A numerical study of the windstorm Klaus: sensitivity to sea surface temperature

Main Article Content

Nazario Tartaglione
Rodrigo Caballero

Abstract

This article investigates the role of sea surface temperature (SST) as well as the effects of evaporation and moisture convergence on the evolution of cyclone Klaus, which occurred on January 23 and 24, 2009. To elucidate the role of sea surface temperature (SST) and air–sea fluxes in the dynamics of the cyclone, ten hydrostatic mesoscale simulations were performed by Bologna Limited Area Model (BOLAM). The first one was a control experiment with European Centre for Medium-Range Weather Forecasts (ECMWF) SST analysis. The nine following simulations are sensitivity experiments where the SST are obtained by adding a constant value by 1 to 9 K to the ECMWF field. Results show that a warmer sea increases the surface latent heat fluxes and the moisture convergence, favoring the development of convection in the storm. Convection is affected immediately by the increased SST. Later on, drop of mean sea level pressure (MSLP) occurs together with increasing of surface winds. The cyclone trajectory is not sensitive to change in SST differently from MSLP and convective precipitation.

Article Details

How to Cite
Tartaglione, N. and Caballero, R. (2014) “A numerical study of the windstorm Klaus: sensitivity to sea surface temperature”, Annals of Geophysics, 57(5), p. A0540. doi: 10.4401/ag-6466.
Section
Physics of the Atmosphere