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Abstract

Investigations into causal mechanisms behind anomalous pre‑earthquake phenomena are considered 
a promising way of earthquake prediction. Numerous promising channels for seismo-lithosphere-
atmosphere-ionosphere coupling have been proposed; however, predicting earthquakes remains 
a great challenge in the scientific society. Short‑period ground vibrations exhibiting frequency 
characteristics similar to natural frequencies caused by strata failure resonance have recently been 
detected using tiltmeters embedded in magnetometers prior to earthquakes. These vibrations 
originate from regions near the epicentres of forthcoming earthquakes and can be simultaneously 
detected by broadband seismometers and ground‑based global navigation satellite system (GNSS) 
receivers. Unlike the total electron contents (TECs) obtained from orbiting satellites, the vibrations 
and the identifiable TEC perturbations in data from geostationary satellites of the BeiDou Navigation 
System share frequencies prior to earthquakes. However, the causal relationship between the 
vibrations and TEC perturbations remains unclear due to a gap in data observations between the 
lithosphere and ionosphere. To address this issue, an instrumental array was established to monitor 
vibrations and perturbations in the lithosphere, atmosphere, and ionosphere. Observational data 
from the array partially fill the gap, and analytical results show that ground vibrations, air pressure, 
magnetic fields, and TEC data shared a common frequency of approximately 5 × 10–3 Hz (5 mHz) 
before major earthquakes. This suggests that the resonant ground vibrations trigger atmospheric 
resonance before earthquakes. Therefore, the double resonance (crustal and atmospheric resonance) 
model is a new explanation for the observed anomalies in multiple geophysical parameters in the 
lithosphere, atmosphere, and ionosphere. Retrieving resonant signals from multiple sources of 
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observational data is a significant challenge, but once this issue is overcome, double resonance may 
contribute to practical earthquake prediction.

Keywords: Lithosphere; Atmosphere and Ionosphere (LAI) coupling; Crustal resonance; Atmospheric 
resonance; Double resonance; System for Monitoring Vibrations and Perturbations in the Lithosphere; 
Atmosphere and Ionosphere (MVP‑LAI)

1. Introduction

Earthquake prediction remains a significant scientific challenge. Investigations into anomalous pre‑earthquake 
phenomena are considered a promising method to address this challenge [Scholz et al., 1973; Astafyeva et al., 2013; 
Hayakawa, 2015; Ma, 2016; Ouzounov et al., 2018]. It can be difficult to differentiate anomalous earthquake‑related 
phenomena from recorded data. Statistical tests have therefore been employed to examine the relationships between 
earthquakes and several geophysical parameters [Hattori et al., 2013; Liu et al., 2013, 2016; Han et al., 2014, 2017; 
Chen, Huang et al., 2015; Hattori and Han, 2018; Chen, Wang et al., 2020; Zhuang et al., 2021]. Seismo‑ionospheric 
anomalies are statistically distinct from geophysical data, such that they are considered promising candidates 
in earthquake prediction [Liu et al., 1996; Hayakawa, 2007], but are not yet applied in practice. Failure to predict 
earthquake occurrence can result in damage to the social economy.

Physical coupling has been investigated between the lithosphere, atmosphere, and ionosphere (LAI) [Sorokin et al., 
2006; Pulinets and Ouzounov, 2011; Hayakawa et al., 2021a, 2022; Liu et al., 2022]. As for seismo‑LAI coupling, they 
consider chemical, conductivity, acoustic‑gravity, and electromagnetic precursors to earthquake activity [Hayakawa 
2015, 2016]:

1)	 Chemical: Earthquake-related stress gradually accumulates in the crust, resulting in crack propagation prior to an 
earthquake [Zhuang et al., 2021]. Gases stored in the strata can then travel to the surface through these cracks. 
The near‑surface air composition is changed by the subsurface release of gases. Variations in air composition 
can affect the near‑surface electric field [Hao, 1989; Bleier et al., 2009; Chen, Li et al., 2022], which further drive 
changes in the ionosphere [Pulinets and Boyarchuk, 2004; Yasuoka et al., 2006].

2)	 Conductivity: Cracks also increase subsurface fluid migration. Increases in cloud‑to‑ionosphere lighting [Rodger, 
1999; Takahashi et al., 2003; Hayakawa et al., 2004] can heat the ionosphere [Inan et al., 1991; Pasko et al., 1997] 
because of changes in the underlying conductivity by fluid migration [Cho and Rycroft, 1998; Harrison et al., 
2010; 2014].

3)	 Acoustic‑gravity: Variations in near‑surface temperature can generate acoustic-gravity waves [VanZandt, 
1985; Davies, 1990; Tsuda et al., 1994; De la Torre et al., 1999; Hickey et al., 2001; Yang and Hayakawa, 2020]. 
Seismo‑thermal anomalies are frequently observed before major earthquakes [Tronin, 1999; Tramutoli et al., 
2005, 2013; Pulinets et al., 2006; Ouzounov et al., 2006, 2007; Choudhury et al., 2006] and are considered to be 
a major factor dominating the acoustic‑gravity response. Acoustic‑gravity waves generated by seismo‑thermal 
anomalies [Blackett et al., 2011; Qin et al., 2011; Kai, 2012; Zhang et al., 2019; Genzano et al., 2021] can propagate 
upward, driving changes in the total electron content (TEC) in the ionosphere [Miyaki et al., 2002; Shvets et al., 
2004; Korepanov et al., 2009; Kasahara et al., 2010; Hayakawa, 2011; Sun et al., 2011].

4)	 Electromagnetic: Electromagnetic emissions are known to occur before earthquakes due to processes such as 
deformation and microfractures in stressed rocks [Kasahara, 1981; Hadjicontis et al., 2004]. These emissions can 
affect the electromagnetic field near the Earth’s surface and directly interfere with the ionosphere, resulting 
in changes to TEC [Fraser‑Smith et al., 1990; Molchanov et al., 1993, 1995; Molchanov and Hayakawa, 1995].

Although scientists have proposed these four potential channels of seismo‑LAI coupling, the causal mechanisms 
of anomalous pre‑earthquake phenomena still remain unclear. This is because multiple anomalous parameters are 
generally retrieved from distinct stations at different distances from the earthquake epicentre.
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In 2016, an interesting phenomenon was captured by tiltmeters embedded in magnetometers in Taiwan. 
A  magnetic array comprising five three‑component fluxgate magnetometers  (FRG‑604RC, made in Japan) was 
established in Taiwan (Figure 1). Magnetometers monitor changes in the geomagnetic field routinely, sampling 
at a rate of 10 Hz. Tiltmeters with a sampling interval of 1 Hz were embedded in the magnetometers to determine 
whether the magnetic field was affected by ground tilts and/or vibrations. In general, raw tilt data exhibit 
diurnal and/or semi‑diurnal variations due to solid tides (Figures 1a and b). On 9 April 2016, short period (~3 h) 
tilt data lay on diurnal and semi‑diurnal variations, mainly at the NS  (north‑south) component at the HLG 
station (121.42°E, 23.59°N) (Figure 1c). In contrast, the short‑period mode appeared in the EW (east‑west) component 
at the TCD station (120.62°E, 24.33°N) (Figure 1d). The intersection between the NS direction of the HLG station and 
the EW direction of the TCD station is located offshore in the northeast of Taiwan. Two magnitude 5.7 earthquakes 
occurred close to this intersection on 11 and 27 April, 2016 (Figure 1). The period of the short‑period tilt data tends 
to increase after the earthquakes. This observation suggests that the short‑period tilt data are likely related to the 
earthquakes. The unusual phenomena of short‑period tilts and/or ground vibrations are thus examined by utilizing 
two distinct instruments simultaneously.

Figure 1. �Variations in raw tilt data from magnetometers in Taiwan on 1 and 9 April 2016. Locations of magnetometers and 
related epicentres are indicated by red rectangles and red stars in the centre diagram, respectively. Station codes 
for each magnetometer are shown below the red rectangles. (a) and (c) show variations in tilt data on 1 April 2016 
at the TCD and HLZ stations, respectively. (b) and (d) show variations in tilt data on 9 April 2016 at the TCD and 
HLZ stations, respectively. Blue and green lines are the NS and EW components of the tilt data, respectively.

Chen, Lin  et al. [2020] collected continuous seismic data from broadband seismometers and continuous 
positioning data at the surface from ground‑based Global Navigation Satellite System (GNSS) receivers, to examine 
whether short‑period tilt data could be indicative of true motion and related to global earthquake occurrences. Chen, 
Lin et al. [2020] eliminated perturbations in the data that could be attributed to typhoons, as well as continuous 
ground vibration data during the 2016 M6 Meinong earthquake in Taiwan. They found that the amplitudes of 
seismic and GNSS data were enhanced at frequencies between 8 × 10–5 Hz and 2 × 10–4 Hz ~20 days before the 
earthquakes. Furthermore, the method introduced in [Tanimoto et al., 2006] was utilised to investigate the potential 
source locations of the ground vibrations before the earthquakes. The investigation results show that the potential 
source locations are located close to the epicentres. Meanwhile, the areas to which the short‑period tilt data are 
attributed are larger than the fault rupture zones. Similar phenomena of earthquake localizations have been 
observed during major earthquakes in the United States, Mexico, and China [Chen, Lin et al., 2020]. This suggests 
that the observed ground vibrations are not a particular feature of Taiwanese earthquakes, but rather common to 
earthquakes worldwide.

To investigate the potential mechanism, the frequencies of ground vibrations before earthquakes are compared 
with the natural frequencies prior to material failure, as earthquakes are caused by fault dislocations. Chen, Lin et al. 
[2020] reported that the frequencies of ground vibrations roughly agreed with the natural frequencies of a square 
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sheet, estimated using the formula proposed by Leissa [1969]. Consistent enhancements in amplitude for the ground 
vibrations at the same frequency band have been observed 5‑10 days prior to other earthquakes. On the other hand, 
numerous studies have reported that earthquakes with relatively small magnitudes can be fore‑ and after‑shocks 
of major events [Ellsworth and Beroza, 1995; Reasenberg, 1999; Vidale et al., 2001; Scholz, 2002]. Chen, Sun et al. 
[2020] re‑estimated the sized of earthquake preparation zones by utilising all events from earthquake catalogues 
from Taiwan and Japan. They found that pre‑earthquake amplitude enhancements were not limited to a particular 
frequency band, but tended to occur at high frequencies  (up to ~0.01 Hz). Meanwhile, the enhancements with 
frequencies tending to high persist for more than one month before the earthquakes.

If the occurrence of ground vibrations before earthquakes is a consistent pattern, the next step is to determine 
how these ground vibrations change the ionosphere. Previous studies have reported that perturbations in the 
ionosphere can originate from typhoons [Chou et al., 2017a, 2017b], tornadoes [Nishioka et al., 2013], and ground 
vibrations [Liu et al., 2016a; Chen, Sun et al., 2022a] due to acoustic‑gravity waves. Near‑surface air pressure is an 
important parameter for determining whether the waves originating from ground vibrations in the lithosphere 
propagate upward through the atmosphere and into the ionosphere.

Chen et al. [2021a] examined air pressure data from two ground‑based barometers inside and outside a cave. They 
found that the air inside the cave travelled outside the cave before the occurrence of the 2016 Meinong earthquake 
[Chen et al., 2021a]. This suggests that the air was squeezed out of the limited cave space immediately before the 
earthquake. The results from Chen et al. [2021a] partially support the atmospheric seismo‑anomalies reported in 
previous studies [Dunajecka and Pulinets, 2005; Freund et al., 2022]. Ground vibrations would be another potential 
factor contributing to changes in TEC in the ionosphere before earthquakes by enhancing amplitude. However, 
the relationship between ground vibrations and changes in TEC was concluded utilizing different earthquakes and 
distinct instruments at a certain distance. Therefore, an array comprising distinct instruments across a given area 
is needed to monitor the process of perturbations and/or vibrations between the ground and space at particular 
altitudes to further clarify the seismo‑LAI coupling.

2. The system for Monitoring Vibrations and Perturbations in LAI (MVP‑LAI)

An instrumental array was established in the suburbs (29.6°N, 103.9°E) of Leshan City, Sichuan, China [Chen et al., 
2021b]. The array was situated in the eastern part of the Tibetan Plateau. A local altitude difference of ~3000 m 
between the array and the average height of the Tibetan Plateau creates an excellent opportunity to investigate 
vertical wave propagation along the walls of the plateau. The instrumental array comprised 15 different instruments 
with 22 deceives [for more detail, please see Chen et al., 2021b; https://geostation.top]. These instruments routinely 
monitor variations in more than 15 geophysical parameters between the subsurface and an altitude of ~350 km. 
Most instruments were installed within a ~400 m2 area to efficiently monitor vibrations and perturbations in the 
LAI (MVP‑LAI), particularly in the vertical direction.

Following integration of observational data retrieved from the China Seismo‑Electromagnetic Satellite [Shen, 
Zhang et al., 2018, Shen, Zhong et al., 2018] and radio occultation [Sun et al., 2016; Rajesh et al., 2021], data can 
be captured by the MVP‑LAI system up to an altitude of ~800 km. The MVP‑LAI system can be used to explore 
geophysical coupling via monitoring of natural hazards [Huang et al., 1985; Gufeld et al., 1992; Hayakawa et al., 
1996; Molchanov and Hayakawa, 1998; Bishop and Straus, 2006; Liu  et al., 2006, 2016a, 2016b; Sorokin  et al., 
2006, 2015; Hayakawa, 2007, 2011; Xiao et al., 2007; Oyama et al., 2008; Hayakawa and Hobara, 2010; Sun et al., 
2011; Polyakova and Perevalova, 2011; Rozhnoi et al., 2013; Ryu et al., 2015; Chum et al., 2016; Kelley et al., 2017; 
Zhou et al., 2017; Astafyeva, 2019; Chuo et al., 2020], near‑surface changes in climate [Rishbeth, 2006; Xu et al., 
2008], variations in space weather [Davies, 1990], and human activities[Molchanov et al., 2001; Gokhberg et al., 
1989; Chakrabarti, 2010; Laštovička and Šindelářová, 2019].

Instruments in the MVP‑LAI system were selected based on numerous studies [Hayakawa, 2015, 2016, and 
references cited therein] to examine potential LAI coupling. Data retrieved from broadband seismometers, 
thermometers, and barometers were utilised to investigate potential near‑surface acoustic‑gravity coupling. Two 
broadband seismometers with a sampling rate of 100 Hz were installed at opposite corners of the study area to 
monitor the propagation azimuths of ground vibrations. Four thermometers and barometers were placed in wells 
with depths of 5, 3, and 1 m, and a thermometer screen height of ~1.5 m. The thermometers and barometers 
monitor changes in temperature and air pressure with a sampling interval of 2 s. A Radar Wind Profiler (RWP), a 

https://geostation.top
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radio acoustic sounding system (RASS), and an Allsky camera were also included in the array to monitor wind fields 
from 0 m to ~4000 m in altitude, temperatures from 0 m to ~1000 m in altitude, and cloud shapes, respectively. 
The instruments aimed to capture potential evidence for the upward propagation of acoustic‑gravity waves into 
the ionosphere. A meteor radar and a very high frequency (VHF) coherent scattering radar operated by Wuhan 
University were located ~20 km southwest of the MVP‑LAI system. These radars detected atmospheric temperature 
and density at ~80 km above the Earth’s surface, and plasma irregularities at altitudes of approximately 90‑160 km. 
The instrumental array also included a fluxgate magnetometer with a sampling rate of 10 Hz.

Variations in magnetic data, particularly in the horizontal component, are partially caused by changes in the 
electric current [Yamazaki et al., 2016] at an altitude of ~100 km above the MVP‑LAI system. TEC variations in the 
ionosphere were monitored using ground‑based GNSS receivers with sampling rates of 1 Hz or 50 Hz. Electromagnetic 
signals transmitted from geostationary satellites operated by the BeiDou navigation system (BDS) were primarily 
utilised to evaluate TEC (i.e., BDSTEC) in the ionosphere [Su et al., 2018; Chen et al., 2022b; Wang et al., 2023]. 
The BDS geostationary satellites are located ~36,000 km above the equator and can monitor changes in the TEC 
at particular ionospheric pierce points  (IPPs) 24 h  a  day. The IPPs for the ground‑based GNSS receiver in the 
MVP‑LAI system were located ~250 km to the south. Other ground‑based GNSS receivers were installed in the 
CAXI (31.8°N, 105.8°E) substation for the BDS G2 satellite, and in the YADU (31.9°N, 103.4°E) substation for the 
BDS G3 satellite. These GNSS receivers were used to monitor changes in TEC at IPPs immediately over the MVP‑LAI 
system [Chen et al., 2022a].

To monitor potential chemical LAI coupling, the instrumental array included an emanometer, with a sampling 
interval of 10 mins, to monitor changes in radon concentration, and an atmospheric electric field meter with a 
sampling interval of 1 s to monitor the near‑surface electric field. Precipitation measurements from an udometer 
and cloud observations from the Allsky camera were utilised to eliminate the influences of other factors in the 
lower atmosphere.

To consider LAI coupling via conductivity, variations in groundwater were recorded with a piezometer. Magnetic 
data from the magnetometer were also utilised to investigate the underlying conductivity of materials through the 
magnetic transfer transform [Parkinson and Jones, 1979; Chen, Hsu et al., 2013; Chen, Lin et al., 2015; Mao et al., 
2020]. Air pressure and precipitation data from barometers and udometers were also considered to correct 
changes in groundwater levels because of the near‑surface climate [Bredehoeft, 1967; Igarashi and Wakita, 1995; 
Kingsley et al., 2001; Van Der Kamp and Gale, 1983; Roeloffs, 1988; Chen, Wang et al., 2013; Orihara et al., 2014; 
Chen, Tang et al., 2015].

To explore potential electromagnetic LAI coupling, changes in the amplitude of the geomagnetic field in the 
frequency band of ~0.01 Hz were examined. Ground vibrations from seismometers were also compared with magnetic 
data to clarify potential causal mechanisms of the ground‑electromagnetic coupling  (i.e.  motional induction, 
electrokinetic, and shaking effects) [Gao et al., 2016, 2020, 2021; Chen, Lin et al., 2021]. It is worth mentioning 
that the Hunga Tonga‑Hunga Ha’apai (HTHH) volcano erupted on 15 January 2022, novel and/or hybrid channels 
dominate changes in the TEC have been identified and separated by the MVP‑LAI system [Chen, Zhang et al., 
2022; Sun et al., 2022; Chen et al., 2023]. The observation results show that the MVP‑LAI system, with numerous 
instruments monitoring multiple parameters at distinct altitudes, has sufficient capability to capture signals related 
to LAI coupling.

3. Seismo‑LAI coupling associated with the 2021 M7.4 Maduo earthquake

On 21  May  2021 the M6.4  Yangbi earthquake occurred in Yunnan, southwest China. Almost 4 h later, the 
M7.4 Maduo earthquake occurred in northwest China, approximately 1000 km away from the Yangbi earthquake. The 
Maduo earthquake was the largest earthquake in China after the 2008 M8.0 Wenchuan earthquake. Numerous studies 
have reported multiple abnormalities before the Maduo earthquake [Xie et al., 2021]. For example, Chen et al. [2022b] 
computed BDSTEC data at 850 motionless IPPs from 170 ground‑based GNSS receivers, using electromagnetic 
signals transmitted from five BDS geostationary  (G1‑G5) satellites. They found temporary TEC perturbations 
associated with the Maduo earthquake over a wide area around the epicentre.

Here, we retrieved data from the same 170 ground‑based GNSS receivers, operated by the Crustal Movement 
Observation Network of China. The GPS  (Global Positioning System) TECs  (i.e.,  GPSTECs) in this study were 
computed by comparing the pseudoranges and phases of the dual‑frequency signals transmitted from the GPS 
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orbiting satellites [Liu  et al., 1996; Sun  et al., 2013]. The GPSTEC average values computed utilizing a 1‑hour 
moving window were removed from GPSTECs following the method in Chen et al. [2022b]; this processing mitigated 
interference mainly from solar activity.

Figure 2 shows the BDSTEC and GPSTEC perturbations associated with the Maduo earthquake from geostationary 
and orbiting satellites, respectively. Both BDSTEC and GPSTEC exhibit similar characteristics in regions far from 
earthquake epicentres (i.e., areas without earthquakes). In contrast, pronounced resident waves cannot be observed 
from GPSTEC data, but they are evident from the BDSTEC data. This suggests that signals from geostationary 
satellites are suitable for studying seismo‑TEC anomalies. Chen  et al. [2022b] explored potential mechanisms 
of LAI coupling via ground vibrations and TEC from the MVP‑LAI system. Enhancements of the amplitudes at 
frequencies vary from low to high  (~5 × 10–3 Hz), which can be consistently observed in the seismic and TEC 
data (Figures 3a and d). While the tendency of enhanced amplitudes to occur at high frequencies is consistent across 
major earthquakes worldwide [Chen, Lin et al., 2020, Chen et al., 2021c], the inference that TEC perturbations are 
triggered by ground vibrations lacks observational evidence linking changes on the ground to those in space.

We also collected air pressure and magnetic data from the MVP‑LAI system during the same study period 
to investigate potential LAI coupling. These data were transformed into the frequency domain using a Fourier 
transform. Trends in the power spectral density function of the frequency were removed. The trend‑free density was 
then smoothed, as shown in Figure 3. Figure 3 shows the time‑frequency‑power distributions of ground vibrations, 
air pressure, geomagnetic data, and TEC. Enhancements in the studied data (i.e. ground vibrations, air pressure, 
geomagnetic data, and TECs) occur at common frequencies of ~5 × 10–3 Hz a few days before earthquake occurrence. 
This frequency roughly agrees with the resonance frequency (~4 × 10–3 Hz) from the surface to the upper atmosphere 
[Chen, Saito et al., 2011; Dautermann et al., 2009; Liu et al., 2011; Matsumura et al., 2012; Saito et al., 2011]. This 
suggests that seismo‑resonance LAI coupling is the driving mechanism behind the changes in ground vibrations, 
air pressure, geomagnetic data, and TEC.

Figure 2. �Spatiotemporal distribution of TEC perturbations during the Maduo and Yangbi earthquakes. TEC data are 
retrieved from 170 ground‑based GNSS receivers in China (also see Chen et al., 2022b). TEC perturbations are 
computed by subtracting average (1‑hour moving window) TEC values from each TEC datapoint. (a) and (c) show 
TEC perturbations obtained from the GPS orbiting satellites. (b) and (d) show TEC perturbations retrieved 
from the BDS geostationary satellites. The reference point for the distance axis is located in southwest China 
at (28°N, 90°E). The vertical dashed lines indicate occurrence of the Yangbi and Maduo earthquakes. The black 
rectangles show that the TEC pertubations cannot be obviously observed in data from the GPS orbiting satellites, 
but are observed in data from the BDS geostationary satellites.
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4. Double resonance before earthquakes

This study suggests that two resonance systems control the observed responses from multiple geophysical 
parameters. One resonance system exists in the lithosphere before the failure of the crust (i.e. fault dislocation). The 
other is atmospheric resonance, which affects multiple geophysical parameters (i.e. ground vibrations, air pressure, 
geomagnetic field, and TEC), all of which share frequencies close to ~5 × 10–3 Hz. Here, we discuss the potential 
relationship between the two resonance systems. Chen, Sun et al. [2020] reported that seismo‑ground vibrations 
are distributed over a wide frequency band, mainly ranging between ~10–4 Hz and ~10–2 Hz. The frequencies of 
the vibrations are approximately consistent with the natural frequencies before material failure for a thin plate on 
the scale of a hundred kilometres [Leissa, 1969].

Lognonńe et al. [1998], Artu et al. [2004], and Dautermann et al. [2009] have reported that ground vibrations and 
air pressure are coupled (ground‑air coupling) at a frequency of 3.4 × 10–3 Hz; this coupling comes from continuous 
seismic waves, particularly Rayleigh waves. The frequency range of 10–4 Hz‑10–2 Hz reported by Chen, Sun et al. 
[2020] for ground vibrations before earthquakes include the frequency of 3.4 × 10–3 Hz that we identify for ground‑air 
coupling. Therefore, we conclude that ground vibrations with variable frequencies occur on a hundred‑kilometre 
scale several days before earthquakes [Bedford et al., 2020; Chen et al., 2011, Chen, Yeh et al., 2020]. Because of 
the similarity of the frequency of the ground vibrations and atmospheric resonance, these ground vibrations are 
a potential source of the atmospheric resonance before earthquakes. Therefore, double resonance is a key to the 
seismo‑LAI coupling.

Infrasound can originate directly from large‑scale ground vibrations. The vibrations trigger air‑pressure changes 
owing to the air‑ground coupling that generates atmospheric resonance and/or acoustic‑gravity waves that propagate 
upward into the upper atmosphere. Liu et al. [2016a] reported that upward propagation of acoustic‑gravity waves can 
drive changes in the magnetic field (due to the ionospheric current at ~100 km altitude) and the TEC (in the ionosphere 
at ~350 km altitude) as already suggested by Korepanov et al. [2009]. Therefore, persistent seismo‑vibrations on 
a hundred‑kilometre scale cause seismo‑magnetic and‑TEC anomalies over a wide area. The seismo‑magnetic 
anomalies are caused by multiple sources simultaneously: (1) the direct contribution of ground vibrations due to 
the motional induction effect [Gao et al., 2014, 2019; Zhao et al., 2021; Chen Lin, et al., 2021] and the electrokinetic 
effect [Gao and Hu, 2010; Ren et al., 2015; Gao et al., 2016, 2020]; and (2) the changes in ionospheric currents at 

Figure 3. �The time‑frequency‑spectrum distribution of the ground vibrations, air pressure, magnetic field, and TEC from 
the MVP‑LAI system. The red stars and vertical lines indicate the Maduo and Yangbi earthquakes. The black 
dashed lines from Chen et al. [2022b], which indicate the spectra that tend to high frequencies before earthquake 
occurrence, are marked in Figures 3b and c for reference.



Chieh-Hung Chen et al.

8

~100 km altitude due to acoustic‑gravity waves and atmospheric resonance [Korepanov et al., 2009; Liu et al., 2016a; 
Yamazaki et al., 2016; Chen et al., 2023].

Cloud shapes from an Allsky camera are another piece of evidence that partially supports acoustic‑gravity waves 
and atmospheric resonance before earthquakes. Acoustic‑gravity waves and atmospheric resonance affect clouds 
and induce railing shapes, also called earthquake clouds [Guo and Wang, 2008; Guo and Jie, 2013]. The enhancement 
of the near‑surface electric field can be attributed to dust from atmospheric resonance [Dolezalek et al., 1974]. The 
relationship between earthquakes and the Schumann resonance in the upper atmosphere has been reported by 
numerous studies [Ohta et al., 2006, 2009; Ouyang et al., 2013; Hayakawa et al., 2021b]. The Schumann resonance may 
originate from high frequencies of atmospheric resonance. In short, multiple geophysical parameters (i.e. infrasound, 
near‑surface electric field, cloud shape, electromagnetism, and TEC) can be attributed to persistent seismo‑vibrations 
on a hundred‑kilometre scale. The acoustic-gravity channel is therefore a promising candidate for seismo‑LAI 
coupling. Thermal anomalies are not only sources for the acoustic‑gravity variations observed but also for ground 
vibrations before earthquakes. Note that numerical simulations of acoustic‑gravity waves generated by a point 
source on the ground have also been processed [Gao et al., 2023].

5. MVP‑LAI in the near future

Observations associated with several earthquakes and the HTHH volcanic eruption have shown the capacity 
of the MVP‑LAI system to monitor vibrations and perturbations in the LAI. However, the MVP‑LAI system is 
insufficient [Hayakawa et al., 2023], and still limited in its observations of electromagnetic signals, infrasonic waves, 
and fluctuations in atmospheric layers at distinct altitudes. Observations of electromagnetic signals are limited to 
the frequency band between direct current (DC) and 10 Hz. Future inclusion of a magnetotelluric system will allow 
the MVP‑LAI system to routinely monitor electromagnetic signals across a wide frequency band, as well as detect 
changes in the underlying electric current. These instruments would be helpful in studying seismo‑electromagnetic 
anomalies in a relatively high frequency band, and exploring further the seismo‑Schumann resonance in the upper 
atmosphere [Hayakawa et al., 2021b].

Infrasound will also be installed in the system to capture air pressure in a relatively low‑frequency band, which 
is beneficial for the investigation of ground‑air coupling. Ionosondes and high‑frequency (HF) Doppler sounders 
will also be added to the MVP‑LAI system to enhance the capacity for monitoring fluctuations in the atmospheric 
layers, which is important evidence for wave propagation. An additional substation for a ground‑based GNSS receiver 
will also be established to receive electromagnetic signals transmitted from the BDS G1 satellite. Using different 
azimuths of GNSS receivers across three substations is beneficial for observing the TEC across the study area and 
studying wave propagation in different directions [Wang et al., 2023]. Indeed, using the MVP‑LAI system at only one 
site (i.e. Leshan) was inefficient for monitoring the slant propagation of vibrations and perturbations. An additional 
one or two sites for the MVP‑LAI system are required to form an MVP‑LAI array. An array would not only facilitate 
confirmation of our observations, but also capture additional directions of vibrations and perturbations.

6. Conclusions

The MVP‑LAI system, in conjunction with the BDS geostationary satellites, helped to alleviate the shortage 
of observation data between the ground and space in the past. The air pressure and magnetic data establish a 
link between ground vibrations in the lithosphere and TEC in the ionosphere, which allows us to investigate the 
potential mechanisms of the seismo‑LAI coupling during earthquakes. The obtained evidence proposes a novel 
double‑resonance mechanism to describe multiple geophysical parameters in seismo‑LAI coupling: (1) ground 
vibrations occurring on the scale of a hundred kilometres, where crustal resonance happens due to material 
failure (i.e.  fault dislocation); and (2) a common frequencies of ~5 × 10–3 Hz in air pressure, the magnetic field 
and TEC due to atmospheric resonance. The double resonance mechanism supports the anomalous geophysical 
parameters observed from the near‑surface to the ionosphere, particularly for TEC and thermal anomalies 
distributing in wide areas reported in the previous studies. The development of a powerful method for sufficiently 
retrieving resonance signals from multiple parameters will play an important role in studying the double resonance 
in seismo‑LAI coupling in the future.
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