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The Laplace transform of equation (10) with respect to the variable  is given by 

. (A1) 

Here  is the Laplace transform parameter, the primes denote the derivatives with respect to  and 

 stands for Laplace transform of the function : 

. (A2) 

Substituting equations (11) and (13) for the functions  and  into equation 

(A1), yields 

. (A3) 

Here we made use of the following designation: 

 (A4)

First, we consider the homogeneous differential equation (A3), assuming formally that the 

right side of this equation is zero. The roots of the corresponding characteristic equation are given by 

. (A5) 
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When applying the inverse Laplace transform, the integration is performed in a complex plane 

 along a vertical axis parallel to the imaginary axis . Let us cut the complex plane q 

through the branch points  of the functions  and  in such a way that the 

inequalities  and  hold true on the integration path. In the extreme case, when 

 one can simplify equation (A5) for  and : 

 . (A6) 

Here the upper sign minus corresponds to the function , and the lower sign plus corresponds to the 

function . 

 Using the method of variation of constants, we find a general solution of the inhomogeneous 

differential equation (A3) 

 , (A7) 

where 

 . (A8) 

The undetermined coefficients  and  can be found from the boundary condition  

and the boundedness condition for the function  in the extreme case of . As a result, 

we obtain: 

 , (A9) 

where 

 . (A10) 

 In order to derive an approximate solution of the problem for the case of small depths , we 

first expand equation (A9) for the function  in a power series of , preserving only the first 

non-vanishing term: 

 . (A11) 
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Next, we substitute equation (A4) for the function  into equation (A11). After replacing the 

integration variable: , the integral in equation (A11) is reduced to tabular integrals 

[Grandshteyn and Ryzhik, 2007, p. 698]. As a result, we obtain: 

 . (A12) 

 The pressure of the pore fluid can be found by applying the inverse Laplace transform to 

equation (A12): 

 , (A13) 

Substituting equation (A12) for  into equation (A13) and taking into account that  near 

the boundary between the porous medium and the atmosphere, we get 

 . (A14) 

In the next we will ignore the Dirac delta function , since the approximate solution (A14) is 

valid in the region , where this function is zero. Here we made use of the following 

abbreviations: 

 . (A15) 

 To perform integration in equation (A15), we introduce a new integration variable . 

For low frequencies, when , one can use an approximate equation (A6) for . 

Substitution  into equation (A6) gives  where the plus sign in the exponent 

corresponds to positive values of  while the minus corresponds to negative . Substituting  

into equation (A15) and rearranging, we come to 

 , (A16) 

where 

 . (A17) 

In order for the integral (A17) to be convergent a small value  is formally added to the second term 

in curly brackets. In this case the real part of the function in curly brackets is negative. Then the 
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integral N is reduced to a tabular integral [Grandshteyn and Ryzhik, 2007], which can be rearranged 

to the form: 

 , (A18) 

where  is the modified first-order Bessel function. Substituting equations (A16) and (A18) into 

the equation (A14), we obtain an approximate expression for the fluid pressure variation in a porous 

medium. 
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