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Abstract

In the present paper we consider the earthquake forecast as a binary problem of machine learning 
on the imbalanced data base applied to five regions of Georgia. For the training we used geophysical 
data base collected in 2017‑2021, namely, variations of statistical characteristics of geomagnetic 
field components, seismic activity, water level in deep boreholes and tides. In this version a new 
predictor – the weighted seismic activity for previous 5 days ‑  – is added compared to the 
predictors’ list used in previous papers. Besides, the length of the used database is increased 3 times 
compared to the earlier results. As in the database the earthquakes of M > 3.5 are rare, the number 
of negative cases is large (there are many days without EQs of M > 3.5), meaning that there is a 
strong imbalance between positive and negative cases of the order of 1:20; we apply the specific 
methodology Matthews’ correlation coefficient (MCC) and F1 score to avoid the strong imbalance 
effect.

Keywords: Earthquake forecast; Water level in wells; Geomagnetic variations; Micro‑seismicity; 
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1. Introduction

The seismic process is without doubt a complex process: according to the accepted definition, complexity appears
in systems, which are composed of many components interacting nonlinearly. The complexity theory (nonlinear 
dynamics) approach, requires the detail knowledge of the real process, which allow to describe it by the system of 
differential equations. Complexity analysis allow revealing the existence of long‑term correlations in the temporal, 
spatial and energy distributions in dynamical systems such as seismicity using mathematical models of the process 
[Chelidze et al., 2018]. On the other hand, last years appear modern machine learning (ML) approach, which is 
concerned with developing algorithms. ML methods improve their performance with increasing the volume of input 
information [Li, 2020]. This approach gained increasing attention in solving the problems, where it is impossible 
to formulate exact mathematical models but on the other hand there are a lot of real data measurements. The ML 
allow to create data‑driven approach to understanding and forecast of behavior of many complex system without 
constructing the exact analytical model – in contrast to the complexity theory.
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Last years, ML approach give a lot of promising results in forecasting both laboratory and natural earthquakes 
[Rouet‑Leduc et al., 2017; Rouet‑Leduc et al., 2018; Ren et al., 2020; Johnson et al., 2021]. It is interesting to note 
that one of the first publications devoted to application of ML for the EQ forecast belong to Chelidze et al. [1995]. 
In the paper authors applied the method of Generalized Portrait (now Support Vector Machine, SVM) suggested by 
Vapnik and Chervonenkis [1974], Vapnik [1984] to forecast the Caucasian EQs of magnitude 5 and more.

In the earlier paper [Chelidze et al, 2020] the problem of EQ forecast in the Caucasus region was considered using 
one‑year only WL and geomagnetic observations. In the present paper a new predictor – the weighted seismic activity 
for the previous 5 days  – is added compared to the predictors used in the previous paper. The parameter 
reflects the previous seismic activity in the chosen area for a given time interval and is used for improving the model, 
predicting future relatively strong (M > 3.5) events. Besides, in the previous paper, due to scarcity of data, we apply 
ML to any of chosen four regions and used fifth regions’ data for testing. In the present paper, the length of the tested 
database is increased 3 times compared to earlier results; in this case the data for training/testing were divided in 
the ratio 70/30 for each station and learning was carried out for each of them independently.

In our region the ratio of time intervals containing EQs of M > 3.5 to the duration of seismically quiet periods is 
approximately 1:20, which mean that during a year the seismically active periods for EQs of M > 3.5 is approximately 
20 times shorter than that of aseismic periods. Consequently, in the learning sequence there is a clear imbalance 
between seismo‑active and quiet periods, which should be taken into consideration.

2.  The network of observations, preparation of data bases and methodology 
of analysis

2.1 The network

M. Nodia Institute of Geophysics at Tbilisi State University serves the geophysical observation network including: 
geomagnetic variation, water level in deep wells, earth tides and temperature. The seismic network is served in 
recent years by the Seismological Monitoring Center of Ilia State University (Tbilisi). Analysis of the data show that 
there are certain connections between anomalies in the observed fields and seismic events of M > 3.5, which allow 
to develop an EQ forecasting ML model.

Figure 1.  Map of Georgia with location of deep wells’ network (red circles) for water level monitoring and Dusheti 
Geophysical Observatory.
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WL monitoring network in Georgia include several deep wells, drilled in confined sub‑artesian aquifers: data obtained 
at stations Kobuleti, Akhalkalaki, Ajameti, Chakvi, Lagodekhi were used in this paper (Figure 1). Measurements are 
done by sensors MPX5010 with resolution 1% of the scale (company Freescale Semiconductors; www.freescale.com) 
and recorded by data logger XR5 SE‑M (company Pace Scientific; http://www.pace‑sci.com/data‑loggers‑xr5.htm). 
The sampling rate at all these wells was 1/min. The data are transmitted remotely by the modem Siemens MC‑35i 
Terminal using program LogXR. Variations of water level represent an integrated response of the aquifer to 
different periodic and quasi‑periodic (tidal variation, atmosphere pressure) as well as to non‑periodic influences – 
earthquakes. EQ‑related strains in the earth crust are of the order of 0.1‑0.001 µm. The atmosphere pressure factor 
was subtracted from the summary WL variations.

Magnetic data (x, y, z components) were obtained at Dusheti Geophysical Observatory (Lat 42.052N, Lon 44.42E), 
with the fluxgate magnetometer FGE‑95 (Japan); the count rate was 1/sec and accuracy 0.1 nT.

Anomalies in hydraulic [Wang and Manga, 2010] and geomagnetic data [Balasis et al., 2011; Zotov et al., 2013; 
Buchachenko, 2021] as the phenomena observed in the precursor manifestation area R. Here we choose the radius 
of manifestation area (interaction length) R = 200 km for hydraulic precursors of EQs of M > 3.5 for a given well. 
There are different assessments of EQ precursors’ area [Dobrovolsky et al., 1979, Pregean and Hill, 2009]. We presume 
that there are at least two physical mechanisms, which can explain the accepted long radius of action of hydraulic 
precursors (R = 200 km): i. poroelastic effect and ii. fast squirt‑flow of pore water from the future EQ source to 
the well [Dvorkin et al., 1994]. Such signals can travel a long distances [Chelidze et al., 2019]. We accept that the 
interaction length R for geomagnetic precursors of the order of 300 km around Dusheti observatory.

2.2 Preparation of databases and methodology of analysis

We consider our work as a ML problem aimed at solving a binary classification task of detecting regions/periods, 
where the M > 3.5 EQ probability is high or low. Analysis of our regular geophysical observations (1 count per min) 
and 5‑days seismicity characteristics lead to conclusion on existence of anomalies in statistical assessments of 
these data before M > 3.5 EQs. Namely, some days before EQs the above geophysical parameters became unstable 
and form time sequences with high dynamical characteristics. In order to reveal the abovementioned connection, 
we carried out pre‑formatting of the observed data for application of machine learning tools, where we take the 
data of the previous five days as the known statistics (Input) and as the Output – the occurrence or absence of the 
M > 3.5 event as the sixth day after every five days. In other words, we train the program during 5 days in order to 
predict the 6‑th days’ seismicity, namely, occurrence of M > 3.5 EQ or absence of such event.

Now we define the way, in which the new seismicity predictor is calculated. For each time moment ti the following 
expression, assessing the local seismicity is calculated for the previous 5‑days window:

(1)

here Mj is the magnitude of a given EQ in the catalog for the moment tj, ti – tj is the time interval before this EQ; 
i and j have the 1‑minute discretization; 5*1440 is the 5‑days duration running window expressed in minutes; the 
i value varied from 5*1440 to 2,102,400 for a given region. As a result of calculations by (1) we obtain the value of 

 for all ti moments. From the equation (1) it is evident that the longer is the time interval in the 5‑day window 
without EQ, the less is its weight in the value of  . Quite often  , as during 5‑days period there does not 
occur any EQ. So, actually, the  depend on the short‑term foreshock activity before M > 3.5 EQ; the short‑term 
activation of weak seismicity before strong EQ is one of accepted predictors [Artikov et al., 2018; Saccorotti, 2022].

According to (1), the value  is sometimes a large number, so the expression 1‑1/  converts it to the 
range [0:1], which is more convenient for graphical representation of the results.

In Figure 2 we present the probabilistic‑statistical dependence between normalized values of function 1‑1/
and EQ occurrence. In other words, if the occurrence of EQ events is correlated in time and space (namely, if in the 
5‑days window one or more EQ of magnitude 3.5 is fixed), the probability of EQ in the nearest future increases.

Thus, it seems that calculation of function  and its inclusion in the EQ forecast model should improve the 
results.

http://www.freescale.com/
http://www.pace-sci.com/data-loggers-xr5.htm
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2.3 Structure of the learning base and machine learning application principles

Algorithms of ML are often used to forecast complex processes, especially when data are very big. In our previous 
papers, the analysis was founded only on the one‑year WL and geomagnetic data collected for five regions of Georgia 
[Raschka, Mirjalili, 2019]. In the present paper the volume of input data increases 5‑folds; besides, the preliminary 
seismicity parameter  is added to predictors’ list.

The systematic predictive signs were revealed in the spectral and different statistical parameters of observed 
fields’ time series. Below we present the scheme illustrating the whole cycle of training/testing operations for 
performing ML‑based forecast (Figure 3).
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Figure 2.  The dependence between 5‑days values of  and probability of frequency of EQ M > 3.5 occurrence obtained 
for the next 6‑th day (i.e. the value of  normalized in the interval [0,1] in order to avoid large values of ).
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7. Independent forecasting models 
are obtained for each region, based 
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Figure 3. The block‑scheme of actions in the machine learning EQ forecast method.
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In the accepted ML model, we divide experimental data at the ratio 70/30%, where 70% of the data are used for 
training and remaining 30% – for testing. This approach is widely used to create a set of independent forecasting 
models for different regions [Raschka and Mirjalili, 2019]. The use of multiple 70/30% splits helps to assess the 
robustness of the models and their ability to generalize different data scenarios. This operation serves to give 
statistical significance to above procedure – the randomization of training parts helps in creating a diverse set of 
training and testing data. This is important to ensure that each split is statistically significant and representative of 
the region’s data distribution. Besides, we used hyperparameter tuning: since we use 50 training models per region, 
the operation become crucial to achieve optimal model performance. Each model might perform differently based 
on factors like learning rate, regularization strength, etc. So the code for the XGBoost is:

XGBoost Specify hyperparameters = {‘objective’: ‘binary:logistic’, ‘max_depth’: 3, ‘learning_rate’: 0.1,  
‘n_estimators’: 100, ‘subsample’: 0.7, ‘colsample_bytree’: 0.8, ‘gamma’: 0.1, ‘alpha’: 0.1, - L1 regularization,  
‘lambda’: 1 ‑ L2 regularization}.

In Table 1, we present the input data for ML as well as the output EQ data: in total, there are 29 inputs and one 
output – for data fields nomination. The mentioned inputs present statistical values of WL, seismic and geomagnetic 
predictors in 5‑day windows. Since we have every minute observations (1440 data set per day), we create the 
following table for different statistical parameters – average, Max, Min, Std Dev of these data as well as for the 
seismic criterion  , determined by formula (1). The terms in the Table 1 are shortened comments on the previous 
5 days’ values of the parameters used – for example: average of MagnitX is the average value of the X component of 
magnetic field for the previous five days, Max of water – is the maximum value of water level for the previous five 
days, etc. Note that the weight of the suggested seismicity qualifier is quite high (Figure 4).

Inp_1 Average of MagnitX Inp_16 Min of MagnitY

Inp_2 Average of MagnitY Inp_17 Min of MagnitZ

Inp_3 Average of MagnitZ Inp_18 Min of Tid1

Inp_4 Average of Tid1 Inp_19 Min of Tid2

Inp_5 Average of Tid2 Inp_20 Min of Tid3

Inp_6 Average of Tid3 Inp_21 Min of water

Inp_7 Average of water Inp_22 StdDev of MagnitX

Inp_8 Max of MagnitX Inp_23 StdDev of MagnitY

Inp_9 Max of MagnitY Inp_24 StdDev of MagnitZ

Inp_10 Max of MagnitZ Inp_25 StdDev of Tid1

Inp_11 Max of Tid1 Inp_26 StdDev of Tid2

Inp_12 Max of Tid2 Inp_27 StdDev of Tid3

Inp_13 Max of Tid3 Inp_28 StdDev of water

Inp_14 Max of water Inp_29

Inp_15 Min of MagnitX

Table 1. The structure of learning database.

We used the XGBoost algorithm for machine learning; this allow calculate importance of features using the 
built‑in methods provided by the XGBoost library [Raschka, Mirjalili, 2019]. The plot of importance function provided 
by XGBoost creates a bar chart in Figure 4 showing the importance scores of features based on their contribution 
to the model’s performance. The importance scores are calculated using the “weight” metric by default, which 
represents the number of times a feature is used to split the data across all trees in the ensemble. We can customize 
the metric using the importance_type parameter of the plot_importance function.
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3. Machine Learning algorithms

3.1 Solution of imbalance problem and algorithm training

The ML algorithm was initially designed for the analysis of the balanced datasets, where, in the bivariate case, 
the number of 0 and 1 events is almost equal. In reality, in many problems, the data sets are imbalanced and 
without application of special methods, the decision of machine will be biased. Namely, the minority class, which 
can be the most interesting one in such problems as medicine, business, catastrophe forecasts can be ignored at 
all [Fernandez et al., 2018; Mena and Gonzales, 2006; Johnson and Khoshgoftaar, 2019; Malik and Ozturk, 2020; 
Brunton and Kutz, 2022].

As we mentioned earlier, in Georgia the ratio of time intervals containing EQs of M > 3.5 to “quiet” interval 
(time intervals without EQs of M > 3.5) is 1:15‑1:20, i.e. there is strong enough imbalance between minority – 
“seismo‑active” and majority – “quiet” cases. It is known that in order to overcome the imbalance we have to 
compensate its effect [Chawla et al, 2018; Brownlee, 2021], which can be avoided by special technique – well planned 
artificial multiplication of strong seismic events in the learning sequence. This procedure is called oversampling in 
the ML approach [He and Garcia 2009, Brownlee, 2021]. In the paper, we present the results of ML approach applied 
to learning sequences composed by the above technique.

It is known that chaotic impact on the training data lead to grave mistakes in ML, especially when one deals 
with the necessity of data oversampling. We have run into the problem due to strong imbalance in the significant 
EQs’ data. It is important to note that correction of imbalance should be done before learning procedure only on 
the randomly chosen part of the whole training set and only 30% of data should be left as the testing part.

 We used special library of Python – imblearn.over_sampling SMOTE for learning. The results show that despite 
complexity of data randomization of training samples did not affect significantly MCC results. As the learning 
algorithm the method: XGBoost for the Balanced (Oversampled) Sets was used.

Figure 4.  Weights of different statistical measures obtained in the process of machine learning using average input data 
for all five regions (blue columns). The red curve shows the cumulative percent of separate weights. Note that 
the weight of the suggested seismicity qualifier is quite high.
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3.2 Analysis of the obtained results; Choosing appropriate metrics

After some tests it became evident that in order to find some useful joint “memory” in different time series we 
need to use the deep learning algorithms (DLA). We apply the stochastic optimization scheme ADAM (Kingma and 
Ba, 2014) for a joint data analysis: this approach leads to optimization of the target function by stochastic gradient 
approach using combination of algorithms [Karpathy, 2017].

In order to correctly assess the effectiveness of ML algorithms in the case of strong imbalance between majority 
and minority classes it is recommended to use Matthews correlation coefficient MCC or F1 score measure [Matthews, 
1975; Chicco and Jurman, 2020; Chicco et al., 2021; Chelidze et al., 2022]:

(2)

where TP, TN, FP, FN are correspondingly correctly predicted positives, correctly predicted negatives, wrongly 
predicted positives and wrongly predicted negatives. The MCC coefficient varies in the range (–1, 1); the model is 
optimal if the MCC = 1. MCC is a measure, which can be used even for imbalances data, i.e. when the numbers of 
negative and positive classes are very different. MCC close to (+1) provide high values of all main parameters of 
confusion matrix.

At the same time, according to Chicco et al., [2021], if one of the classes (say, positive ones) is more important 
than negative cases, the F1 can be the preferable score. The F1 score is a harmonic mean of Precision and Recall. 
Precision and Recall are preferable when the data are imbalanced as they take into account both types of errors 
(false negatives as well as false positives). The resulting single metric works well on imbalanced data:

(3)

F1 varies in the range (0, 1). The maximum value 1 is reached for the perfect positive classification, i.e. when 
FN = FP = 0 and the minimum value 0 is attained at TP = 0.

Figure 5.  The range of variation of ML results for Matthews’ correlation coefficient for 5 regions after 50 randomization 
tests for 70/30 divided training/testing sequences. The comments on meaning of different marks in the graph 
are presented in the window on the left.
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As mentioned above, we prepared independent learning‑training tables for 5 regions and carried out the learning 
procedure for each of them separately. The table length for each region was 5*365 = 1825; 70% of these data was 
used for training, and 30% – for testing procedure. After this, the data for each region were randomized 50 times 
and training and learning procedure were carried out on the randomized data sets. Figure 5 shows the results of 
learning on the randomized sequences using MCC. In the specific, figure illustrates the range where the Matthews 
correlation coefficient varies due to the randomization. It is evident that the width of distribution of MCC values 
differs for various regions, but generally, even after many randomizations tests the results are quite stable, which 
seems encouraging.

It’s crucial to note that we do not balance the test data. Balancing test data would be counterproductive, as it 
might lead to misleading results. We partitioned the training data 50 times, balanced the training set each time, 
and then made predictions on this test set. The outcomes were consistent with only slight variations (Figure 5). 
Note, when we organize the data based on the study period – i.e. training on the data from January to September 
and testing from October to December – there are no significant differences in the results.

It is evident that increasing data length (time interval) does not change our preliminary estimates. Using the 
results of the above analysis, we compiled the confusion matrix (Table 2) forecasting EQs of M ≥ 3.5 around the 
Axalkalaki, Adjamerti, Chakvi, Kobuleti and Lagodekhi boreholes for the years 2017‑2021.

Adjameti

TN 428 34 FN

FP 27 58 TP

Akhalkalaki

N 414 49 FN

FP 19 66 TP

Chakvi

TN 420 44 FN

FP 24 60 TP

Kobuleti

TN 435 45 FN

FP 19 49 TP

Lagodekhi

TN 451 31 FN

FP 22 44 TP

Table 2. The ML confusion matrix results for 30% randomized data from five regions.

The forecast results were assessed using MCC, F1 score and Accuracy values – Table 3, where we present ML 
results for different statistical measures obtained at 5 stations.

Table 3 shows that the results for F1 score, which is the combination of Precision and Recall, lead to estimates 
0.85 ± 0.010, close to MCC values – 0.8 ± 0.012.

As was expected, the Accuracy assessment seems to be too optimistic. This is the result of strong imbalance in 
the input data – namely, to large values of TN [Chelidze et al., 2022]. As a result, the minority class (strong EQs) is 
practically ignored in Accuracy assessment.
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4. Testing MCC results on randomized EQ catalog

For testing the validity of MCC and F1 score approach, we randomized the input training data. Namely, in the 
majority (aseismic) data sets we implanted randomly the additional seismic events according to the following 
rule: in the middle of the quiet‑days cluster, we place one event of M > 3.5. According to the theory, MCC for 
randomized data sets should decrease significantly. Below we show the results of MCC testing on the randomized 
5 regions’ data. The measures were taken to avoid the imbalance effect and exclude the overfitting possibility. After 
regularization (balancing) of the training data, we build the Confusion Matrix and performed Receiver Operating 
Classification in order to forecast the next day probability of M > 3.5 earthquake occurrence. We found that after 
randomization of EQ dates in the training dataset both MCC and F1 score decrease significantly, when Accuracy 
stays too optimistic (Table 4).

Matthews Coef. Accuracy Precision Recall F1 score

Adjameti 0.564 0.888 0.658 0.602 0.629

Akhalkalaki 0.594 0.873 0.773 0.576 0.660

Chakvi 0.568 0.874 0.713 0.579 0.639

Kobuleti 0.548 0.883 0.721 0.521 0.605

Lagodekhi 0.576 0.903 0.672 0.592 0.629

Table 4. Training results for all five regions after earthquake events’ time randomization.

5. Conclusions

In the present paper the EQ forecast problem for the West Caucasus region is considered, using data on 
geomagnetic variation, water level in deep wells, earth tides as well as additional predictive seismological parameter 

 on 3‑years long learning/testing period.  characterize the EQ activity in the 5‑days intervals before events 
of M > 3.5.

 Matthews Coef. Accuracy Precision Recall F1 score

Adjameti 0.812 0.934 0.890 0.820 0.853

Akhalkalaki 0.788 0.921 0.873 0.809 0.840

Chakvi 0.798 0.927 0.863 0.828 0.845

Kobuleti 0.804 0.925 0.903 0.807 0.853

Lagodekhi 0.798 0.926 0.880 0.813 0.845

Table 3. The averaged results of ML for different regions.
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Besides, special attention was paid to compensate the imbalance effect leading to overfitting of data. We show 
that by application of the oversampling approach it is possible to obtain balanced assessments.

The confusion matrix was obtained, which show that such statistical measures, as Matthews correlation 
coefficient and F1 score give good results in forecasting regional events of M > 3.5, namely MCC in the range 
0.8 ± 0.012 and F1 score in the range 0.85 ± 0.010. After randomization of the EQ catalog, the values of both MCC 
and F1 score decrease considerably.
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