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The Laplace transform of equation (10) with respect to the variable x, is given by
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Here ¢ is the Laplace transform parameter, the primes denote the derivatives with respect to z, and

ﬁ(q, Z, ) stands for Laplace transform of the function p, (x1 \Z, ):
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ﬁ(q,zl):jpp (x,.2,)exp(—gx, Jdx,, (Reg>0). (A2)
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Substituting equations (11) and (13) for the functions p, (O, Zl) and (p, (O, z, ) / Ox, into equation

(A1), yields
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Here we made use of the following designation:
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f=pen, {qJO(2{szl cosa}1/2)+[scosa] (g“—cosoz)]l(2{sz1 cosa}l/z)}. (A4)

Z

First, we consider the homogeneous differential equation (A3), assuming formally that the

right side of this equation is zero. The roots of the corresponding characteristic equation are given by

——qcosotirisinoc(q2 +ia)/D)l/2. (A5)
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When applying the inverse Laplace transform, the integration is performed in a complex plane
g =q, +iq, along a vertical axis parallel to the imaginary axis ig,. Let us cut the complex plane ¢
through the branch points ¢ = +(iw/ D)l/ * of the functions 4, and A, in such a way that the
inequalities Re 4, <0 and Re A, >0 hold true on the integration path. In the extreme case, when

|g,| — oo one can simplify equation (A5) for 2, and A:

A, m—ig, cosa Fsinaq,|. (A6)
Here the upper sign minus corresponds to the function 4, and the lower sign plus corresponds to the
function A,.

Using the method of variation of constants, we find a general solution of the inhomogeneous

differential equation (A3)

ﬁ(q, zl) =F (q,zl)—F2 (q,zl)+C1 exp(ﬂlzl)+C2 exp(@zl), (A7)
where
E’Z(q,zl)zﬁ ! f(q,zr)exp{/yz(z1 —Z')}dz', (A8)

The undetermined coefficients C; and C, can be found from the boundary condition f)(q,zl) =0

and the boundedness condition for the function j)(q, 21) in the extreme case of z, — 0. As a result,
we obtain:

7(9.2)=F(9.2)-F(q.z)+4(q) {exp(/gz1 )—exp( Az, )} (A9)

where
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A(q)=—— | f(q.2)exp(-21,2") =" A10
(9) Aliz_!‘f(q Jexp(-=4,2") (A10)

In order to derive an approximate solution of the problem for the case of small depths z, we
first expand equation (A9) for the function [y(q, zl) in a power series of z , preserving only the first

non-vanishing term:
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p(q.2) =z (4 -4)A(q)= —lef(q,z')exp(—ﬂzz')dz'. (A11)
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Next, we substitute equation (A4) for the function f into equation (All). After replacing the

integration variable: z'=yx'?, the integral in equation (All) is reduced to tabular integrals

[Grandshteyn and Ryzhik, 2007, p. 698]. As a result, we obtain:

p(q.2))=—z,pgn, {%exp(— Sczzsa}_(g —cos a){l—exp(— Sczzsaﬂ} (A12)

The pressure of the pore fluid can be found by applying the inverse Laplace transform to

equation (A12):

qp+ioo
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p, (xpzl)=2—m. j P(q.2,)exp(gx,)dg, (g,>0), (A13)
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Substituting equation (A12) for p (q, Z1) into equation (A13) and taking into account that x, ~ x near

the boundary between the porous medium and the atmosphere, we get
Pz
xX,z)r——=""10 +(cosa — =270 (x) |t. Al4
Py (5.2) ==L {0+ (cosar=£)[ 0, - 220 (x) | (A14)
In the next we will ignore the Dirac delta function § ( x), since the approximate solution (A14) is
valid in the region x>z, where this function is zero. Here we made use of the following

abbreviations:

qo+ioo g +ioo
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To perform integration in equation (A15), we introduce a new integration variable ¢, = —ig.

For low frequencies, when (a)/ D)l/ ‘< s, x”', one can use an approximate equation (A6) for A,
Substitution ¢, into equation (A6) gives 1, ~—ig, exp(iia) where the plus sign in the exponent

corresponds to positive values of ¢, while the minus corresponds to negative g,. Substituting 4,

into equation (A15) and rearranging, we come to

O, ~-2iReexp(—ia)N, O, ~2iReN, (A16)
where
N =lim j exp {— BEBL exp(—ia)+ig, (x+ ig)} dq,- (A17)
Fotd q2

In order for the integral (A17) to be convergent a small value ¢ is formally added to the second term

in curly brackets. In this case the real part of the function in curly brackets is negative. Then the
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integral N is reduced to a tabular integral [Grandshteyn and Ryzhik, 2007], which can be rearranged

: 1”2 .
N = ZiGXP(%)(Wosaj K, (2exp{%}{xs cos a}l/zj, (A18)

to the form:

X
where K, is the modified first-order Bessel function. Substituting equations (A16) and (A18) into

the equation (A14), we obtain an approximate expression for the fluid pressure variation in a porous

medium.



