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1. A: Geometric-growth model of energy accumulation in focus

In Apostol [2006] a typical earthquake is considered, with a small focal region localized in the solid crust of the Earth. 
The dimension of the focal region is so small in comparison to our distance scale, that we may approximate the focal region 
by a point in an elastic body. The movement of the tectonic plates may lead to energy accumulation in this point-like focus. 
The energy accumulation in the focus is governed by the continuity equation (energy conservation)

	 � (A1)

where E is the energy, t denotes the time and v is an accumulation velocity. For such a localized focus we may replace 
the derivatives in equation (A1) by ratios of small, finite differences. For instance, we replace  by  for the 
coordinate x, etc. Moreover, we assume that the energy tends to zero at the borders of the focus, such that , where 
E is the energy in the centre of the focus. Also, we assume a uniform variation of the coordinates of the borders of this 
small focal region, given by equations of the type  , where u is a small displacement velocity of the medium in the 
focal region. The energy accumulated in the focus is gathered from the outer region of the focus, as expected. With these 
assumptions equation (A1) becomes

	 � (A2)

Let us assume an isotropic motion without energy loss; then, the two velocities are equal, v = u, and the bracket in 
equation (A2) acquires the value 3. In the opposite limit, we assume a one-dimensional motion. In this case the bracket in 
equation (A2) is equal to unity. A similar analysis holds for a two dimensional accumulation process. In general, we may 
write equation (A2) as

	 � (A3)

where r is an empirical (statistical) parameter; we expect it to vary approximately in the range (1/3,1). We note that 
equation (A3) is a non-linear relationship between t and E. The parameter r may give an insight into the geometry of the 
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focal region. Also, it reflects the structural condition of the focal region, by the relation between the two velocities v and 
u. We call this model a geometric-growth model of energy accumulation in the focal region.

It is shown in Appendix B that the parameter r is related to the Gutenberg-Richter parameter 𝛽 and the Hanks-Kanamori 
constant b = 3.45 (3/2 in decimal logarithms) through 𝛽 = br.

A special attention is given to shearing faults, which are typical earthquake sources. The energy accumulation takes place 
along one direction, say ux = vx, but the mass conservation requires, on the average, a motion in opposite directions along, 
say, the perpendicular y-axis [Apostol, 2019]. This makes uy = 2vy (2 from the two opposite directions), which, together with 
uz = 0, leads to r = 2/3. Indeed, this is the mean value of the ratio r = 𝛽/b, accepted as reference value (𝛽 = 2.3, b = 3.45, 
r = 2/3, see the main text).

The integration of equation (A3) needs a cutoff (threshold) energy and a cutoff (threshold) time. During a short time t0 a 
small energy E0 is accumulated. In the next short interval of time this energy may be lost, by a relaxation of the focal region. 
Consequently, such processes are always present in a focal region, although they may not lead to an energy accumulation in 
the focus. We call them fundamental processes (or fundamental earthquakes, or E0-seismic events). It follows that we must 
include them in the accumulation process, such that we measure the energy from E0 and the time from t0. The integration 
of equation (A3) leads to the law of energy accumulation in the focus

	 � (A4)

The time t in this equation is the time needed for the accumulation of the energy E, which may be released in an 
earthquake (the accumulation time). This is the time-energy accumulation equation referred to in the main text.

2. B: Gutenberg-Richter law. Time probability

The well-known Hanks-Kanamori law reads

	 � (B1)

where  is the seismic moment, M is the moment magnitude and b = 3.45 (3/2 for base 10). In Apostol [2019] the relation 
 has been established, where  (mean seismic moment), Mij is the tensor of the seismic moment 

and E is the energy of the earthquake. If we identify the mean seismic moment with  we can write

	 � (B2)

(another const), or

	 � (B3)

where E0 is a threshold energy (related to const). Making use of equation (A4), we get

	 � (B4)

where 𝛽 = br. From this equation we derive the useful relation , or . If we assume that the 
earthquakes are distributed according to the well-known Gutenberg-Richter distribution,

	 � (B5)
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we get the distribution

	 � (B6)

[Apostol, 2006]. This law shows that the probability for an earthquake to occur between t and t + dt is  ; since the 

accumulation time is t, the earthquake has an energy E and a magnitude M given by the above formulae (equations (B2) 
and (B3)). The law given by the equation (B5) is also derived [Apostol, 2021] from the definition of the probability of the 

fundamental E0-seismic events ( ). We note that this probability assumes independent earthquakes.

3. C: Time-time correlations

In general, if two earthquakes are mutually affected by various conditions, and such an influence is reflected in the above 
equations, we say that they are correlated to each other. Of course, multiple correlations may exist, i.e. correlations between 
three, four, etc. earthquakes. We limit ourselves to two-earthquake (pair) correlations. Very likely, correlated earthquakes 
occur in the same seismic region and in relatively short intervals of time. The physical causes of mutual influence of 
two earthquakes are various. In Apostol [2021] three types of earthquake correlations are identified. In one type the 
neighbouring focal regions may share energy. Since the energy accumulation law is non-linear, this energy sharing affects 
the occurrence time. We call these correlations time-magnitude correlations (or energy-energy correlations), as described in 
the main text. They are a particular type of dynamical correlations. In a second type of correlations, to be described below, 
two earthquakes may share their accumulation time, which affects their total energy. We call such correlations time-time, 
or purely dynamical correlations. Both these correlations affect the earthquake statistical distributions; in this respect, 
they are also statistical correlations. Finally, additional constraints on the statistical variables (e.g., the magnitude of the 
accompanying seismic event be smaller than the magnitude of the main shock) give rise to purely statistical correlations.

Let us assume that an earthquake occurs in time t1 and another earthquake follows in time t2. The total time is t = t1 + t2, 
such that these earthquakes share their accumulation time, which affects their total energy. These are time-time (or purely 
dynamical) correlations. According to equation (5) (and the definition of the probability), the probability density of such 
an event can be obtained

	 � (C1)

(where  , ). By passing to magnitude distributions ( ), we get

	 � (C2)

(where  , corresponding to  , which introduces a factor 2 in equation (C1)). This formula (which 
is a pair, bivariate statistical distribution) is established in Apostol [2021]. (We note that there is no restriction upon M2 in 
comparison with M1, in contrast to the time-magnitude correlations). If we integrate equation (C2) with respect to M2, we 
get the distribution of a correlated earthquake (marginal distribution)

	 � (C3)

If we integrate further this distribution from M1 = M to +∞, we get the correlated cumulative distribution

	 � (C4)
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From M ≫ 1 the correlated distribution becomes  and  , which shows that the slope 𝛽 
of the logarithm of the independent cumulative distribution (Gutenberg-Richter, standard distribution ) is not changed 
(for large magnitudes); the correlated distribution is only shifted upwards by ln 2. On the contrary, for small magnitudes 

(M ≪ 1) the slope of the correlated distribution becomes  (  by a series expansion of equation (C4)), 

instead of the slope of the Gutenberg-Richter distribution ( ). The time-time correlations modify the 
slope of the Gutenberg-Richter standard distribution for small magnitudes. This is the roll-off effect referred to in the 
main text.


