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1. A: Geometric-growth model of energy accumulation in focus

In	Apostol	[2006]	a	typical	earthquake	is	considered,	with	a	small	focal	region	localized	in	the	solid	crust	of	the	Earth.	
The	dimension	of	the	focal	region	is	so	small	in	comparison	to	our	distance	scale,	that	we	may	approximate	the	focal	region	
by	a	point	in	an	elastic	body.	The	movement	of	the	tectonic	plates	may	lead	to	energy	accumulation	in	this	point-like	focus.	
The	energy	accumulation	in	the	focus	is	governed	by	the	continuity	equation	(energy	conservation)

 	 (A1)

where E is the energy, t	denotes	the	time	and	v	is	an	accumulation	velocity.	For	such	a	localized	focus	we	may	replace	
the	derivatives	in	equation	(A1)	by	ratios	of	small,	finite	differences.	For	instance,	we	replace	  by  for the 
coordinate x,	etc.	Moreover,	we	assume	that	the	energy	tends	to	zero	at	the	borders	of	the	focus,	such	that	 , where 
E	is	the	energy	in	the	centre	of	the	focus.	Also,	we	assume	a	uniform	variation	of	the	coordinates	of	the	borders	of	this	
small	focal	region,	given	by	equations	of	the	type	  , where u	is	a	small	displacement	velocity	of	the	medium	in	the	
focal	region.	The	energy	accumulated	in	the	focus	is	gathered	from	the	outer	region	of	the	focus,	as	expected.	With	these	
assumptions	equation	(A1)	becomes

 	 (A2)

Let	us	assume	an	isotropic	motion	without	energy	loss;	then,	the	two	velocities	are	equal,	v = u, and the bracket in 
equation	(A2)	acquires	the	value	3.	In	the	opposite	limit,	we	assume	a	one-dimensional	motion.	In	this	case	the	bracket	in	
equation	(A2)	is	equal	to	unity.	A	similar	analysis	holds	for	a	two	dimensional	accumulation	process.	In	general,	we	may	
write	equation	(A2)	as

 	 (A3)

where r	 is	 an	empirical	 (statistical)	parameter;	we	expect	 it	 to	vary	approximately	 in	 the	 range	 (1/3,1).	We	note	 that	
equation	(A3)	is	a	non-linear	relationship	between	t and E.	The	parameter	r	may	give	an	insight	into	the	geometry	of	the	
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focal	region.	Also,	it	reflects	the	structural	condition	of	the	focal	region,	by	the	relation	between	the	two	velocities	v and 
u.	We	call	this	model	a	geometric-growth	model	of	energy	accumulation	in	the	focal	region.

It	is	shown	in	Appendix	B	that	the	parameter	r	is	related	to	the	Gutenberg-Richter	parameter	𝛽	and	the	Hanks-Kanamori	
constant b = 3.45	(3/2	in	decimal	logarithms)	through	𝛽 = br.

A	special	attention	is	given	to	shearing	faults,	which	are	typical	earthquake	sources.	The	energy	accumulation	takes	place	
along one direction, say ux = vx,	but	the	mass	conservation	requires,	on	the	average,	a	motion	in	opposite	directions	along,	
say, the perpendicular y-axis	[Apostol,	2019].	This	makes	uy = 2vy	(2	from	the	two	opposite	directions),	which,	together	with	
uz = 0, leads to r = 2/3.	Indeed,	this	is	the	mean	value	of	the	ratio	r = 𝛽/b,	accepted	as	reference	value	(𝛽 = 2.3, b = 3.45,	
r = 2/3,	see	the	main	text).

The	integration	of	equation	(A3)	needs	a	cutoff	(threshold)	energy	and	a	cutoff	(threshold)	time.	During	a	short	time	t0 a 
small	energy	E0	is	accumulated.	In	the	next	short	interval	of	time	this	energy	may	be	lost,	by	a	relaxation	of	the	focal	region.	
Consequently,	such	processes	are	always	present	in	a	focal	region,	although	they	may	not	lead	to	an	energy	accumulation	in	
the	focus.	We	call	them	fundamental	processes	(or	fundamental	earthquakes,	or	E0-seismic	events).	It	follows	that	we	must	
include	them	in	the	accumulation	process,	such	that	we	measure	the	energy	from	E0	and	the	time	from	t0. The integration 
of	equation	(A3)	leads	to	the	law	of	energy	accumulation	in	the	focus

 	 (A4)

The	time	 t	 in	 this	equation	 is	 the	 time	needed	 for	 the	accumulation	of	 the	energy	E,	which	may	be	released	 in	an	
earthquake	(the	accumulation	time).	This	is	the	time-energy	accumulation	equation	referred	to	in	the	main	text.

2. B: Gutenberg-Richter law. Time probability

The	well-known	Hanks-Kanamori	law	reads

 	 (B1)

where 	is	the	seismic	moment,	M	is	the	moment	magnitude	and	b = 3.45	(3/2	for	base	10).	In	Apostol	[2019]	the	relation	
 has been established, where 	(mean	seismic	moment),	Mij	is	the	tensor	of	the	seismic	moment	

and E	is	the	energy	of	the	earthquake.	If	we	identify	the	mean	seismic	moment	with	  we can write

 	 (B2)

(another	const),	or

 	 (B3)

where E0	is	a	threshold	energy	(related	to	const).	Making	use	of	equation	(A4),	we	get

 	 (B4)

where 𝛽 = br.	 From	 this	 equation	we	derive	 the	useful	 relation	 , or .	 If	we	assume	 that	 the	
earthquakes	are	distributed	according	to	the	well-known	Gutenberg-Richter	distribution,

 	 (B5)
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we get the distribution

 	 (B6)

[Apostol, 2006]. This law shows that the probability for an earthquake to occur between t and t + dt is  ; since the 

accumulation	time	is	t, the earthquake has an energy E	and	a	magnitude	M	given	by	the	above	formulae	(equations	(B2)	
and	(B3)).	The	law	given	by	the	equation	(B5)	is	also	derived	[Apostol,	2021]	from	the	definition	of	the	probability	of	the	

fundamental	E0-seismic	events	( ).	We	note	that	this	probability	assumes	independent	earthquakes.

3. C: Time-time correlations

In	general,	if	two	earthquakes	are	mutually	affected	by	various	conditions,	and	such	an	influence	is	reflected	in	the	above	
equations,	we	say	that	they	are	correlated	to	each	other.	Of	course,	multiple	correlations	may	exist,	i.e. correlations between 
three,	four,	etc.	earthquakes.	We	limit	ourselves	to	two-earthquake	(pair)	correlations.	Very	likely,	correlated	earthquakes	
occur	 in	 the	same	seismic	 region	and	 in	 relatively	short	 intervals	of	 time.	The	physical	causes	of	mutual	 influence	of	
two	earthquakes	are	various.	 In	Apostol	 [2021]	 three	 types	of	 earthquake	correlations	are	 identified.	 In	one	 type	 the	
neighbouring	focal	regions	may	share	energy.	Since	the	energy	accumulation	law	is	non-linear,	this	energy	sharing	affects	
the	occurrence	time.	We	call	these	correlations	time-magnitude	correlations	(or	energy-energy	correlations),	as	described	in	
the	main	text.	They	are	a	particular	type	of	dynamical	correlations.	In	a	second	type	of	correlations,	to	be	described	below,	
two	earthquakes	may	share	their	accumulation	time,	which	affects	their	total	energy.	We	call	such	correlations	time-time,	
or	purely	dynamical	correlations.	Both	these	correlations	affect	the	earthquake	statistical	distributions;	in	this	respect,	
they	are	also	statistical	correlations.	Finally,	additional	constraints	on	the	statistical	variables	(e.g.,	the	magnitude	of	the	
accompanying	seismic	event	be	smaller	than	the	magnitude	of	the	main	shock)	give	rise	to	purely	statistical	correlations.

Let	us	assume	that	an	earthquake	occurs	in	time	t1	and	another	earthquake	follows	in	time	t2.	The	total	time	is	t = t1 + t2, 
such	that	these	earthquakes	share	their	accumulation	time,	which	affects	their	total	energy.	These	are	time-time	(or	purely	
dynamical)	correlations.	According	to	equation	(5)	(and	the	definition	of	the	probability),	the	probability	density	of	such	
an event can be obtained

 	 (C1)

(where	  , ).	By	passing	to	magnitude	distributions	( ),	we	get

 	 (C2)

(where	  , corresponding to 	,	which	introduces	a	factor	2	in	equation	(C1)).	This	formula	(which	
is	a	pair,	bivariate	statistical	distribution)	is	established	in	Apostol	[2021].	(We	note	that	there	is	no	restriction	upon	M2 in 
comparison	with	M1,	in	contrast	to	the	time-magnitude	correlations).	If	we	integrate	equation	(C2)	with	respect	to	M2, we 
get	the	distribution	of	a	correlated	earthquake	(marginal	distribution)

 	 (C3)

If	we	integrate	further	this	distribution	from	M1 = M to +∞,	we	get	the	correlated	cumulative	distribution

 	 (C4)
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From	M ≫	1	the	correlated	distribution	becomes	  and  , which shows that the slope 𝛽 
of	the	logarithm	of	the	independent	cumulative	distribution	(Gutenberg-Richter,	standard	distribution	 )	is	not	changed	
(for	large	magnitudes);	the	correlated	distribution	is	only	shifted	upwards	by	ln	2.	On	the	contrary,	for	small	magnitudes	

(M ≪	1)	the	slope	of	the	correlated	distribution	becomes	 	( 	by	a	series	expansion	of	equation	(C4)),	

instead	of	the	slope	of	the	Gutenberg-Richter	distribution	( ).	The	time-time	correlations	modify	the	
slope	of	the	Gutenberg-Richter	standard	distribution	for	small	magnitudes.	This	is	the	roll-off	effect	referred	to	in	the	
main	text.


