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A1. Apparent splitting parameters

To derive expressions for the apparent splitting parameters, we rewrite the splitting equation (10) in terms of radial 
and transverse displacement components. In view of Fig. 1a, with the angular difference  between back-azi-
muth and fast axis, we obtain

 . (A1)

For XKS phases in a radially symmetric Earth, it is usually assumed that  upon entering the anisotropic domain 
in the upper mantle beneath the receiver. Multiplication of the matrices yields

 , (A2)

where . Assuming an unsplit incoming wave with  and , at relatively long periods , 
such that  and , the radial component is unchanged, and the transverse component can be ex-
pressed by

  (A2a)

which, in the time domain, corresponds to the derivative of the radial component multiplied by . This 
result is also used in the approximate representation of the splitting intensity (see eq. 21). Note that the opposite sign 
results from the definition of the transverse component used here.

In short eq. (A2) can be written as

 . (A3)
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For two anisotropic layers, we have

 . (A4)

To derive apparent splitting parameters, we define an apparent splitting matrix  similar to eq. (A2) and equate

 , (A5)

 , (A6)

where 𝑘 is a complex number that allows for an arbitrary time shift and 𝜑𝑎 and 𝛿𝑡𝑎 (as obtained from 𝛿𝜑𝑎 and 𝜃𝑎) are 
apparent splitting parameters as first defined by Silver & Savage (1994). Note that  and , where the * 
denotes the complex conjugate (Rümpker & Silver 1998). In view of (A3) and assuming , elimination of 𝑘 yields 
two equations

 , (A7)

from which we obtain

 . (A8)

A2. Elastic constants for the laterally and vertically varying medium

For the modeling presented in this paper we start with the generic elastic constants for a general transversely isotropy 
medium with a vertical (fast) axis of symmetry, as defined in Rümpker & Kendall (2002), which allows for a convenient 
scaling of the elastic constants

 . (A9)

The density normalized elastic constants are given by

 , ,

 , , (A10)

 .
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We then apply a rotation such that the (fast) symmetry axis is oriented horizontally, at first along the 2-direction, 
which corresponds to geographic North in our modeling (back-azimuth 𝛽 = 0). A second rotation (with respect to the ver-
tical axis) is applied to align the fast axis with the specific value of 𝜑 in the anisotropic domain. The 1-direction is oriented 
horizontally along the profile (corresponding to geographic East) and the 3-direction is oriented vertically.

The curvature parameter 𝑎0 (eq. A10) is set to –1. The strength of the anisotropy is controlled by the parameter 𝑎1, 
according to , such that vertically propagating fast and slow shear waves accumulate the required delay time, 
𝛿𝑡, over the total thickness (𝛥𝑧 = 100 km) of the anisotropic domain. Note that our simplified formulation (A10) implies 
that the strength of anisotropy is the same for both P and S waves. The bulk isotropic P and S-wave velocities within each 
domain are the same as in the isotropic (𝑎1 = 0) section of the mantle (𝑣𝑃 = 8.3 km/s, 𝑣𝑆 = 4.5 km/s). For the isotropic crust, 
we assume 𝑣𝑃 = 6.2 km/s, 𝑣𝑆 = 3.5 km/s.


