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SUMMARY. — As a model for the Bénard convection in the astheno-
sphere the problem of the hydrodynamic stability of an infinite horizontal 
layer is calculated. The layer consists of a micropolar fluid with streich. 
The field equations for the velocity vector, microrotation vector, micro-
stretch, microinertia, density, temperature, and pressure form a system 
of eleven partial differential equations for the determination of eleven un-
known scalar functions. We succeed in decoupling the system and reducing 
the problem to an ordinary differential equation. The analytical solution 
can be given for the special case of a micropolar Boussinesq fluid. 

ZUSAMMENFASSUNG. — Als Modell für die Bénard-Konvektion in der 
Asthenosphäre wird das hydrodynamische Stabilitätsproblem einer unend-
lichen horizontalen Schicht berechnet. Die Schicht besteht aus einer kom-
pressiblen mikropolaren Flüssigkeit. Die Feldgleichungen für den Geschwin-
digkeitsvektor, den Mikrorotationsgeseliwindigkeitsvektor, die Mikrodefor-
mation, das Mikroträgheitsinoment, die Dichte, die Temperatur und den 
Druck bilden ein System von elf partiellen Differentialgleichungen zur 
Bestimmung von elf unbekannten skalaren Funktionen. Es gelingt, das 
System zu entkoppeln und das Problem auf eine gewöhnliche Differential-
gleichung zu reduzieren. Für den Spezialfall einer mikropolaren Boussinesq-
Flüssigkeit kann die analytische Lösung angegeben werden. 

R I A S S U N T O . — 11 problema della stabilità idrodinamica di uno strato 
infinito orizzontale viene trattato come un modello per la convenzione 
Bénard nell'astenosfera. Lo strato è formato da un fluido micropolare "with 
stretch" . L'insieme delle equazioni per il vettore velocità, il vettore micro-
rotazione, la microdeformazionc, la microinerzia, la densità, la temperatura 
e la pressione, forma un sistema di I I equazioni differenziali parziali che 

(*) Zentralinstitut für Physik der Erde, Akad. Wiss. D D R , Instituts-
teil J ena , (¡9 J e n a (DDR), Burgweg 11; Z I P E Mitt. Nr. 542. 

l 



1 !)4 
U . W A L Z E R 

serve a determinare le 11 funzioni scalari incognite. Si raggiunge lo scopo 
decuplicando il sistema e riducendo il problema ad un'equazione differen-
ziale ordinaria. Si può dare la soluzione analitica solo nel caso di un fluido 
micropolare Boussinesq. 

INTRODUCTION 

When investigating flow phenomena in the Earth's mantle, a 
Newtonian fluid is mostly used as constitutive equation. This as-
sumption is fully justified as an approximation and has often been 
used successfully (3' 5> 9> 14). From shear tests of possible mantle 

Fig. I - Schematic representation of the geometry of the 
two phases of low-velocity layer material. After Stocker 

and Ashby (12). 

rock (8), from the postglacial uplift of Fennoscandia ( ,0), and from 
theoretical considerations (18) it is concluded that a power law fluid 
with the exponent 3 is a more realistic model for the solid portions 
of the mantle. For the corresponding convection based on solid creep 
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a theory has been developed (17). In another approach (15), used to 
gain information on the convection current pattern in the Earth's 
mantle, the question as to the constitutive equation is evaded. Some 
simple assumptions are made regarding the kinematics of the stream 
lines which appear to he plausible from the point of view of fluid 
mechanics. These assumptions, together with the geometry of the 
mantle, lead to certain possible modes of flow which would create 
a topography on the surface of the Earth which is similar to the ob-

Fig. 2 - Translation, rotation and isotropic microstretcli of an element of 
a micropolar fluid with stretch. 
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served one. Recently, the low-velocity layer of the upper mantle 
has been assumed to be partly molten f1). If the geometrical connec-
tion between the two phases exists in the form (see Fig. 1) suggested 
by Stocker and Ashby (12), a micropolar fluid may be assumed as a 
constitutive equation. In such a medium, in addition to the three 
translatory degrees of freedom of conventional continuum mechanics, 
three rotational degrees of freedom are assigned to each spatial point 
with the help of which the rotation of the solid grains of Fig. 1 may 
be described. While some authors have already tried to work with 
micropolar elastic media (e. g., Teisseyre (13), Bosclii (2)), Cosserat 
fluids have been introduced only recently (16) into geophysics. The 
author (10) calculated the Benard convection in the asthenosphere, 
assuming, apart from the term with the buoyancy forces, that the 
micropolar fluid is incompressible. In the present paper the problem 
is to be tackled in a more general way. Grains and intermediate fluid 
are no longer assumed to be incompressible. Consequently, the Bous-
sinesq approximation is dropped, stretch and microstretch are intro-
duced, which results in an increase of the number of degrees of freedom. 

1 . - GOVERNING EQUATIONS 

The new model of the asthenosphere consists of a horizontal 
layer of a micropolar fluid with stretch of the thickness h. The lower 
surface is kept constant at a temperature T„ and the upper surface 
at a temperature Ti, where Tn > Tt. We employ a rectangular car-
tesian coordinate system xi, x2, X3, the origin being positioned in the 
lower boundary plane and x3 being directed upwards. Because the 
general theory of simple microfluids has too many degrees of freedom 
to solve a special problem of motion with justifiable calculation ef-
forts, we use the following simplifications (Eringen (7)). Let the micro-
inertia tensor iki have the following form: 

iki = - - j Ski [1] 

where 

11 for k = 1 
Ski = 

10 for k ^ 1 



CONVECTION OE A MICROPOLAR 1 ' I . U I D WITH S T R E T C H 185 

and j is a scalar quantity, i. e., the fluid is microisotropic. Let the 
gyration tensor nm have -I independent scalar functions instead of 9: 

llkl = n Ski + Cklr llr [3] 
where 

for (k]r)cycl- = (1 2 3) 
for (klr)cycl- = ( 1 3 2) [4] 

0 for other cases 

s1 
ekl r = < - 1 

n or n r = microrotation vector and n = microstretch. The signifi-
cance of these quantities is demonstrated in Fig. 2. In the time t, 

— > 

point R of the fluid moves to r, point R ' to r ' . The vector £(t) or £k(t) 
represents the micromotion: 

— + v . V j 4 = liki £kei = n li ei + n x [5] 

Vectors are indicated by bold-face letters or by arrows over the let-
ters. v or v r = velocity, ei = unit vector in the 1-direction. Equa-
tion [5] shows that the total derivative of the vector £ with respect 
to time can be subdivided into an isotropic microstretch and a micro-
rotation. The microrotation generally is not identical with the clas-
sical rotation vector. 

(Or = — e r k l V l , k . [ 0 ] 

An index followed by a comma means a partial differentiation with 
respect to space variable .\k, e. g., 

v i , k = — . [ 7 ] 
¡>xk 

The basic laws of motion of micropolar stretch fluids are: 
Conservation of mass: 

J - + V . (p v) - 0. [8] 
ot 

Conservation of microinertia: 

} t + v . v ) j — 2 n j = 0. [9] 
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Balance of first stress moments: 

(« + VV . n + y V- n + x V X v — 2x n + p d = pj ( ^ + v . V j n, [10] 

a . V2n - (Y)0 — Xo) n + p d * = j p j i - ^ + _ v . v ) n. [11] 

Conservation of energy: 

/a a \ 
p Cv — + Vk —— T = — p dkk + Xo ndkk + X dkkdn + [12] 

\ at axk / 

+ ( 2 j X + x) d k i d i k + 3 ( 7 ) 0 — X o ) n2 + 3a0n,kn.k + 

+ (3ai + p0) ekiriii.kiir + 2x(a>k — nk) (cok — nk) + 

+ a nk.kiii.i + p lik.iiii.k + Y ni,kill,k + x* T.kk + Q 

Balance of momentum: 

- V p + Xo V n + (X + (X) VV . v + (¡i. + x) V2 v + x V X n + [13] 

+ p f = p ( ^ + v ^ v ) v . 

Equation of state: 

p = p . [ l — 8 ( T —To)] [14] 

the classical spin tensor being denoted by dki. 

dki = (Vk,i + vi.k) [15] 
A 

p = density; T = absolute temperature; p = pressure; f = body force 
per unit mass; d = axial vector of the first body moments per unit 
mass which are closely connected with the microrotation n; d* = 
first body moment per unit mass which is closely connected with 
the microstretch n; cv = specific heat at constant volume; x * = coef-
ficient of heat conduction; Q = heat produced within the fluid per 
unit volume per unit time; a, a0, ai, (3, (30, y, x, 7)o, X, Xo, |x = viscosity 
constants; S = thermal expansion coefficient; p0 = density at the fixed 
temperature T0 . 

The relationships [8] to [14] are eleven scalar equations for the 
determination of eleven scalar unknowns: Vk, m , n, j , p, T, p. Com-
pared with the fundamental equations of a micropolar fluid without 
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stretch (1(i), n and j are additional sought functions, f, d, and d* are 
to be given quantities. As Eringen (7) and Erdogan (°) have found, 
the material constants are subject to certain restrictions which are 
necessary and sufficient to ensure the validity of the principle of en-
tropy: 

3X + 2[A + x > 0; 2|x + x > 0; x > 0 ) where 
3 « + PY — y > o i t ^ o 

and 

[16] 

Ko > 0; v)o — Xo > 0; (yj„ — X o ) ( 3 X + 2[i. + x) > -X°- . [17] 

Let us now make some highly justified simplifications. The quantities 
v, n and n are so small in the asthenospliere that quadratic and mixed 
quadratic terms thereof may be neglected. Therefore, the underlined 
expressions of the formulas [10] to [13] are neglected. The accelerations 
d and d* are to disappear. Let, furthermore f be equal to g, i. e., 
only the gravity acceleration is assumed to be effective. Thus, the 
governing equations [8] to [11] are simplified to [18] to [24] 

| - + v . V p + p V . v = 0, [18] 

™ + v . V j - 2 n j = 0, [19] 

(a + (3) VV . n + y V2n + x V X v — 2x n = p j , [20] 
o t 

1 3n 
0Co V2n — (r,o — Xo) n = y p j — ? t 2 1 ! 

i>T 
+ v . V T = — c p V . v + k V2 T + q [22] 

<)t 

- V p + Xo V n + (X + |i) VV . v + ((X + x) V2 v + [23] 
„ 3v 

+ x V x n + p g = p — 

where 
p = po [ 1 — 8 ( T — T o ) ] [24] 
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2 . - L I N E A R I Z E D GOVERNING EQUATIONS 

Let us now assume that the principle of exchange of stabilities (4) 
is valid, i. e., the current is considered to be stationary at the begin-
ning. In the marginal state at the beginning of convection the mean 
state is assumed to be equal to the equilibrium state, and all variables 
should be representable as sums of equilibrium quantities which are 
functions of X3 only, and of small perturbations which are functions 
of X I , x2, x3, and t : 

p = p + p'; T = T + T' ; p = p + p'; [26] 
v = v; n = n; n = n. 

Mean state variables are denoted by an overbar. 
Per definitioneni there must not occur any motions in the equi-

librium state: 

v = 0; n = 0; n = 0. [27] 

Hence, it follows from [22]: 

V . T - - J L ; = [ 2 8 ] 

T = (hx3 - x32) - x3 + To. [29] 

From [23] and [27] 

V p = p g ; * lp- = — pg; ]) = p g(h — x3) + pi [30] 
ux3 

g = —g e-.i being used, and the constant pressure at the upper boun-
dary surface of the layer being denoted by pi. From [24] and [27] 
we obtain 

p = P o [ l — S ( T — T„)]. [31] 

Trivially, the other governing equations are satisfied by [27]. Eq. 
[27], [29], [30]3, and [31] are the solutions for the static case. 

In order to obtain the linearized fundamental equations, we now 
substitute [26] into the equations [18j to [27], the mean, state vari-
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ables being known now from the statics. We renounce here the in-
troduction of the Boussinesq approximation usual at this point, since 
it is exactly here where the theory is to be extended by stretch and 
microstretch. We obtain: 

^ + v . Vp + p V . v = 0, [32] 

+ v . V j — 2nj = 0, [33] 

(a -f- ¡3) VV . n + y V2 n + x V X v — 2x n = p j , [34] 
ot 

I Oil 
V2 n = V2 n + — p j — , [35] 

'n- Ot 
3_ _ . 3n 

2a0 

3T' 
+ v . V T = — c p V . v + k V2 T ' , [36] 

ot 

V p' + X. V n + p' g + (X + ¡x) VV . v + (¡X + X) V2 v + [37] 

p' = — po S T ' [38] 

+ x V X n = p — , 

v2 is defined by 

„ "1° — Xo 
a0 

[39] 

where, because of [17], v2 > 0, if a0 # 0. In [32] and [34] to [37] all 
products of the small perturbation quantities p', T', p', v, n, and n 
have been neglected in the calculation. In [36], terms have been eli-
minated due to [28]i and in [37] due to [30]i. In the folloiving we shall 
confine ourselves to the steady-state case. Thus, we obtain from [32] 
to [38] the following system of linearized fundamental equations, 

v . V p + p V . v = 0, [40] 

v . V j = 2nj , [41] 

(a + (3 + y) VV . n — y V X (V X n) + x V X v — 2x n = 0, [42] 

[V2 —v2] n = 0, [43] 

k V2 T' = v. T + c p V . v , 
ax3 
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p„ 8 g T ' e3 — V p' + X„ V n + (X + 2p + x) VV . v — [45] 
— (fx + x) curl curl v + x V X n = 0. 

Equation [45] is obtained by eliminating p' in [37] by [38]. The equa-
tions [32] to [38] form a system of 11 partial differential equations 
for the determination of the eleven unknown functions v, n, n, j , p', 

3 . - R E D U C T I O N OF THE PROBLEM TO AN ORDINARY D I F F E R E N T I A L 

EQUATION AND DISCUSSION OF THE SOLUTION 

As we already have started to do with [45], we will show in the 
following that the system can be decoupled step by step. To eliminate 
X)', we take (—• curl curl) of [45]. 

+ (¡x + x) curl curl curl curl v — x curl curl curl n = 0 

where 

Let us assume in the following that the divergence of the microrotation 
disappears. 

B y taking curl, we obtain from [42] and [48] 

— y curl curl curl n - f x curl curl v — 2x curl n = 0, [49] 

" g ' (Cl + ¿1x3 ) T' + P° g S 63 ̂  T' + [46] 

V . n = 0. [48] 

— x curl curl curl curl n V n - x curl curl curl v. [50] 
Y Y 

From [40] we obtain 

T7 V • V P —• V . v = — _ r 

p 
[51] 

From [44] and [51] 

k V- T ' = v3 c p 
d in p _ (IT 

dx3 dx: 
[52] 
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As a consequence of taking curl, we obtain from [40] 

— (¡x + x) curl curl curl curl curl v = [53] 

= po g 8 (ei 3/ 3x2 — e2 3/ 3xi) V2 T ' — x curl curl curl curl n. 

From [50] and [53] 

x2 
(¡x + x) curl curl + 

Y 
curl curl curl v = [54] 

3 a \ 2x2 
= po g 8 I ei — e2 - - V2 T ' — V2 n. 

1 i>X2 3xi / y 

We apply the operator ( — k V2) to [46] and combine this equation 
with [52] and [48]. 

k([x + x) curl curl curl curl V2 v = 

3 2 

po g S ei - - + e2 3xi 3x3 
— ^ — — e3 V; 
3x2 3x3 

dT - d In P 
dx3 dx3 

V3 — k X V2 V2 curl n. 

[55] 

The curl of equation [54] yields 

— ([x + x) curl curl + 

3 2 

curl curl curl curl v = 

32 
p o g M e , — h e2 — - V — e3 V321 V2 T ' — V2 curl n. 

\ 3xi 3X3 3x2 3X3 / Y 

[56] 

From [56] and [52] we obtain 

(¡x + x) curl curl + 

po g S ( 32 
x — 5 — ei 1- e2 3xi 3x3 

curl curl curl curl V2 v = [57] 

- - e3 V* \ V2 

_dT_ - d l n p 
dx3 d x3 

3x2 3x3 

9v2 
V3 

Y 
V2 V2 curl n. 

We multiply equation [55] by 2x/yk and subtract therefrom equa-
tion [57]. 
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(fj. + x) curl curl + x 

pog S 

2 j i . + x 

k 

V - — 

ei 

T 

a2 

4 axi ax3 

d In o 

T 

e 2 

curl curl curl curl V2 v = 

- e 3 V ; ) • 

[ 5 8 ] 

a2 

a x 2 a x 3 

c p 
dxa 

(IT 
dx3 

V3 

Thus, the microrotation n has been eliminated. Using equation [51], 
we now transform equation [58], 

2 u. 4 - x 
- ([X + x ) V 2 + X ; 

y 
V2 V2 

a 2 P o g S / a 2 „ 
— 1 e i - — + e 2 - e 3 V " 

a x i a x 3 a x 2 a x 3 

V 2 
2x 
Y 

_ d hi p 
c p , dx3 

(IT 
( l X 3 

v3. 

The 3-component thereof is written as follows: 

2 (A + x 
(¡j. + x ) V 2 + x 

Y 
V 2 V 2 

d x 3 / a x 3 

/ d2 In P \ 

\ dxa2 ) V3 
lc Y 

c p 
d In p (IT 

dx3 dx3 

[00] 

A" v3. 

Equation [60] serves for the determination of v3, equation [43] for 
the determination of n. If j is a function of x3 only, it follows from [41] 
that 

(I In j 2n . / (' 2n 
- = — and j = exp 

dx3 v3 \ vs 
(1X3 . [01] 

From this equation j may be calculated following the determination 
of v3 and n. However, if j is a function of xi, x2, and .\3, the function 
Vi has to be calculated from the 1-component of [59] and from v3 which 
is known from the solution of [60]. Accordingly, the 2-component 
of [59] at a known function v:, is a differential equation for the deter-
mination of v2. Having, thus, determined n, vi, v2, and v3 from de-
coupled differential equations, they are substituted into equation [41] 
to determine j . 
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We now want to bring the decisive differential equation [60] 
closer to the solution. From [60], [29], [30]a, and [31] we obtain 

((JL + x)V 2 — X 
2 (A + x 

T 
V-V- V2 + f, 

3X3 
v3 = [62] 

po g 8 
Vi- fs V; va 

where 

po f q f2 = fa(x3) = 8 

fa = fa (x3) = 1 + C S p0 

dT 
p dx: 

s po / , 
p 

g (h — Xa) Pi dT 
dx3 

and 

p = p0 l — S 

dT q I h 

q ,, 2> T„ — Ti — (hxa — x 3 ) — . - X 3 

[63] 

[64] 

[65] 

[66] 

— X3 — 
rp rp 1 o L 1 

dxa k \ 2 ) h 

For the differential equation [62] we assume a separable solution. 

v3 = w ( x 3 ) f (Xi ,X 2 ) 
with 

[68] 

[ 6 9 ] V3 f (xi, x2) + — f ( x : , x 2 ) = 0 

where a is the aspect ratio of the cells. From [68] and [69] we have 

V: v3 = 
a-

"h2 v 3 . 

We define 

From [70] and [71] 

X3 
I T 

and D = T r * 

[70] 

7 1 ] 

V- va = [ V ; + ^ ) va = (D* — a2) v : 

From [62] 
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V2 fi — " + Ì2 
¡>.\3 

+ Ì)V3 

3X3 

+ V 3 

(|i + x) ? 2 — X 

((i + x) V2 — X 

2fx _+ x 

2(x + x V2 V2 va [73] 

T 

te 

f — ; — is 

x) V2 — x 

V2 

2 fi. + , x 

Y 

V" v3 
Y 

V2 V2 fi + 

V2 V2 fi 

k 3 
V2 — 

Y 

B y introducing the statement [68] into equation [73] and multiplying 
the resulting relationship by h8/ (¡A + x), we obtain 

where 

[(D2 — a2) + f4 D + h] [(I)2 — a2) — ki] (D2 — a2)2w + 
+ fr.Dw + f7w = Ih {fs[(D2 — a2) — k2] + f9} a2w 

f4 = f4(x3) = h fi(x3), 

f5 = f5(X3) = h2 f2(x3), 

f6 = fo(x3) = h [D2-ki]D4 fi(x3), 

f7 = f7(X3) = h2 [D2-ki]D4 f2(x3), 

f - f f v ^ - - f ; i ( X 3 ) 

- ts(x3) = T T | , 

f9 = f„(X3) = h [D2-k2] f3(x3) lo I l 
and 

R i = J 
g 8 h 3 ( T o — T i ) p 0 

k (¡x + x) 

k, K * h 2 : 
Y ^ + x 

2x . 2 
o = - li2. 

Y 

[74] 

[75] 

[76] 

[77] 

[78] 

[79] 

[80] 

[81] 

[82] 

Ri , ki, and k2 are dimensionless constants. If x disappeared, Ri would 
be identical with the conventional Rayleigh number. All quantities 
occurring in equation [74] are dimensionless. With the derivation 
of equation [74] it was possible to reduce the problem to an ordinary 
differential equation of the 8th order for w as a function of Equation 
[74] offers a favourable starting point for a numerical solution of the 
problem. Eq. [74] cannot be solved analytically, because dependen-
cies on £ are still existing in f4, . . . , f». In (16) it is shown how in the 
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special case of an incompressible micropolar fluid without microstretch 
and without internal heat sources the general solution of [7-1] can be 
analytically given and how its constants can be determined according 
to the boundary conditions. If only the internal heat sources dis-
appeared, i. e., if q = 0, a micropolar stretch fluid would be described 
by formula [71] with the following simplified expressions for ii, . • fu. 

f « = K + ( T o — T l ) > ] - i , 

f s = — K + ( T o — T i ) - > ] - 2 , 

f . = [ D 2 - k i ] D 4 [Ç + S-» ( T 0 — Ti) — i ]~i , 

f , = — [D2-ki] D4 [Ç + 8-1 (T0 — TO-'] 2, 

n , Pi f8 = — 1 + c 8 p0 gh ( 1 - 0 + 

f9 = — [D2-k2] j 1 + c S p 0 

po (1 H 

gh ( 1 - 0 + 

8 (To — T O O 

Pi 
po(l + S (To — T O O 

[83] 

[84] 

[85] 

[86] 

[87] 

[88] 

Equations [83] to [88] show that, even if we neglect internal heat 
sources, the solution w ( 0 cannot be analytically given for a micropolar 
stretch fluid, since the f4, • • •, fa explicitely contain the quantity X, 
also in that case. Therefore, we may just as well solve the full problem 
[74] to [82] in the numerical calculations, with q ^ 0. The main prob-
lem, namely to reduce the system ([8] to [14]) from eleven partial 
differential equations with eleven unknown functions and four in-
dependent variables to an ordinary differential equation with one 
sought function and one independent variable, however, has been 
solved. Finally, we will derive the boundary conditions for w. 

4 . - B O U N D A R Y CONDITIONS 

I t is obvious that for convection in the asthenosphere the case 
of fixed, rigid boundaries is most important, so that we will exclusi-
vely deal with this case here. The formulas [89] to [95] as well as 
[97] and [98] hold only at the boundaries Ç = 0 and Ç = 1 of the layer. 

v = 0; n = 0; n = 0 [89] 

Because the temperature at the boundary surfaces is to be kept con-
stant, we have 

T ' = 0. [90] 
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From [89]i 
w = 0. [91] 

From [90] it follows that T = const; from this and from [31] it follows 
that p = const; from this, from [40], and [89]i we obtain 

Dw = 0. [92] 
From [89]2 

ano i>ni 
curl n = — ei -j- e>. [93] 

¡>X3 T)X3 

From [46], [48], [90], and [93] 

0 = e3 • (curl curl curl curl v) = V-V2 v3 + V- - 3 f'1 ^ pv3) [94] 
<)X3 » dxs / 

Since — = — = 0 and Sp- = = 0 it follows that 
i)Xi 3x2 3x i i>x2 

i>4 a3 / d in p \ 

a x [ Y 3 + s x [ V d x . ) [ 9 5 ] 

From [48] and [49] we obtain 
curl curl v = [2 — -Y V2) curl n . [96] 

From [51], [93], and [96] 

e3 • curl curl v = e3 • (V V-v — V2 v) = [97] 
d In 

- e 3 • V Va 

a2 a / d in p 
_ T v 3 + • - - - • - - Va = 0 . [98] 
Sx" t>x3 \ dx3 ' 

Let us now introduce some derivatives taken at the upper and lower 
boundary planes 

d In p d In p 
r r n = li 1 A„; - p = h - ' A „ [99] 

dx3 t, = 0 dx3 Z = 1 

d2 In p I „ d2 In o 1 „ 
d i f U = 0 = h " B o ; dx2 [ £ = 1 1 ' I 1 0 " ' 

d4 In p l , d4 In o 
d x f r 0 h , ( - dx[ : j; = i = h " 4 C l - I , , n i 
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The quantities A0, Ai, B„, Bi , Co, ancl Ci defined by [99] to [101] are 
dimensionless constants, e. g., 

Ao = S | (T„ - TO - j [102] 

and 
(To TQ + qh2/ (2k) 

A l - ( T o - T O + S : ~ " L 1 0 3 ] 

By means of these six constants equations [98] and [95] can be trans-
formed as follows. 

D2w + A c Dw + B r w = 0 for Ç = 0 and Ç = 1, [104] 

D'w + Ar D3w + C r w = 0 for Ç = 0 and Ç = 1. [105] 

Thus, the boundary conditions the solution w of [74] must satisfy 
at the boundaries L — 0 and Ç = 1 can be summarized as follows: 

w = Dw = (D2+Aj- D + B c ) w = (D4 + A - D 3 +C c )w = 0. [106] 

In the special case of an incompressible micropolar fluid without 
internal heat sources the six constants A>-, and CV disappear. 

C O N C L U S I O N S 

Whatever the principal driving mechanism for the motion of the li-
thospheric plates may be, it is obvious that lattice and radiative thermal 
diffusivities of mantle rock are not sufficient to explain the heat flux 
observed at the surface of the Earth. Therefore, there must be con-
vection in the mantle and particularly in the asthenosphere. If it is 
assumed (4) that the low-velocity layer is partly molten and that 
there is a geometrical connectivity between the solid and liquid phases 
in the form (see Fig. 1) suggested by Stocker and Ashby (12), a layer 
of a micropolar stretch fluid with internal heat sources may be intro-
duced as a model for the asthenosphere. Hence, the Bonard problem 
of this model has to be solved, the case of fixed, rigid boundaries being 
of interest. The dynamic fundamental equations form a system of 
eleven partial differential equations. The essential object of the present 
paper is to show how the equations can be decoupled and the problem 
be reduced to an ordinary differential equation, which is a suitable 
starting point for numerical calculations. In all the calculations the 
Boussinesq approximation has not been used and stretch and micro-
stretch have been considered. In the special case of a micropolar fluid 
without stretch the solution can even be given analytically. 
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