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ABSTRACT 

The paper presents a study on Love wave propagation in a anisotropic 
visco-elastic layer overlying a rigid half space. The characteristic frequency 
equation is obtained and the variation of the wave number with frequency 
under the combined effect of visco-elasticity and anisotropy is analysed 
in detail. The results show that the effect of visco-elasticity on the 
wave is similar to that of anisotropy as long as the coefficient of aniso-
tropy is less than unity. 

R I A S S U N T O 

La nota presenta uno studio sulla propagazione delle onde di Love in 
uno strano anisotropo visco-elastico che giace su uno spazio semi rigido. 
E' stata ricavata l'equazione caratteristica della frequenza, ed è stata 
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analizzata dettagiamente la variazione del numero d' onda con la fre-
quenza, sotto l'effetto combinato della visco-elasticità e dell'anisotropia. 
I risultati mostrano che l'effetto della visco-elasticità sul numero d'onda 
è simile a quello dell'anisotropia, finché il coefficiente di anisotropia è 
inferiore all'unità. 

1. INTRODUCTION 

Study of the propagation behaviour of surface waves in a 
visco-elastic and anisotropic models is of great interest for 
the accurate inversion of the observed surface wave data. The 
results of numerical model studies of Schwab and Knopoff 
(1972), for a anelastic medium, and those of Cramping and Taylor 
(1971), for anisotropic medium, shown that both these factors 
can have a considerable influence on the propagation behaviour 
of surface waves. In order to understand their propagation 
behaviour in more realistic conditions it will be interesting to 
study their propagation in visco-elastic anisotropic medium. 

In the present paper we examine the dispersion behaviour 
of Love wave in a simple two layer model, consisting of a visco-
-elastic (Voigt type) anisotropic layer overlying a rigid half 
space. The results are then compared with those of Negi 
and Upadhyay (1968) who have studied the effect of anisotropy 
on the Love wave dispersion, for a similar model. 

2 . M A T H E M A T I C A L F O R M U L A T I O N 

The geometry of the problem is illustrated in Fig. 1. Rect-
angular co-ordinate system is considered with the Z-axis directed 
vertically downward and the X-Y plane coinciding with the 
free surface. Considering Love wave propagation in the positive 
X-direction, neglecting body forces and assuming small defor-
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mations, the equation of motion of Love wave in a visco-elastic 
anisotropic layer can be written as: 

~ o2v / . 5 \ 52v / , 8 \ 52v o— = ÍN + N — — + [L + L— I— [1] 
of \ ot ox2 \ ot Sx2 

where, 

N is the modulus of rigidity and N' is the coefficient of 
visco-elasticity in the X-direction. 

and 

L and L are the corresponding quantities in the Z-direction. 

In representing a harmonic wave travelling in the X-direction 
we choose a solution of the following form: 

& = V (Z) exp ri(toi — KX)] [2] 

where, V(Z) is areal function of Z and K is a complex quantity 
equal to (k + ik), whose real part represents the wave number 
and the imaginary part represents the damping coefficient. Putt-
ing this value of F(Z) in equation [1] we get: 

(L + iL') + [pw2 —K2(N + iN' oí)] V = 0 [3] 
dZ 

The above equation reduces to: 

d2V + S2F = 0 [4] 
dZ 

and its solution can be written as: 

V = A exp (tSZ) + B exp (— iSZ) [5] 

where, 
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A and B are constants and S is complex quantity given by 
the relation: 

s 2 = po>2 — K2 (N + iN'to) 
L + z'L'to 

Boundry conditions of zero stress at the free surface and 
of zero displacement ot the interface require that: 

d T / r-71 - d z - 0 = at Z — 0 [7] 

and 

V = 0 at Z = H [8] 

From equations [5 ,7] and [8] we get: 

A — B [9] 

and 

A exp ( i S H ) + B exp ( — i S H ) = 0 [10] 

equations [9] and [10] yield, 

exp (2 i SH) = — 1 

or S2H2 = (n + l/2)2^2 [11] 

putting the value of S2 in equation [10] and separating into 
real and imaginary parts, we get: 

RH2 hv2„ ( l/j32„ — aQ) — a — bw„Q (p — 1 )] / C + 

— iRH2 [w2,, ^ + bQ2 j + b + aw„Q {p— 1) = 

= C ( n 2 À2 [12] 
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where, 

~ = Q and — = pQ [13] L N 

By definition (Yanakawa and Sato, 1964), 1/Q represents 
the specific dissipation factor for shear wave. 

R — N/L , ^ M/p , C' = (1 + Q2w„2) 

and 

a = ka
2 — k2 , b = 2 ka k\ 

equating real and imaginary parts and putting g = 1, we get: 

RH2 [fw„/|30)2 — aC'] = (n + 1/2) X2 C [14] 

+ bC = 0 [15] 
Po 

equations [14] and [15] yield: 

uv' (n + 1/2 )2X2 

a 
C' (30

2 [16] 

6 = w 

wave number /cQ an damping coefficient k\ for various modes 
are given by the relations: 

" O ( N ) = | / ' T + B L + A ) 

k r («) = | / | [\la2 + b2-a) 
[ 1 8 ] 
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Equation [18], considered along with [16] and [17] shows 
k„(n) woul be real for all values of w and thus the propagation 
should take place at all frequencies without any cut off. However, 
when Q « 1 (as is the case for real earth), the contribution 
of b' at low frequencies will be negligible and therefore the 
dispersion behaviour of Love waves will be same as for elastic 
earth. 

3 . WAVE NUMBER VARIATION AND THE EFFECT OF VISCO-ELASTICITY 

ON THE PHASE GROUP VELOCITIES 

Equations [18] along with [16] and [17], has been used 
to analyse the wave number and, phase and group velocities 
for following two cases, assuming Q = 50. The value of Q of 
this order for upper crust have been reported by Mitchell ( 1 9 7 3 ) . 

3.1 Isotropic visco-elastic case (R — 1) 

From the results given in Table 1, it can be readily observed 
that for a visco-elastic surface layer, the value of kaH is smaller 
than its corresponding value for a perfectly elastic layer. The 
effect of visco-elasticity, is therefore to decrease the wave 

2 - 0 

VISCO-ELASTIC LAVER 

z * H 

ELASTIC HALF-SPACE 
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number. This result is qualitatively similar to that brought 
about by anisotropy (¿?<1), (Negi and Upadhyay, 1968 except 
that in the case of visco-elasticity, the effect goes on increasing 
with frequency. 

To study the effect of visco-elasticity on the phase and 
group velocities, equation [14] has been analysed and the results 
are shown in Fig. 2. Unlike the perfect elastic case in which 
the phase and group velocities converge to a common limit 
as w„—>°-C (Hudson, 1962); in the present case the phase 
and group velocities start diverging after a certain value of w,„ 
because of the increasing effect of visco-elasticity. However, 
at low frequencies when the effect of visco-elasticity is small, 
the phase and group velocities follow the same trend as found 
in the case of a perfectly elastic case. 

3.2 Anisotropic visco-elastic case 

a) For R > 1 — Comparing the results given in column 5 
and 6 of table 2, with those in column 2 of the same table, it 
can be observed that, whereas the effect of anisotropy is to incre-
ase the k0 value, visco-elasticity tends to decrease it. Two 
effects therefore counteract each other. Since the effect of 
visco-elasticity goes on increasing with frequency, the two 
effects will annull each other at a frequency wc (say).. For freq-
uencies higher than we, the visco-elastic effect will be prédominent 
and there will be a net decrease in k0H under the combined effect 
of two. This is qualitatively equivalent to the effect of a an-
isotropic elastic layer with R < 1, (Negi and Upadhyay, 1968). 
Thus under the combined effect of visco-elasticity and anisotropy 
with R > 1, the medium appears as being simply anisotropic with 
coefficient of anisotropic /?<1. 

b) For R < 1 — Since the effect of both viesco -elasticity and 
anisotropy with coefficient R < 1, is to decrease the k„H value 
the combined effect of two is to enhance the effect of each other. 
The results computed for R = 0.69 are shown in column 3 and 
4 of Table 2. 
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4 . E Q U I V A L E N C E OF P H A S E VELOCITY 

At a frequency we where the effect of visco-elasticity and 
anisotropy with coefficient R > 1, annul each other, the waves 
will propagate with same phase velocity as they will do in a 
isotropic elastic medium. 

Equating kc value for a wave propagating with frequency we 
in a visco-elastic anisotropic medium, eq. [18], to its correspo-
nding value in the isotropic elastic model (Hudson, 1962 eq. [23] 
we get: 

Subtituting the values of a and b in the above equation we 
get: 

4R2 [ C 2 ( A I — P ) 2 — ( A I — P) M C 3 ] + 

+ 4 ( A I — P) C3 PR — M2 J2
 = 0 

where, 

M = (weH/[30)2 , P = (n + i/2) and J = wcQ 

therefore we get 

[20] 

P ± L/ p2 + M2 J2
 [ ( 1 / C 4 ) — M/(M — P) C 3 ] 

R = — — r211 
(M — P ) — M_ L J 

C 

From the above equation one can deduce the value of the 
coefficient of anisotropy which will annul the known visco-elastic 
effect at a given frequency. 
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5 . CONCLUSION 

From the above discussion of the results it can be concluded 
that the effect of the visco-elasticity on the wave number variation 
with frequency is similar to that produced by anisotropy with 
coefficient <1 . When the coefficient of anisotropy is > 1 , the 
effect of visco-elasticity is reflected as a decrease in the effect 
of anisotropy. For a given frequency there will be a combination 
of the coefficients of visco-elasticity and anistropy which will 
cancel the effect of each other and the propagation will take 
place as in isotropic elastic medium. 
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T A B L E 2 

Comparison of the wave number variation with frequency for elastic 
isotropic KH (E), R = 1.0, anisotropic KH (EA), R = 0.6844 and visco-elastic 

anisotropic KH (VEA), L/L' = 50 cases for fundamental mode. 

w „H 
R = 1.0 R = 0.68 R = 1.44 

ßo KH (E) KH (EA) KH (VEA) KH(EA) KH (VEA) 

0.8 0.6245 0.5219 0.5208 0.6829 0.6816 

1.2 1.0908 1.0355 1.0313 1.1253 1.1211 

1.6 1.5198 1.4806 1.4707 1.5447 1.5349 

2.0 1.9364 1.9058 1.8867 1.9561 1.9371 

2.5 2.4494 2.4253 2.3885 2.4650 2.4284 

3.0 2.9580 2.9380 2.8754 2.9709 2.9085 
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