Love wave dispersion in anisotropic visco-elastic medium

S. M. GIR SUBHASH* - V. K. GAUR**

Received on March 7th, 1978

ABSTRACT

The paper presents a study on Love wave propagation in a anisotropic visco-elastic layer overlying a rigid half space. The characteristic frequency equation is obtained and the variation of the wave number with frequency under the combined effect of visco-elasticity and anisotropy is analysed in detail. The results show that the effect of visco-elasticity on the wave is similar to that of anisotropy as long as the coefficient of anisotropy is less than unity.

RIASSUNTO

La nota presenta uno studio sulla propagazione delle onde di Love in uno strano anisotropo visco-elastico che giace su uno spazio semi rigido. E' stata ricavata l'equazione caratteristica della frequenza, ed è stata

^{*} L'Istitute de physique du Globe - 5, rue Rene Descartes, U.L.P. - Strasbourg 67084 (France).

^{**} Dept. of Geology and Geophy - U.O.R. ROORKEE (U.P.) - India.

analizzata dettagiamente la variazione del numero d' onda con la frequenza, sotto l'effetto combinato della visco-elasticità e dell'anisotropia. I risultati mostrano che l'effetto della visco-elasticità sul numero d'onda è simile a quello dell'anisotropia, finchè il coefficiente di anisotropia è inferiore all'unità.

1. Introduction

Study of the propagation behaviour of surface waves in a visco-elastic and anisotropic models is of great interest for the accurate inversion of the observed surface wave data. The results of numerical model studies of Schwab and Knopoff (1972), for a anelastic medium, and those of Cramping and Taylor (1971), for anisotropic medium, shown that both these factors can have a considerable influence on the propagation behaviour of surface waves. In order to understand their propagation behaviour in more realistic conditions it will be interesting to study their propagation in visco-elastic anisotropic medium.

In the present paper we examine the dispersion behaviour of Love wave in a simple two layer model, consisting of a visco-elastic (Voigt type) anisotropic layer overlying a rigid half space. The results are then compared with those of Negi and Upadhyay (1968) who have studied the effect of anisotropy on the Love wave dispersion, for a similar model.

2. MATHEMATICAL FORMULATION

The geometry of the problem is illustrated in Fig. 1. Rectangular co-ordinate system is considered with the Z-axis directed vertically downward and the X-Y plane coinciding with the free surface. Considering Love wave propagation in the positive X-direction, neglecting body forces and assuming small defor-

mations, the equation of motion of Love wave in a visco-elastic anisotropic layer can be written as:

$$\delta \frac{\tilde{o}^2 v}{\tilde{o}t^2} = \left(N + N' \frac{\delta}{\hat{o}t} \right) \frac{\delta^2 v}{\tilde{o}x^2} + \left(L + L' \frac{\delta}{\hat{o}t} \right) \frac{\delta^2 v}{\delta x^2}$$
 [1]

where,

N is the modulus of rigidity and N' is the coefficient of visco-elasticity in the X-direction.

and

L and L' are the corresponding quantities in the Z-direction.

In representing a harmonic wave travelling in the *X*-direction we choose a solution of the following form:

$$\vartheta = V(Z) \exp \left[i(\omega t - KX)\right]$$
 [2]

where, V(Z) is areal function of Z and K is a complex quantity equal to $(k \pm ik)$, whose real part represents the wave number and the imaginary part represents the damping coefficient. Putting this value of V(Z) in equation [1] we get:

$$(L + iL') \frac{d^2V}{dZ} + [\rho\omega^2 - K^2(N + iN'\omega)]V = 0$$
 [3]

The above equation reduces to:

$$\frac{\mathrm{d}^2 V}{\mathrm{d}Z} + S^2 V = 0 \tag{4}$$

and its solution can be written as:

$$V = A \exp(iSZ) + B \exp(-iSZ)$$
 [5]

where,

A and B are constants and S is complex quantity given by the relation:

$$S^{2} = \frac{\rho \omega^{2} - K^{2} (N + iN'\omega)}{L + iL'\omega}$$
 [6]

Boundry conditions of zero stress at the free surface and of zero displacement of the interface require that:

$$\frac{\mathrm{d}V}{\mathrm{d}Z} 0 = \qquad \text{at} \quad Z = 0$$

and

$$V = 0 at Z = H [8]$$

From equations [5,7] and [8] we get:

$$A = B ag{9}$$

and

$$A \exp (iSH) + B \exp (-iSH) = 0$$
 [10]

equations [9] and [10] yield,

$$\exp (2iSH) = -1$$

or $S^2H^2 = (n + 1/2)^2 \lambda^2$ [11]

putting the value of S^2 in equation [10] and separating into real and imaginary parts, we get:

$$RH^{2} \left[w_{n}^{2} \left(1/\beta_{o}^{2} - aQ \right) - a - bw_{n}Q \left(p - 1 \right) \right] / C +$$

$$-iRH^{2} \left[w_{n}^{2} \left(\frac{Qw_{n}}{\beta_{o}^{2}} + bQ^{2} \right) + b + aw_{n}Q \left(p - 1 \right) \right] =$$

$$= C \left(n + \frac{1}{2} \right)^{2} \lambda^{2}$$
[12]

where,

$$\frac{L}{L'} = Q$$
 and $\frac{N}{N'} = pQ$ [13]

By definition (Yanakawa and Sato, 1964), 1/Q represents the specific dissipation factor for shear wave.

$$R = N/L$$
 , $\sqrt{N/\rho}$, $C' = (1 + Q^2 w_n^2)$

and

$$a = k_0^2 - k_1^2$$
 , $b = 2 k_0 k_1$

equating real and imaginary parts and putting g = 1, we get:

$$RH^{2}[(w_{n}/\beta_{o})^{2}-aC'] = (n+1/2)\lambda^{2}C'$$
 [14]

$$\frac{w_n^3 Q}{\hat{\beta}_0^2} + bC' = 0$$
 [15]

equations [14] and [15] yield:

$$a = \frac{w_n^2}{C' \beta_o^2} - \frac{(n + 1/2)^2 \lambda^2}{RH^2}$$
 [16]

$$b = \frac{w^3_n Q}{C' \beta_0^2}$$
 [17]

wave number k_0 an damping coefficient k_1 for various modes are given by the relations:

$$k_{o}(n) = \sqrt{\frac{1}{2} \left(\sqrt{a^{2} + b^{2} + a} \right)}$$

$$k_{I}(n) = \sqrt{\frac{1}{2} \left(\sqrt{a^{2} + b^{2} - a} \right)}$$
[18]

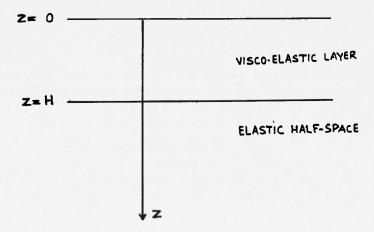
Equation [18], considered along with [16] and [17] shows $k_o(n)$ would be real for all values of w and thus the propagation should take place at all frequencies without any cut off. However, when $Q \ll 1$ (as is the case for real earth), the contribution of b at low frequencies will be negligible and therefore the dispersion behaviour of Love waves will be same as for elastic earth.

3. WAVE NUMBER VARIATION AND THE EFFECT OF VISCO-ELASTICITY ON THE PHASE GROUP VELOCITIES

Equations [18] along with [16] and [17], has been used to analyse the wave number and, phase and group velocities for following two cases, assuming Q = 50. The value of Q of this order for upper crust have been reported by Mitchell (1973).

3.1 Isotropic visco-elastic case (R = 1)

From the results given in Table 1, it can be readily observed that for a visco-elastic surface layer, the value of k_0H is smaller than its corresponding value for a perfectly elastic layer. The effect of visco-elasticity, is therefore to decrease the wave

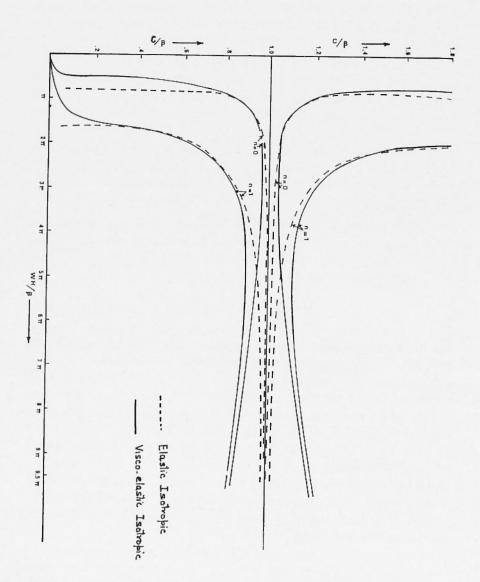


number. This result is qualitatively similar to that brought about by anisotropy (R < 1), (Negi and Upadhyay, 1968 except that in the case of visco-elasticity, the effect goes on increasing with frequency.

To study the effect of visco-elasticity on the phase and group velocities, equation [14] has been analysed and the results are shown in Fig. 2. Unlike the perfect elastic case in which the phase and group velocities converge to a common limit as $w_n \rightarrow {}^{\circ} \cdot C$ (Hudson, 1962); in the present case the phase and group velocities start diverging after a certain value of w_n , because of the increasing effect of visco-elasticity. However, at low frequencies when the effect of visco-elasticity is small, the phase and group velocities follow the same trend as found in the case of a perfectly elastic case.

3.2 Anisotropic visco-elastic case

- a) For R > 1 Comparing the results given in column 5 and 6 of table 2, with those in column 2 of the same table, it can be observed that, whereas the effect of anisotropy is to increase the k_o value, visco-elasticity tends to decrease it. Two effects therefore counteract each other. Since the effect of visco-elasticity goes on increasing with frequency, the two effects will annull each other at a frequency w_e (say). For frequencies higher than w_e , the visco-elastic effect will be predominent and there will be a net decrease in k_oH under the combined effect of two. This is qualitatively equivalent to the effect of a anisotropic elastic layer with R < 1, (Negi and Upadhyay, 1968). Thus under the combined effect of visco-elasticity and anisotropy with R > 1, the medium appears as being simply anisotropic with coefficient of anisotropic R < 1.
- b) For R < 1 Since the effect of both viesco-elasticity and anisotropy with coefficient R < 1, is to decrease the k_oH value the combined effect of two is to enhance the effect of each other. The results computed for R = 0.69 are shown in column 3 and 4 of Table 2.



4. Equivalence of phase velocity

At a frequency w_e where the effect of visco-elasticity and anisotropy with coefficient R > 1, annul each other, the waves will propagate with same phase velocity as they will do in a isotropic elastic medium.

Equating k_{ϵ} value for a wave propagating with frequency w_{ϵ} in a visco-elastic anisotropic medium, eq. [18], to its corresponding value in the isotropic elastic model (Hudson, 1962 eq. [23] we get:

$$\frac{1}{2}\left(\sqrt{a^2+b^2}+a\right)=\left(\frac{w_eH}{\beta_o}\right)^2-\left(n+\frac{1}{2}\right)^2\lambda^2$$
 [19]

Subtituting the values of a and b in the above equation we get:

$$4R^{2} [C^{2} (M - P)^{2} - (M - P) MC^{3}] + + 4 (M - P) C^{3} PR - M^{2} J^{2} = 0$$
 [20]

where,

$$M = (w_e H/\beta_o)^2$$
 , $P = (n + \frac{1}{2})$ and $J = w_e Q$

therefore we get

$$R = \frac{P \pm \sqrt{p^2 + M^2 J^2 \left[(1/C^4) - M/(M - P) C^3 \right]}}{2 \left[\frac{(M - P) - M}{C} \right]}$$
 [21]

From the above equation one can deduce the value of the coefficient of anisotropy which will annul the known visco-elastic effect at a given frequency.

5. Conclusion

From the above discussion of the results it can be concluded that the effect of the visco-elasticity on the wave number variation with frequency is similar to that produced by anisotropy with coefficient <1. When the coefficient of anisotropy is >1, the effect of visco-elasticity is reflected as a decrease in the effect of anisotropy. For a given frequency there will be a combination of the coefficients of visco-elasticity and anistropy which will cancel the effect of each other and the propagation will take place as in isotropic elastic medium.

ACKNOWLEDGEMENTS

The authors are thankful to the Head of the department of Geology and Geophysics for providing funds for the computations of the results.

TABLE 1 Comparison of the wave number variation with frequency for elastic $KH(E)$ and visco-elasticity $KH(I)$ (VE) cases for first three modes.	wave number	variation cas	TABLE I with frequencies for first th	TABLE 1 on with frequency for elast cases for first three modes.	stic $KH(E)$ s.	and visco-e	lasticity KF	I I (VE)
ω _n H β _o	(0.5	8.0	1.2	2.0	3.0	5.0	8.0
Fundamental Mode		Ī	0.6245	1.0908	1.9365	2.9580	4.9749	7.9843
	$kH\left(VE ight)$		0.6232	1.0866	1.9174	2.8955	4.7054	7.0302
, Mod	kH(E)		I	I	1.3229	2.5981	4.7697	7.8581
1SI MODE	kH(VE)				1.3065	2.5342	4.4967	6.8984
7	кН (Е)	1	1	1	1	1.6583	4.337	7.5993
zna woue	kH(VE)					1.6287	3.9862	6.6298

TABLE 2

Comparison of the wave number variation with frequency for elastic isotropic KH (E), R=1.0, anisotropic KH (EA), R=0.6844 and visco-elastic anisotropic KH (VEA), L/L'=50 cases for fundamental mode.

$\frac{\omega_n H}{\beta_0}$	R = 1.0	R = 0.68		R = 1.44	
	KH (E)	KH (EA)	KH (VEA)	KH (EA)	KH (VEA)
0.8	0.6245	0.5219	0.5208	0.6829	0.6816
1.2	1.0908	1.0355	1.0313	1.1253	1.1211
1.6	1.5198	1.4806	1.4707	1.5447	1.5349
2.0	1.9364	1.9058	1.8867	1.9561	1.9371
2.5	2.4494	2.4253	2.3885	2.4650	2.4284
3.0	2.9580	2.9380	2.8754	2.9709	2.9085

REFERENCES

CRAMPING S., TAYLOR D. B., 1971 - Propagation of surface waves in anisotropic media. «Geophy. J.R. Astr. Soc. », 24, pp. 71-87.

Hudson J.A., 1962 - Love wave in hetrogeneous media. « Geophy. J.R. Astr. Soc. », 6 pp. 131-147.

NEGI J.G., UPADHYAY S.K., 1968 - Effect of anisotropy on Love wave propagation. B.S.S.A., pp. 257-266.

MITCHELL B.J., 1973 - Surface wave attenuation and crustal anelasticity in central north America. B.S.S.A., 63. pp. 1057-1071.

Schwb F.A., Knopoff L., 1972 - Fast surface wave and free mode computation. Methods in computation Physics. «Academic Press», N.Y.