
LS‑VCE has been well recognized in noise analysis of geodetic data such as GNSS timeseries [Amiri‑Simkooei 
2009], Buoy tide measurements and satellite altimetry data [Farzaneh et al. 2020] but is limited in the InSAR data. 
Some examples of its application in InSAR literature have been presented by Kampes (2006), Ketelaar (2009), and 
Van Leijen (2014), who have adopted some practical and simplified scenarios to apply LS‑VCE on InSAR data. The 
limitations of these studies can be mentioned as: (i) using pre‑assumed noise structures that are not based on 
identifying the appropriate noise structure in the data (ii) the LS‑VCE was carried out in either time or space do‑
main (or in a disjoint manner).

The LS‑VCE method has some advantages, such as the capability to account for spatial-temporal noise struc‑
tures and compatibility with digesting various sources of user-controlled stochastic noise structures. Indeed, Un‑
like the univariate LS‑VCE noise assessment method [Amiri‑Simkooei 2007; Amiri‑Simkooei, Tiberius, and Teunis‑
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sen 2007], this method allows the simultaneous estimation of spatio-temporal noise components and provides the 
possibility of constructing a multi-variable noise structure or noise covariance matrix.

The objective of this study is to directly estimate the noise components of the final InSAR timeseries by of‑
fering the data-driven precision descriptor based on the multivariate LS‑VCE method. It should be noted that the 
proposed method is flexible to digest different combinations of noise components, while the optimal combination 
is then selected based on a maximum likelihood approach. In this particular study, considering the previous expe‑
riences of noise modelling in geodetic data, a composition of flicker, white, and first-order autoregressive noises 
is used for generating cofactor matrices in the noise model. The proposed approach is applied and demonstrated 
over the case study of Tehran, Iran. After applying the multivariate LS‑VCE method on InSAR‑derived timeseries 
and extracting noise variance components, we validate the proposed approach results using available GPS data.

The paper is continued as follows: Section 2 goes over the main methods for the InSAR timeseries analysis and 
the spatio-temporal noise problem. Section 3 explains the basic concepts of multivariate LS‑VCE. We describe 
our proposed noise assessment model in the InSAR timeseries in section 4, along with the details of implemen‑
tation steps and the whole work algorithm. In section 5, we apply the new noise estimation method on the InSAR 
timeseries in Tehran along with the derived primary results. Finally, Sections 6 and 7 present the validation and 
comparison of the final results with GPS data and conclusions, respectively.

2. InSAR Timeseries

The essential concept of Timeseries InSAR (TInSAR) methodologies is firstly to unwrap the wrapped InSAR 
timeseries, and secondly to isolate desired displacement signals from noise or other disturbing signals. TInSAR 
methods are based on the systematic production of multiple interferograms from an area of interest (AOI) during a 
period of time. Several TInSAR algorithms are available to process the interferograms and extract the deformation 
timeseries.

The first efforts of TInSAR analysis were known as stacking [Sandwell and Price, 1998; Strozzi et al., 2001], 
which reduced atmospheric effects by a temporal averaging over a series of interferograms. Concentration on 
identifying coherent pixels, which are least influenced by decorrelation noise in interferograms, provides the foun‑
dation for developing other TInSAR methods called persistent scatterer InSAR (PSInSAR) [Ferretti, Prati, and Roc‑
ca, 2001]. The same idea became the basis for other compatible methods, collectively named persistent scatterer 
interferometry (PSI) [Adam, Worawattanamateekul, and Kircher, 2004; Van der Kooij, 2003; Hooper et al., 2004; 
Kampes, 2006; Costantini et al. 2009; Van Leijen 2014]. Parallel with the PSI methods, another set of techniques 
aimed at extracting coherent pixels in interferograms with small perpendicular and temporal baselines [Berardi‑
no et al. 2002]. Nevertheless, these two groups complementing each other lead to the invention of another set of 
methods, called hybrid methods, such as the merging method exploited in StaMPS/MTI and SqueeSAR [Lanari et 
al., 2004; Hooper, 2006].

The common goal of all the timeseries analysis methods mentioned above is to provide a reliable displacement 
timeseries for each point with an emphasis on minimizing the noise in these series. However, even applying the 
most precise TInSAR methods, some parts of noise have still remained in output results, often causing oscillations 
or perturbations in the timeseries at any point. It is well known that the multiple uses of a common SAR image to 
form several interferograms in TInSAR algorithms introduce a correlation among noise components of the con‑
structed interferograms [González and Fernandez, 2011], making the observations and their noise characteristics 
dependent in the time domain (temporal correlation). Further, an overlap between baseline spectrum or tempo‑
ral interval of interferograms, a correlation between SAR acquisitions (manifested in coherence between them), 
and also use of inversion processes (e.g., least squares inversion, phase triangulation) can produce a temporal 
correlation between interferograms [Agram and Simons, 2015; Samiei Esfahany, 2017]. On the other hand, other 
sources of errors, such as Atmosphere Phase Screen (APS), imposed spatially correlated noise structure in the data 
[Hanssen, 2001]. Moreover, spatio-temporal filtering steps applied to InSAR timeseries (e.g., multi-looking, atmo‑
sphere filtering, etc.) can introduce spatial and temporal correlation in the results. The spatio-temporal correlation 
between PS‑pixels and also between interferograms is a critical issue that should be accounted for in the quality 
description of TInSAR products. Ignoring this correlation may lead to an under-/over-estimation of the precision 
of the final filtered timeseries and their derived products. This paper attempts to investigate the existence of this 
correlation in timeseries and propose a methodology to extract the stochastic model of final TInSAR in an objec‑



Sasan Babaee et al.

4

tive manner. The proposed framework is based on multivariate LS‑VCE, which will be discussed in more details in 
the next section.

3. Multivariate LS‑VCE

Several methods can conduct an assessment of the noise characteristics of the geodetic timeseries. In this 
regard, we can mention the Maximum Likelihoods Estimation (MLE), Least Square Estimation (LSE), Bayes Param‑
eter Estimation (BPE), and different existing VCE methods, such as Best Invariant Quadratic Unbiased Estimation 
(BIQUE), Minimum norm Quadratic Unbiased Estimator (MINQUE), Restricted Maximum Likelihood (REML) and 
so on [Crocetto, Gatti, and Russo, 2000; Wang, Satirapod, and Rizos 2002; Amiri‑Simkooei and Tiberius 2004; 
Zhang et al. 2004; Kubik 1970; Rao 1971; Koch 1986]. Among the VCE methods, the LS‑VCE has several attractive 
and unique properties such as unbiasedness and minimum variance property and the flexibility to apply hypoth‑
esis testing to the stochastic model [Amiri‑Simkooei, et al., 2007; Amiri‑Simkooei, 2009]. Furthermore, it can be 
shown that in the particular case of Gaussian noise structures, the LS‑VCE is equivalent to other VCE methods 
[Amiri‑Simkooei, Tiberius, and Teunissen 2007]. In general, the LS‑VCE approach is easily adapted to cope with any 
type of noise in the data and directly provides covariance estimators’ precision [Amiri‑Simkooei, 2009].

Teunissen and Amiri‑Simkooei [2008] developed and applied the LS‑VCE method to assess the noise character‑
istics of geodetic timeseries and, in particular, GPS data. In this method, the mathematical model of the problem 
can be divided into two parts: i) the functional model that describes the relationship between the observations 
and the unknown parameters and ii) the stochastic model that characterises a priori precision of the observations 
through its covariance matrix. The univariate LS‑VCE model with 𝑝 categories of noise structure in the timeseries 
data can be written as:
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 represents the vector of observables, 𝑥 is the vector of estimated parameters, and 𝐴 is a design matrix with 
full column rank relating the observations in 
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 to the unknown parameters in 𝑥 and also E, D are the expectation 
and dispersion operators, respectively. The 
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 covariance matrix corresponding to observations is expressed as a 
linear combination of 𝑝‑number known cofactor matrices 
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 with the scale of unknown variance components 𝜎𝑘 
plus 𝑄0 as a known part of the cofactor matrix of the stochastic model (if it exists). Each cofactor matrices describes 
the noise structure of different sources.

The cofactor matrices 𝑄𝑘 are assumed to be symmetric and linearly independent as necessary conditions for 
the stochastic model to have a regular solution [Amiri‑Simkooei, Tiberius, and Teunissen, 2007]. The univariate 
LS‑VCE model can estimate the variance components under an iterative procedure. It estimates parameters from 
each timeseries independent of others and neglects the correlation between different timeseries.

Williams et al. [2004] showed the possibility of spatially correlated noise components in geodetic observations 
and demonstrates that it is not realistic to analyse timeseries individually and neglects the spatial correlation be‑
tween them. Therefore, the simultaneous and multivariate analysis would be preferred instead of univariate anal‑
ysis. If we consider both temporal and spatial correlated components, then the LS‑VCE method enables us to esti‑
mate all parameters simultaneously. Amiri‑Simkooei [2009] suggested that a sophisticated strategy includes both 
the temporal and spatial correlation, called the multivariate LS‑VCE method (Figure 1). Considering 𝑟‑timeseries 
data and substituting the assembled form of 𝑋𝑋 = (𝑥𝑥&,… , 𝑥𝑥')	
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 (residual vectors) in Eq. (1), the linear model of the observation-equations of this method 
is written as
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In the above compact notation, the symbols vec(.) and ⊗ represent the operator of Vec and the Kronecker prod‑
uct, respectively. Note that the matrix Σ is unknown and is called the cross (spatial)-correlation matrix between 
timeseries (see, Eq. (15)). We can now apply the multivariate LS‑VCE manner to simultaneous estimation of both 
𝑋 and Σ by the iteration algorithmic process presented in Figure 1 (for more details, see Appendix). In the next 
section, we describe the flowchart implementation steps of the proposed method in this paper.

Figure 1. �Flowchart of the algorithm used to implement multivariate LS-VCE, see more details in [Amiri‑Simkooei, Tibe‑
rius, and Teunissen 2007; Amiri-Simkooei 2009].

4. Methodology

This paper has considered the stochastic model as a more practical model, according to the categories of sto‑
chastic models presented in [Amiri‑Simkooei, 2009], to evaluate the timeseries noise components of PSs by us‑
ing the multivariate LS‑VCE. The reason for choosing this model is that the relative amplitudes of various noise 
components are generally unknown. We employed different PSs timeseries together located inside a spatial class 
to calculate estimated parameters (i.e.,  site velocities) and their precision. Figure 2 illustrates the flowchart of 
multi‑temporal InSAR timeseries processing and its noise assessment error in the LS‑VCE framework.
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Figure 2. �Schematic program flowchart of multi-temporal InSAR timeseries processing and its noise assessment error 
with multivariate LS-VCE method (see the text box for details). Note that the abbreviations info., ifgs, defo and 
topo refer to information, interferograms, deformation, and topographic, respectively.

4.1 Processing Steps

Initially, a series of radar images (N number of SLC images) are processed based on a coherence-based SBAS 
timeseries approach. This set of SAR images are used to produce field deformation rates with GMTSAR software 
[Sandwell et al., 2011] operating based on the three main components (See the first block of Figure 2). The final 
output of the first block, including displacement rate map, displacement timeseries, and wrapped interferograms, 
are extracted for classification, noise analysis, and PS‑pixels identification, respectively.

Hence, for identifying PS pixels based on amplitude dispersion index (ADI) and temporal coherence [Hooper, 
2006; Hooper and Zebker, 2007], we apply the Stanford method of InSAR analysis, called StaMPS [Hooper, 2006]. 
The details of the processing in StaMPS are well documented in [Hooper, 2006; Hooper and Zebker, 2007] articles. 
Also, in order to apply the multivariate LS‑VCE, we need to classify the detected PSs with similar temporal be‑
haviour. Cross correlations, the spatial correlation, are given by the matrix Σ, which is the size of 𝑟 × 𝑟. This matrix 
and the time correlation of the timeseries (e.g., components 𝜎 𝑘) can be estimated by Eq. (8). As inferred from this 
equation, the total matrix Σ of the whole AOI has a full structure, which could be on the order of a few million 
components. Therefore, if one includes more timeseries in the model, the computational load will be increased 
significant. Furthermore, estimating the covariance matrix of the model parameters from Eq.  (12) involves the 
computation of the matrix Σ, rendering it computationally intractable on conventional computers. Therefore, to 
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avoid large matrices and reduce the inherent computational complexity of the VCE process, we divide the study 
area into smaller segments based on the spatial pattern in the displacement rate map.

Note that the classification here is applied only to reduce the computational load of the VCE process, and 
the variance components are estimated finally for each individual PS. Therefore the choice for the classification 
criterion is arbitrary and does not have any effect on the final results. We use eCognition Developer software to 
segmentation/classify the final displacement rate map [Baatz et al., 2004]. After segmentation/classification, we 
extract the PSs points with similar spatio-temporal timeseries for each class based on the StaMPS Framework, and 
classes that do not include any PSs are removed from our noise processing (refining classes).

4.2 Noise Models

In the following, we use the multivariate LS‑VCE analysis for each class to calculate the noise components’ am‑
plitude in the timeseries of classified PSs. In this step, to construct the cofactor matrices for InSAR data, we have 
considered a combination of flicker, white, and first‑order autoregressive AR(1) noises. As mentioned earlier, there 
is no clear noise model to describe the noise structure in InSAR timeseries. However, based on the most common 
noise sources in geodetic data (and in particular InSAR timeseries), we consider three noise structures in this study, 
as follows.

1)	 White noise: the reasons for the existence of this noise model are the PS decorrelation phase and residual 
atmospheric noise [Sudhaus and Sigurjón 2009] and 𝜏𝜏 = |𝑡𝑡# − 𝑡𝑡(|,     𝑞𝑞PS

w = F1           (if 𝜏𝜏 = 0)
0           (if 𝜏𝜏 ≠ 0)	

	 	

 (unit: mm2) the elements of the white noise cofactor 
matrix 𝑄w for each PS point timeseries can be written as

	 𝜏𝜏 = |𝑡𝑡# − 𝑡𝑡(|,     𝑞𝑞PS
w = F1           (if 𝜏𝜏 = 0)

0           (if 𝜏𝜏 ≠ 0)	

	 	

� (3)

where the 𝜏 is the absolute magnitude of the time difference between the two observation epochs 𝑘 and 𝑙.

2)	 The first‑order autoregressive AR(1) noise: this component may be induced by a deviation of deformation 
from the assumed functional model and can also be induced by low pass filters applied in the processing chain 
[Samiei Esfahany, 2017]. The first‑order autoregressive noise cofactor matrix 𝑄a elements 𝜏𝜏 = |𝑡𝑡# − 𝑡𝑡(|,     𝑞𝑞PS

a = F1				               (if 𝜏𝜏 = 0)
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 (unit: mm2) are 
given as [Amiri‑Simkooei, Tiberius, and Teunissen 2007]:

	 𝜏𝜏 = |𝑡𝑡# − 𝑡𝑡(|,     𝑞𝑞PS
a = F1				               (if 𝜏𝜏 = 0)

𝑒𝑒,-.           (if 𝜏𝜏 ≠ 0)	

	 	

� (4)

�In the autoregressive noise equation, a time-scale parameter α shows the temporal correlation rate of the sig‑
nal. This parameter was derived using InSAR data through the w‑test statistic, with the most probable value of 
~0.05. In fact, for autoregressive noise, we calculate the w‑test statistic for different values of α. We then choose 
the α which the absolute value of the below w‑test statistic was maximized [Amiri‑Simkooei 2007].

	 w =  
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1

25
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�Where 𝑄a is the autoregressive cofactor matrix for different 𝛼 values and also 𝑏 = (𝑚 – 𝑛)𝑟 is the degree of free‑
dom that 𝑚, 𝑛, and 𝑟 parameters are the number of observations, the number of unknowns, and the number of 
timeseries, respectively.

3)	 Flicker noise: This component is induced by electronic devices and their characteristics [Van der Ziel 1979]. 
Although this kind of noise is most common in GPS datasets, but as radar is an electronic device, we consider 
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it as a potential noise model also for the InSAR timeseries also Bui [2021] recommends that this noise model 
be considered in the InSAR timeseries analysis and error estimation. The flicker noise cofactor matrix 𝑄f can be 
constructed as [Zhang et al., 1997].

	 𝜏𝜏 = |𝑡𝑡# − 𝑡𝑡(|,			𝑞𝑞PS
f =

⎩
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�Note that the proposed methodology is flexible to digest other noise sources also. Again, the reason for apply‑
ing the introduced noise models is that they are a more generic case and have been used widely in geodetic 
timeseries. After defining the noise structures, we can decide which combination of these models is the most 
likely optimal combination by the maximum likelihood method as described in the next section.

4.3 Noise Models Selection

After applying the iterative multivariate LS‑VCE algorithm using different noise models, the maximum likeli‑
hood estimation (MLE) is used to determine the observations’ appropriate noise structure. Using this method made 
it possible to decide which type of noise structure (temporal cofactor) should be included in the stochastic mod‑

el. According to this method, the observables have a multivariate normal distribution as 𝑦𝑦~Nî𝐴𝐴𝐴𝐴, 0 𝜎𝜎#𝑄𝑄#
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accordingly, we should maximize the likelihood function for the multivariate stochastic model to maximize the 
probability distribution function of observations described by [Amiri‑Simkooei, Tiberius, and Teunissen 2007].
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Here ln is the natural logarithm. The results of using this method to turn out the appropriate noise model are 
discussed in section 6 (subsection headed “LS‑VCE per class”).

4.4 Estimating the multivariate noise structure

Next to the appropriate noise model selected, the estimate of the unknown matrix Σc	
	 	

 is obtained as follows:

	 Σc =
𝐸𝐸cE𝑄𝑄-&𝐸𝐸c
(𝑚𝑚 − 𝑛𝑛)	

	
𝐸𝐸c = 𝑃𝑃F2𝑌𝑌 = 5𝑒̂𝑒&, 𝑒̂𝑒3,⋯ , 𝑒̂𝑒'7	
	 	

, 

Σc =
𝐸𝐸cE𝑄𝑄-&𝐸𝐸c
(𝑚𝑚 − 𝑛𝑛)	

	
𝐸𝐸c = 𝑃𝑃F2𝑌𝑌 = 5𝑒̂𝑒&, 𝑒̂𝑒3,⋯ , 𝑒̂𝑒'7	
	 	

� (8)

Where Σc = DE!F"#DE
(?,B) , 𝐸𝐸c = 𝑃𝑃G

1𝑌𝑌 = 5𝑒̂𝑒&, 𝑒̂𝑒2,⋯ , 𝑒̂𝑒'7	
	 	

 is the multivariate orthogonal projector. The estimated correlation coefficient between the different 
PS timeseries (𝜌𝜌PS$% =

HIPS$%

JHIPS$$JHIPS%%
=

HIPS$%
HIPS$HIPS%

,     𝑖𝑖, 𝑗𝑗 = {1, 2,⋯ , 𝑟𝑟}  ∈  classK	

	 	

) is obtained by Σc	
	 	

 matrix elements.

	 𝜌𝜌PS!" =
𝜎𝜎jPS!"

k𝜎𝜎jPS!!l𝜎𝜎jPS""
=

𝜎𝜎jPS!"
𝜎𝜎jPS!𝜎𝜎jPS"

	

	
𝑖𝑖, 𝑗𝑗 = {1, 2,⋯ , 𝑟𝑟}  ∈  classG	
	 	

, 

𝜌𝜌PS!" =
𝜎𝜎jPS!"

k𝜎𝜎jPS!!l𝜎𝜎jPS""
=

𝜎𝜎jPS!"
𝜎𝜎jPS!𝜎𝜎jPS"

	

	
𝑖𝑖, 𝑗𝑗 = {1, 2,⋯ , 𝑟𝑟}  ∈  classG	
	 	

� (9)

As you can see, the estimated correlation coefficient is a nonlinear function of the 
𝜌𝜌PS!" =

𝜎𝜎jPS!"

k𝜎𝜎jPS!!l𝜎𝜎jPS""
=

𝜎𝜎jPS!"
𝜎𝜎jPS!𝜎𝜎jPS"

	

	
𝑖𝑖, 𝑗𝑗 = {1, 2,⋯ , 𝑟𝑟}  ∈  classG	
	 	

, and 
𝜌𝜌PS!" =

𝜎𝜎jPS!"

k𝜎𝜎jPS!!l𝜎𝜎jPS""
=

𝜎𝜎jPS!"
𝜎𝜎jPS!𝜎𝜎jPS"

	

	
𝑖𝑖, 𝑗𝑗 = {1, 2,⋯ , 𝑟𝑟}  ∈  classG	
	 	

. To get the 
variance of the estimated correlation coefficient, we used Eq. (10), which apply the error propagation law to the 
linearized form of the covariance matrix between PS timeseries 𝑖 and 𝑗, and simplifies by [Amiri‑Simkooei, 2009]

	 𝜎𝜎HPS!"
3 =

&1 − 𝜌𝜌PS!"
3(

3

𝑚𝑚 − 𝑛𝑛 	
	
𝑖𝑖, 𝑗𝑗 = {1, 2,⋯ , 𝑟𝑟}  ∈  classG	
	 	

, 

𝜎𝜎HPS!"
3 =

&1 − 𝜌𝜌PS!"
3(

3

𝑚𝑚 − 𝑛𝑛 	
	
𝑖𝑖, 𝑗𝑗 = {1, 2,⋯ , 𝑟𝑟}  ∈  classG	
	 	

� (10)
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We also extracted the standard deviation 𝜎𝜎jPS! = l𝜎𝜎jPS!
3 = l𝜎𝜎jPS!!	

	

𝜎𝜎IJPS! ≈
𝜎𝜎IJPS!%

2𝜎𝜎jPS!
=
𝜎𝜎IJPS!!
2𝜎𝜎jPS!

	

	 	

 and its precision 

𝜎𝜎jPS! = l𝜎𝜎jPS!
3 = l𝜎𝜎jPS!!	

	

𝜎𝜎IJPS! ≈
𝜎𝜎IJPS!%

2𝜎𝜎jPS!
=
𝜎𝜎IJPS!!
2𝜎𝜎jPS!

	

	 	

 for each PS timeseries with the following 
relationships.

	 𝜎𝜎jPS! = l𝜎𝜎jPS!
3 = l𝜎𝜎jPS!!	

	

𝜎𝜎IJPS! ≈
𝜎𝜎IJPS!%

2𝜎𝜎jPS!
=
𝜎𝜎IJPS!!
2𝜎𝜎jPS!

	

	 	

, 

𝜎𝜎jPS! = l𝜎𝜎jPS!
3 = l𝜎𝜎jPS!!	

	

𝜎𝜎IJPS! ≈
𝜎𝜎IJPS!%

2𝜎𝜎jPS!
=
𝜎𝜎IJPS!!
2𝜎𝜎jPS!

	

	 	

� (11)

According to the results obtained, we can estimate the covariance matrix of the model parameters as,

	 𝑄𝑄KO = Σc ⊗ 5𝐴𝐴T𝑄𝑄!
,&𝐴𝐴7	

	 	
� (12)

The diagonal elements of the matrix 𝑄𝑄KO = Σc ⊗ 5𝐴𝐴T𝑄𝑄!
,&𝐴𝐴7	

	 	
 indicate the precision of the model parameters. In the absence of esti‑

mating the proper noise structure due to the correlation between PSs timeseries, the matrix Σc	
	 	

 is an identity matrix 
of size 𝑟, in which case an unrealistic estimate of the precision of the model parameters is obtained.

4.5 Validation and Comparison with GPS data

Finally, the results obtained by using the above methodology will be compared to the GPS dataset. The loca‑
tions of the available GPS stations in our case study area are indicated in Figure 5.b (stations whose timeseries are 
available) and Figure 10.b (stations with only displacement rates are available). Note that, in order to be able to 
compare the InSAR‑derive results and GPS data, both datasets should have the same datum (i.e., have the same 
reference point). We have compared the InSAR and GPS datasets using the same reference point shown by a red 
star in Figure 5.b.

5. Case study area, SAR data, and processing setting

The case study is the Tehran plain located in the north of Iran and the southern slopes of the Alborz mountain 
range (Figure 3). The studied area is of particular importance in terms of a geological structure due to the presence 
of two regions seriously involved in the subsidence phenomenon [Sharifi et al., 2008; Haghighi and Motagh, 2019]. 
These two regions include the western Tehran plain (reaching the cities of Yaftabad, Shahriyar, and Malard to the 
north, Tehran to the northeast, and Eslamshahr to the south) and Hashtgerd plain (including Karaj, Hashtgerd, and 
Najmabad cities).

We used a set of 34 C‑band (~5.6 cm wavelength) Sentinel‑1A SAR images collected between November 2016 
and January 2018. The dataset is in the Single Look Complex (SLC) format and is acquired in interferometric wide 
(IW) mode with a swath width of about 250 km from ascending track number 28. The sub‑swath (IW2), which fully 
covered our study area, has been selected for TInSAR process (as shown in Figure 3). The acquisition dates and 
platform characterized for SAR imagery are described in Table 1.

ModePolarizationIncidence 
Angle (deg.)TrackTimeseries PeriodNumber 

of ImagesSensor

SLC, IWVV39.46Ascending20161113‑2018013134Sentinel‑1A

Table 1. Details of the SAR acquisitions used for the InSAR timeseries analysis.

Subsequently, we generated 84 interferograms with perpendicular and temporal baselines smaller than 50 me‑
ters and 3 months, respectively (Figure 4).
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Figure 3. �Landsat 8 image of the study area. The inset at the top-left indicates the location of Tehran plain in Iran. The 
black frame shows the swath IW2 of Sentinel-1A ascending data used in this study.

Figure 4. �The final network of the selected interferograms was used for the SBAS timeseries analysis. Circles represent 
the images, and light-green lines indicate interferograms used in our study, and the colours of the dots indicate 
the atmospheric noise coefficient. The horizontal axis shows the number of days with respect to the reference 
date, 2 January 2014 (year of Sentinel-1A launch). The ID of the images shows their time format; for example, 
yyyymmdd is shown as ymmdd.
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We used the high redundancy of the interferograms and single-master stacking method to estimate and remove 
the atmospheric phase delay errors under the atmospheric noise coefficient (ANC) method [Tymofyeyeva and Fialko, 
2015]. The ANC, quantifying the relative amount of atmospheric noise at each SAR acquisition, enables us to grade 
the acquisitions, according to the magnitude of the atmospheric contribution, in combination with SBAS timeseries 
estimation using an iterative approach. Finally, together with ANC correction, we applied a coherence-based SBAS 
method to compute displacement timeseries and atmospheric corrections for each scene in our region (Figure 5).

Figure 5.b shows the average line of sight (LOS) velocity from the Tehran plain obtained from our analysis. 
The average LOS velocities map reveals that subsidence has occurred at a high rate in the two regions, the west‑
ern Tehran and Hashtgerd plains. The maximum observed LOS velocity of the subsiding area is –200 mm/yr and 
–300 mm/yr in the west of Tehran and Hashtgerd plains, respectively.

After performing the classification described in detail in Section 4, we extracted the PSs within each class. 
To identify these PSs, the ADI is assumed to be 0.42, and the scene is subdivided into 25 patches with 100 and 
400 overlapping pixels in the range and azimuth directions, respectively. After timeseries processing, the total 
number of stable point candidates or detected PS points were equal to 550,000.

There are several GPS sites in our SAR image frame, however many of them are lacking sufficient temporal 
overlap with the SAR image timeseries, or their timeseries data is not available to researchers. Thus, three of them, 
namely, ARNG, HSGD, and TEHN, which contain observations after 2016, are used in this study (Figure 6). However, 
the ARNG station timeseries was only available until mid‑2017.

a) b)

Figure 5. �a) The accumulative displacement map is estimated using SBAS timeseries analysis for ascending track of 
Sentinel-1A SAR images. b) The average LOS velocity map and green dots indicated GPS stations. A polygon 
with black dash lines represents different classifications on the line of sight velocity map. The red star indicates 
the location of the reference point used for comparison of the InSAR and GPS datasets.
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Our GPS 3D displacement measurements are projected to InSAR LOS direction and then referenced to the equal 
reference date as InSAR timeseries to compare results. This comparison indicates that the timeseries of permanent 
GPS stations show good agreement with the InSAR timeseries between 2016 and 2018 (see Table 6). This compari‑
son makes sure that the derived cumulated deformation is valid and effective in the subsequent analysis.

Figure 6. �Comparison of GPS and InSAR timeseries derived from Sentinel-1A data at GPS station ARNG (top plot), HSGD 
(middle plot), and TEHN (down plot). A comparison between InSAR LOS timeseries represented as red dots and 
GPS-derived LOS timeseries as blue stars.

Figure 7. �The bars are heightened and coloured based on the number of PS points in each segmentation. The background 
shows the region’s digital elevation model (SRTM 90).
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5.1 Mean Velocity Map Segmentation

To implement the LS‑VCE based on the multivariate model, we used a geographical or spatial classification of 
the final displacement rate map (see Figure 5.b). The reasons for using this type of classification are as follows: 
1 – PSs located in a nearby region have similar noise structures, in particular, their atmospheric noise structure, 
2 – Our dataset is too large, and there is no separate noise structure defined for each pixel. To applied the proposed 
approach, we chose a cropped area, i.e., two subsidence fields located away from mountainous areas in the north 
rather than the full sub‑swath because of the following two reasons: (i) to focus on the main AOI, the subsiding 
areas located in southern Tehran, which has been extensively affected by water-extraction-induced subsidence 
[Sharifi et al., 2008; Haghighi and Motagh, 2019], (ii) to reduce further the time-consuming computational pro‑
cess (as discussed in Subsection 4.1). As a result, the total number of classes exploited in this area is equal to 
370 classes. According to Figure 7, the average number of PSs within each class is about 1000 PSs.

6. Results and Discussion

6.1 LS‑VCE per class

As mentioned in section 3, we used the multivariate LS‑VCE method to obtain the proper noise structure of the 
PSs timeseries in a spatial correlation class. The kinematic model (explaining the temporal deformation behaviour), 
usually used in many TInSAR analyses, is a simple linear model (e.g., Berardino et al. [2002]; Hooper et al. [2004]). 
According to previous studies proving the existence of periodic behaviours due to seasonal changes and soil dynam‑
ic properties [Schenk 2006; Haghighi and Motagh 2019], in addition to the linear behaviour, we add the annual and 
semi-annual periodic component to the model to accounts for the periodic and seasonal deformations signals as

	 E &𝑦𝑦( = 𝑦𝑦" + 𝑣𝑣𝑣𝑣 +05𝑎𝑎#cos(𝑤𝑤#𝑡𝑡) + 𝑏𝑏#sin(𝑤𝑤#𝑡𝑡)7
2

#%&

	

	 	

� (13)

Where 𝑡 is expressed in terms of a year, and the unknown vector consists of the intercept 𝑦0, the slope 𝑣, and the 
coefficients 𝑎𝑘 and 𝑏𝑘 due to annual and semi-annual signals. Also, 𝑤𝑘 is the corresponding to the frequency of the 
sinusoidal signals.

After applying the multivariate LS‑VCE method, the functional model was subtracted before noise analysis 
(removing linear trend, annual, and semi-annual periodic signals). These operations are known as the creation of 
a “signal-free area”. Then the residual signals that degraded the assumed functional model (such as residual tro‑
pospheric error, APS error, orbital error, and temporal decorrelation, or even unmodeled displacement) are known 
as noise.

To form the stochastic part of the mathematical model as mentioned in subsection 4.2, we tested the combi‑
nation of different noise structures in a multivariate model using the MLE method and calculated the maximum 
logarithm of the likelihood function of the stochastic model for each combination (see Table 2).

Autoregressive + FlickerWhite + AutoregressiveWhite + FlickerNoise Model

325.97124.7196.35Class1

C
la

ss
es 439.88248.27225.81Class2

103.3557.6587.67Class3

340.88136.72106.81Class4

Table 2. �The estimated values of the logarithm of the likelihood function for the different noise structures in the four 
example classes are shown in Figure 9.
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Ultimately the most suitable noise structure is selected in terms of flicker noise plus autoregressive noise. There‑
fore, the structure of the covariance matrix is close to D&vec5𝑌𝑌7( = ∑⊗𝑄𝑄	

	 	
 with 𝑄𝑄! = 𝑄𝑄(𝜎𝜎a

3, 𝜎𝜎f
3) = 𝜎𝜎a

3𝑄𝑄a + 𝜎𝜎f
3𝑄𝑄f	

	 	
. In 

each class, as mentioned before, D&vec5𝑌𝑌7( = ∑⊗𝑄𝑄	
	 	

 consists of the timeseries observations of the PSs (e.g., 𝑟 timeseries). The iter‑
ative algorithm of Fig. 1 is now used to estimate both 𝜎a and 𝜎f, which represent the temporal noise amplitude of 
the timeseries. Table 3 gives the estimated temporal noise amplitudes of the example classes introduced in Table 2 
for different stochastic models. This Table also provides the precision (𝜎𝜎IJ

3	) of the estimates as one of the important 
features of LS‑VCE.

Class4Class3Class2Class1Classes

Negative
5.45 ±2.35

0.47 ±0.07
1.79 ±0.79

Negative
8.82 ±1.71

Negative
6.72 ±1.38

White Noise
Flicker Noise

N
oi

se
 M

od
el

0.39 ±0.02
0.98 ±0.08

0.83 ±0.01
0.27 ±0.03

0.09 ±0.01
1.56 ±0.06

0.28 ±0.01
1.19 ±0.05

White Noise
Autoregressive Noise

0.02 ±0.01
1.68 ±0.05

0.03 ±0.01
1.77 ±0.03

0.04 ±0.01
1.62 ±0.03

0.02 ±0.01
1.66 ±0.03

Autoregressive Noise 
Flicker Noise

Table 3. �White noise, flicker noise, and autoregressive noise amplitude estimates as well as their precision (mm2) for 
the four example classes in three different stochastic models (white noise plus flicker noise; white noise plus 
autoregressive noise; and flicker noise plus autoregressive noise).

In the following, the multivariate LS‑VCE method was implemented in different classes to extract the estimated 
parameters and their precision for the PS points. Calculating the correlation coefficient between the timeseries of 
different PSs in each class (Eq. (9) and (10)), we showed this correlation is very high at close intervals and gradually 
decreases as the interval between the different PS increases. The reason for this correlation can be due to the ex‑
istence of some spatial correlation components of the phase interferograms (e.g., atmospheric and orbital noise), 
unmodeled displacement, and even the effects of applying spatial filters. For example, the estimated correlation 
coefficients and standard deviation given in Tables 4 and 5 obtained for the class around the GPS stations of TEHN 
and HSGD include a limited number of PS points inside this class.

As mentioned earlier, the stochastic part of the model can be as a 𝑚𝑟 × 𝑚𝑟 covariance matrix of the form

	 𝐷𝐷

⎩
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From the estimated matrix Σ, one can also obtain the spatial correlation between different timeseries. This 
symmetric covariance matrix contains 𝑟𝑟(𝑟𝑟 + 1) 2⁄ 	

	 	
 covariance components divided into 𝑟 variances and 𝑟𝑟(𝑟𝑟 − 1)/2	 

covariances.

	 0=

⎣
⎢
⎢
⎡𝜎𝜎&

2 𝜎𝜎&2 ⋯ 𝜎𝜎&'
𝜎𝜎&2 𝜎𝜎2
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Figure 9 presents the diagrams of these components against the distance between their corresponding PSs 
for several classes. These results show that for the PSs adjacent to each other (short arcs), the covariance compo‑
nents between them are high and gradually decrease by increasing distance. We can also observe that the mean 
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PS code Distance (m) Estimated Corr. Coef (%) Estimated STD (mm)

PSTEHN 0.00 100 ±00.00 10.19 ±0.24

PS1 136.33 99.94 ±5.60E‑08 10.81 ±0.26

PS2 202.13 99.16 ±9.95E‑06 08.29 ±0.19

PS3 279.21 99.91 ±1.25E‑07 10.74 ±0.25

PS4 322.27 99.86 ±2.75E‑07 09.98 ±0.24

PS5 392.91 99.49 ±3.65E‑06 09.75 ±0.23

PS6 511.11 99.16 ±9.92E‑06 09.07 ±0.21

PS7 511.25 99.39 ±5.33E‑06 10.48 ±0.27

PS8 524.47 99.52 ±3.22E‑06 09.91 ±0.23

PS9 577.73 98.84 ±1.89E‑05 09.02 ±0.21

PS10 588.30 99.28 ±7.31E‑06 10.30 ±0.24

PS11 678.79 98.36 ±3.76E‑05 08.84 ±0.21

PS12 727.22 97.91 ±6.13E‑05 08.73 ±0.21

PS13 1861.29 76.03 ±0.006361 12.03 ±0.28

Table 4. �Estimated spatial correlations (sorted by baseline length between PSs), standard deviation, and their precision 
between PS timeseries for a few PSs around the GPS station of TEHN.

PS code Distance (m) Estimated Corr. Coef (%) Estimated STD (mm)

PSHSGD 0 100 ±00.00 07.55 ±9.05E‑02

PS1 879.12 97.68 ±7.51E‑05 08.05 ±9.65E‑02

PS2 1465.05 97.04 ±1.22E‑04 07.22 ±8.65E‑02

PS3 1865.50 94.35 ±0.00043 07.58 ±0.09082

PS4 2087.57 93.44 ±5.75E‑04 07.89 ±9.47E‑02

PS5 2329.14 93.30 ±5.99E‑04 07.88 ±9.44E‑02

PS6 3103.74 87.38 ±2.00E‑03 07.92 ±9.50E‑02

PS7 3263.64 90.57 ±1.15E‑03 07.92 ±9.50E‑02

PS8 4023.77 93.78 ±5.19E‑04 07.81 ±0.093654

PS9 4277.04 93.84 ±5.09E‑04 07.59 ±9.10E‑02

PS10 4485.46 71.74 ±8.41E‑03 06.90 ±8.27E‑02

PS11 5869.61 91.99 ±8.45E‑04 07.21 ±8.65E‑02

PS12 7789.24 86.40 ±2.30E‑03 06.62 ±7.93E‑02

PS13 8115.15 85.81 ±2.48E‑03 06.71 ±8.05E‑02

Table 5. �Estimated spatial correlations, standard deviation, and their precision between PS timeseries for a few PSs around 
the GPS station of HSGD.
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variations of the covariance components with respect to the distance between classes are similar to the Gaussian 
auto‑covariance function as visualized in Figure 8 and is given by

	 𝐶𝐶QRST5PSU, PSV7 = 𝐶𝐶"exp ã−
𝑟𝑟UV2

𝑑𝑑2ç	

	 	

� (16)

where, 𝐶0, 𝑑 and 𝑟𝑖𝑗 are variance, correlation distance, and distance between PS𝑖 and PS𝑗, respectively. In fact, such 
an auto‑covariance function describes the smooth spatial stochastic process; its smoothness is defined by the cor‑
relation distance 𝑑 and variance component 𝐶0.

Figure 8. Gaussian auto-covariance function.

Such behaviour in InSAR results is expected as we know that InSAR products are contaminated with spatially 
correlated noise such as the tropospheric turbulent phase effects or its residuals after atmospheric filtering steps 
[Hanssen 2001; González and Fernandez 2011].

a) b)

Figure 9. �a) The boundary of geographical classes plotted on the topography of the area (SRTM 90). b) Variations of co‑
variance components in the classes marked with different colours relative to the distance between PSs within 
each class. The black solid curve on each plot indicates the Gaussian function fitted to the data.
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Note that we have not used explicit spatial noise models in the initial stochastic modelling (Eq. (2)). Given the 
fact that the noise structure is similar to the Gaussian auto‑covariance function, it would be possible to estimate 
only the unknown parameters of this function (𝐶0, 𝑑) instead of computing 𝑟𝑟(𝑟𝑟 − 1)/2	 off‑diagonal spatial covari‑
ance components. Furthermore, according to Eq. (12), one may later add the correlation between the timeseries to 
the estimated parameters’ covariance matrix (i.e., after solving with the univariate model).

6.2 Validation and comparison with GPS data

To validate our results, we used the GPS observations in our case study area. This comparison was initially 
performed for the three GPS timeseries and then carried out to further evaluate other GPS stations whose only dis‑
placement rate was available (Figures 10 and 11). In the first stage, after calculating the appropriate weights of mea‑
surements through the multivariate LS‑VCE method, The RMSE of InSAR timeseries (weighted and non‑weighted) 
compared with GPS timeseries. Also, to match GPS and InSAR timeseries to one common time period, we used 
spline interpolation.

Figure 10. �Three timeseries of LOS displacements are shown in Fig. 6: The original InSAR timeseries (blue stars and lines) 
and corrected timeseries using our approach (red circles and lines).

To quantify our methodology’s performance, we compute the RMSE of InSAR timeseries (before and after ap‑
plying proper weight) relative to GPS timeseries measurements (Table 6).

In the second stage, we compared two different InSAR‑derived velocities (one estimated from original data 
without accounting for the noise structure and the other accounting for the proposed noise structure derived from 
LS‑VCE) with the estimated velocities from GPS sites. The vertical site velocities of the GPS stations are obtained 
from the study of Raeesi and colleagues [2017]. To get vertical velocities from InSAR data, we have projected InSAR 
LOS velocities into vertical by dividing them into the local incidence angles (ignoring the horizontal velocities, 
according to the study of Haghighi and Motagh [2019] for this area). As mentioned earlier, to perform this compar‑
ison, the data are compared to each other relative to the reference point shown in Figure 5.b with a red star, which 
is very close to one of the GPS stations.
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RMSE (mm)
GPS Stations

LS‑VCE InSAROriginal InSAR

5.7110.18ARNG

9.9012.40HSGD

3.897.89TEHN

Table 6. �RMSE between GPS timeseries and InSAR timeseries before and after applying multivariate LS‑VCE for three 
stations is shown in Figure 6.

Subsequently, we have compared the GPS and InSAR vertical velocities by calculating the difference between 
them. The average RMSE of the misfits of original InSAR and LS‑VCE vertical velocities against the GPS vertical ve‑
locities is equal to 12.31 and 6.51, respectively (see Table 7). The results show that applying the multivariate LS‑VCE 
method improves the results by about 50% compared with the case where the noise parameters are not considered.

GPS Sites GPS Velocity 
(mm/yr)

Original 
InSAR Velocity 

(mm/yr)

LS‑VCE  
InSAR Velocity  

(mm/yr)

Absolute values of

Original 
difference

LS‑VCE
difference

TEHN 10.86 20.29 7.09 9.43 3.77

HSGD 11.34 1.06 9.91 10.28 1.43

MF13 11.45 4.59 14.01 6.86 2.56

FOPM 11.69 6.87 10.04 4.82 1.65

MF17 10.81 7.09 11.13 3.72 0.32

TN01 13.12 –2.44 4.37 15.56 8.75

FOIM 13.18 –22.31 –13.94 35.49 27.12

Table 7. Comparison between original InSAR velocities and our proposed method.

Furthermore, we can calculate the precision of the model parameters by Eq. (10). In this way, the diagonal ele‑
ments of the matrix 𝑄𝑄KO = Σc ⊗ 5𝐴𝐴T𝑄𝑄!

,&𝐴𝐴7	
	 	

 indicate the precision of the estimated model parameters. Table 8 shows the precision of 
the model parameters in the case of estimating the proper noise structure (LS‑VCE InSAR) and without considering 
Original InSAR for a PS near the TEHN station. As shown in Table 8, it is optimistic about calculating the model 
parameters’ precision if the appropriate noise structure is not estimated.

Model parameters (TEHN Station)
The precision of model parameters

LS‑VCE InSAR Original InSAR

𝑦0 (mm) 1.772 0.930

𝑣 (mm/yr) 0.849 0.557

𝑎𝑘 {annual} (mm) 0.3468 0.269

𝑏𝑘 {annual} (mm) 0.343 0.256

𝑎𝑘 {semiannual} (mm) 0.251 0.240

𝑏𝑘 {semiannual} (mm) 0.266 0.255

Table 8. Comparison of the precision of model parameters for a PS near the TEHN station.
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7. Conclusion

This paper proposes estimating the precision and noise structure of the final InSAR‑derived deformation 
timeseries based on the multivariate LS‑VCE methodology. We analysed the noise content of the timeseries and 
presented the precision of the estimated parameters. Our analysis shows that the suitable noise structure for the 
definition of the stochastic model of observations in our specific case study is a combination of autoregressive 
and flicker noise models. Applying this combined noise model indicates that there is a high temporal and spatial 
correlation in the results. In particular, we show that Gaussian covariance functions can model the spatial correla‑
tion of the data. We conclude that the spatial noise correlations have a direct influence on the calculation of the 
estimated parameters. Using the GPS results as the criterion for validation of estimated deformation model param‑

a)

b)

Figure 11. �a) GPS stations and GPS vertical velocity field in Iran [Raeesi et al. 2017], small black dash rectangular indi‑
cates our processing Sentinel data track, b) Our study area and its GPS stations.
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eters shows that applying the multivariate LS‑VCE method compared with the case where the noise parameters are 
not considered improves the results by about 50%. We should emphasize that the noise components’ structure may 
differ from one case study to another; but, the proposed methodology is generic. Since the entries of the cofactor 
matrix are essential for the performance of the multivariate LS‑VCE method, it is important that these cofactors 
are selected correctly according to the case study and the operating algorithm. So, this remains as future work for 
additional studies and supplementary investigation on other noise models to see how the different noise models 
may affect the estimated parameters and their precision.
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