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ABSTRACT 

Some aspects of the problem of accuracy in the hypocentre location 
are discussed, and some difficulties are shown to arise within the conven-
tional approach. The statistical basis of the commonly employed location 
procedure is examined, in orded to clarify under which assumptions it can 
be considered as correct; in particular an example is given where the 
validity of the probabilistic statement connected to confidence regions 
is evaluated via Montecarlo simulation. 

The hypocentre location problem is next re-examined regarding it as 
a measurement problem: in this scheme, special attention is paid to the 
analysis of the features of the measurement instrument, and to the 
problem of the possibility of repeating the trials. 

The analysis suggests that the attention should be shifted on to joint 
treatment of several events, including a different probabilistic interpreta-
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tion ot confidence regions, in order to overcome the inadequacies which 
have been pointed out. 

Accordingly, the joint focal and crustal parameters determination is 
interpreted as a change of perspective in seismological measurements. 

RIASSUNTO 

Gli Autori considerano alcuni aspetti del problema della accuratezza 
nella localizzazione ipocentrale evidenziando alcune difficoltà inerenti l'ap-
proccio convenzionale. 

Vengono analizzate le ipotesi statistiche sulle quali si basano le proce-
dure più comunemente usate per la localizzazione, al fine di valutare sotto 
quali condizioni queste possono ritenersi corrette; in particolare si dà un 
esempio di valutazione, attraverso una simulazione di tipo Montecarlo, 
della validità degli enunciati probabilistici connessi alle regioni di con-
fidenza. 

Successivamente il problema della localizzazione ipocentrale viene 
riesaminato e visto come un problema di misura: nell'ambito di tale impo-
stazione una particolare attenzione è dedicata all'analisi delle caratteri-
stiche dello strumento di misura e alla possibilità di ripetere le misu-
razioni. 

L'analisi suggerisce, per superare le inadeguatezze messe in luce, l'op-
portunità di spostare l'attenzione verso una trattazione congiunta di più 
eventi che comprenda una diversa interpretazione probabilistica delle 
regioni di confidenza. 

Conseguentemente la determinazione congiunta dei parametri focali 
e crostali viene interpretata come un cambiamento di prospettiva nelle 
misure sismologiche. 

INTRODUCTION 

T h e t e r m s " a c c u r a c y " a n d " e r r o r " in t h e h y p o c e n t r e l oca t i on 
p r o c e d u r e a r e r e l a t e d to a s c h e m e in w h i c h h y p o c e n t r e l oca t ion 
is c o n s i d e r e d as a m e a s u r e m e n t p r o c e d u r e ( F r e e d m a n , 1968). 

S u c h s c h e m e is c o n v e n i e n t to a l low t h e a p p l i c a t i o n of me-
t h o d o l o g i e s a n d q u a n t i t i e s d e r i v e d f r o m t h e m e a s u r e m e n t t h e o r y : 
it is a m a t t e r of f ac t , i ndeed , t h a t t h e m e a s u r e m e n t s of s e i smic 
p a r a m e t e r s a r e p e r f o r m e d by m e a n s of i n s t r u m e n t s , a n d t h u s 
r e a d i n g e r r o r s a n d o t h e r t yp ica l m e a s u r e m e n t c o n c e p t s a r e t o 
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be considered. On the other hand it is also clear that seismolo-
gical measurements do not actually ht all measurement tradi-
tional hypotheses, first of all the possibility of repeating trials. 
This fact, as we will see, is to be carefully considered in order 
to avoid misunderstandings or incorrect interpretations. The 
quantit ies to be measured are commonly the focal parameters, 
that is time-space coordinates of a point: the traditional assump-
tion of a point-source, to represent the limited portion of earth 
where seismic energy is released, has been the basis for the deve-
lopment of technology (networks, arrays), of mathematical techni-
ques, and, at the same time, of a certain number of applications 
which gave origin to "users", which "need" in a certain sense 
point-sources; this is mainly the case of at tenuation curves, maps 
of seismic risk according to various definitions, epicentre maps 
at scale such that source dimensions play no ultimate role. 

In some applications, however, such as seismotectonics maps, 
and in general maps and elaborations aiming at a link between 
geological s tructures and statistically computed quantities, point-
sources are proving inadequate. 

Moreover, it is just in such applications that the customary 
use of quantities, such as the "accuracy" and the "error", evalua-
ted whithin the conventional approach to the point-source deter-
mination problem, turns out to be difficult or misleading. 

The aim of this paper is essentially of proposing some re-
flexions on the problem of the accurancy in the hypocentre loca-
tion, by trying to re-examine the entire procedure under the point 
of view of a measurement problem, rather than introducing a 
new method. Some aspects of the problem will be first discussed, 
in order to clarify under which conditions and in which way the 
accuracy can be correctly evaluated by some commonly used 
quantities. 

Accordingly, it will be analyzed what is the "measurement 
instrument", which are its features, and what we may consider 
as the "object", that is the quantity to be measured. We will try 
to show how some difficulties in using the results of these 
measurements arise f rom the scheme of the approach, rather 
than f rom lack of technological precision: we want to stretch 
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that these difficulties exist even in case that the s tructural model 
could be considered as "exactly known", a condition which is 
in general far to be fulfilled. Finally, we will indicate how they 
may be probably overcome changing the leading thread of the 
approach, though no definite alternative will be proposed at 
this stage. 

HYPOCENTRE LOCATION AS A NONLINEAR REGRESSION PROBLEM 

The classical procedure for hypocentre location, viewed as 
a measurement problem, can be summarized as follows: 

a) a point-source is to be located in time and space; 

b) an instrument is used, typically a network, which con-
sists of a set of homogeneous tools providing a set of homoge-
neous observations (onset times of P-waves, S-waves and so on); 

c) a model is given, or some experimental travel-time 
table, to characterize the portion of the earth crossed by the 
seismic waves; 

d) an algorithm is chosen which, if successful, gives nor-
mally the four coordinates of a point in the time-space domain; 

e) the algorithm seeks the minimum of a suitable function 
of the unknown coordinates. A stop condition which the mini-
mum should satisfy must be established for the algorithm; 

f ) some quantit ies are finally computed, which should 
represent the uncertainty in the location. 

Clearly the location performed according to the above pro-
cedure, and its accuracy, will depend on all steps a) - f) and 
possibly on other factors. In order to set up a proper function 
to be minimized and to evaluate the accuracy in the location, 
a statistical scheme has to be established for the location problem. 

Geiger, 1910 first considered the following nonlinear regres-
sion scheme: 

ti = to + f, (xo) + ei i = 1, . . ., m [1] 
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where 
ti = observed P-waves first arrival time at the i-th station 
to = origin time 
xo = vector of the spatial coordinates of the hypocentre 
fi = travel time function for the i-th station 
ei = nonsystematic er ror at the i-th station 

The errors ei are usually considered as independent normally 
distributed random variables with mean zero and known varian-
ces Si2. Then the parameters t0, x0 can be estimated via the Maxi-
mum Likelihood Principle (see for example Mood et al., 1972) 

m 
Max n exp 
t , x i = l 

1 (ti — t — fi (x))2 

Si 

which is equivalent to the classical least squares criterion with 
weighted residuals 

m (ti — t — f; (x)) : 

min YZ. [2] 
t, x i = 1 Si2 

In the following fOJ x0 will indicate the estimates of t0, xu obtained 
by [2], 

In Freedman, 1968, Buland, 1976, the limits of the above 
statistical assumptions for the errors ei( and hence of the in-
terference about t0, xu given by 2, are discussed. Buland also 
stresses the fact that serious difficulties aise in the actual compu-
tation of {,„ xu, especially when the seismic ecent is recorded by a 
small localized network; algorithms which do not suitably tackle 
the numerical instability of the problem may fail to converge to 

xu or even diverge. 
In the framework of optimization theory several highly effi-

cient algorithms have been developed to overcome the above 
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difficulties. For a recent survey on the subject we refer to Dennis 
and Moré, 1977. 

As tar as the problem of giving a measure ot the accuracy 
ol the estimates, confidence regions provide a suitable tool 
through a probabilistic statement of the type: "The probability 
that the true parameters lie in the region A is...", where A is 
random region in the parameters space. 

When the residuals are nonlinear functions of the para-
meters, as in the case of [1], a linearization procedure for the 
construction of confidence regions is based on the following 
assumptions (Bard, 1974): 

1) Let the regression model be of the form 

y = g (w) + e 

y = ( y i , • • • . y m ) , g = ( g i , • • • , g m ) , w = (w, . . . , wk), e = ( e i , . . . ,em) 

with e distributed according to a multivariate normal distribution 
with mean zero and covariance matrix S - [si2, . . . , sm

2] I, I being 
the identity matrix. 

2) Let g ( w ) be adequately fitted in a neighborhood U of the 
true value w * by the first order Taylor expansion 

g (w) g (w*) + J (w — w*) W e U [3] 

where J is the m x k Jacobian matrix with elements D¡g¡ ( w * ) 

3) Let the probability that the least squares estimate w of 
w falls outside U be very near to zero. 

Thus w can be considered as the least squares solution of 
the equation 

y = g (w*) + J (w — xv*) 
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and hence w can be considered normally distributed with mean 
w* and covariance matrix A 1 = (J1 J ) - 1 . 

This implies that (w — w*)T A (w — w") has a chi-square 
dis t r ibut ion with k degrees of freedom. If X2

p/k is the p percentage 
point of such distr ibution then, by definition 

p r { (w — w*)T A (w — w*) =£ X2
p/k } = p 

Therefore, the region 

{ w : (w — w)T A (w — w ) e X 2
p / k } [4| 

is a confidence region for w* at a 100 p % level. 

We remark that , by assumptions 2 and 3, J can computed 
indifferently evaluating the derivatives of g at w* or at w. 
In the lat ter case, it doesn't depend on the unknown w*. 

The region (4) is a k-dimensional ellipsoid with centre at w*, 
whose more relevant geometrical features are the following: 

a) the axes of the ellipsoid lie along the eigenvectors v, of A; 
b) the length of the i-th semi-axis is VX2

p/k / 1~, where ^ is 
the eigenvalue corresponding to 

The max imum elongation within the ellipsoid is therefore 
in the direction of the eigenvector corresponding to the minimum 
eigenvalue lmin; 

c) considering the standard deviation s, = V (A_1)M of the 
es t imate vv,, the interval 

r p = { w, — s, V' X2
p/k « w ^ W i + S ; V X2

p/k } 

is the range of maximum variation of w, within the ellipsoid. 
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Fig. 1 illustrates the situation in the case of k = 2. 

Fig. 1 - Representation of the more relevant geometrical 
features of an ellipsoid of the form 

(w — w)T A (w — w) X2
p/k for k = 2. 

The ellipsoid [4] gives a confidence region for the whole 
set of unknown parameters . A confidence region for a reduced 
set of parameters w*ij, j = 1, . . . , t can be built in a quite similar 
way, considering in place of the whole covariance matrix the 
matrix with elements (A-1) i[is, r, s = 1, . . ., t. In particular, the 
confidence interval at the level p for the i-th component turns 
out to be 

S;p = { w, - Si « w, « w, + Si } 
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We remark that S;p is smaller than Rip, as X2
p / j < X2

p/k, and 
while for the hyperrectangle R" = {w:wi G Rip} the confidence 
level is greater than p, for the hyperrectangle Sp = {w:wi G Si"} 
the confidence level may result lower than p. It can only be pro-
ved (Wilks, 1962, p. 291) that, if q 1 — k (1 — p), then 

Pr { w* <E Sp} = Pr {wi* e Sip, i = 1 k} > q 

For example, for p = 0.9, k = 3, Pr { w* € Sp} > 0.7. 
As far as assumptions 2 and 3 are concerned, no a priori 

criterion can be given to ensure their validity, which however 
can be argued if the residuals are differentiable in w* for suffi-
ciently small variances Si2. In the case of the hypocentre location 
problem, the question was discussed by several authors (for 
example Flinn, 1965; Evernden, 1969; Buland, 1976) for both 
worldwide and local networks. 

They also discussed the related problem of giving the varian-
ces sr of the errors at the stations. In the case that variances 
can be assumed equal, say to s2, an estimate of s2 could be 
derived directly f rom the observations by the formula 

(ti - to - i [*o])2 

s 2 = V 

If m is small, as usual for local networks, s2 is not a good 
est imate of s2. In such case the F distribution should be used 
ra ther than the chi-square distribution in the computation of 
confidence ellipsoids (Flinn, 1965). However, as pointed out by 
Evernden, 1969, such confidence regions are much larger than the 
ones built from variances based on previous experience about 
the reading errors at the stations. 

The various authors generally agree that confidence ellipsoids 
are a good representation of the uncertainty in the location, at 
least as far as the epicentre is concerned. 
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The validity of the probabilistic statement connected to 
confidence ellipsoids for hypocentres can be tested via Monte-
carlo simulation, as will be described in the next section for the 
network of Ancona. Some problems, due to the unboundedness 
of the ellipsoids for null depth, will be shown to arise when the 
uncertainty in the hypocentre depth is explicitly considered. 

Finally we have to remark that currently available computer 
programs do not yet treat the statistics in a satisfactory way. 
HYP071 (Lee and Lahr, 1972) gives as an output only the stan-
dard deviations of the estimates, with the footnote "Statistical 
interpretation of s tandard errors involves assumptions which may 
not be met in earthquake locations. Therefore the s tandard errors 
may not represent actual error limits". 

The revised version HYPOELLIPSE (Lahr, 1978) gives as an 
output the lengths and orientation of the axes of the "error ellip-
soid", but no probabilistic statement is connected to such "error 
ellipsoid", thus resulting, in our opinion, of limited use in the 
interpretation of the results. 

MONTECARLO SIMULATION FOR THE ANCONA NETWORK 

The accuracy in the hypocentre location was evaluated for the 
network of Ancona (Ferraris et al., 1975; Crescenti et al., 1977) 
via Montecarlo simulation. The simulation procedure can be de-
scribed as follows: 

1) a crustal model is assumed for the region and a point 
in it is taken as simulation hypocentre; 

2) according to the model, travel times, f rom the hypocentre 
to each station, are computed; 

3) a number of simulated reading times ri are obtained f rom 
first arrival times by random perturbations, each drawn f rom a 
normal distribution with mean zero and assigned s tandard devia-
tion; 
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4) the least squares method is used to estimate the para-
meters of the simulation hypocentre, considered as unknown, 
using as n as an input; 

5) the location error is evaluated comparing the estimated 
parameters and the simulated ones. 

In the simulation performed for the network of Ancona a 
half space model with a constant velocity of 5 km/sec was assu-
med. Thus derivatives of the travel time functions could be easily 
computed at the estimated parameters and confidence ellipsoids 
for the spatial coordinates built as described in the previous 
section. 

Different simulation hypocentres were placed in different 
sites of the region in order to represent some really observed 
situations. 

The origin time was assumed to be to = 0 without loss of 
generality. 

Fig. 2 shows the distribution of the simulation epicentres: 
A and D outside the network in the sea, while B and C are inside. 

The same standard deviation was assumed for the reading 
errors. The least squares estimates were computed by the nume-
rical optimization routine OPVM of the Optima Package (Nume-
rical Optimization Centre, 1976). The initial guesses were the 
smallest reading time for the origin time, the nearest station 
coordinates for the epicentre and a fixed nonzero depth. Three 
different values s 0.1, 0.05, 0.01 were selected for the standard 
deviation. Thus the absolute values of the reading errors ei were 
not greater than 0.2, 0.1, 0.02 respectively in about 95% cases and 
than 0.3, 0.15, 0.03 in about 99% cases. Indeed, f rom the tables 
of the normal distribution, 

P r { — 2 s < ei < 2 s } — 0.95 

Pr { — 3 s < ei < 3 s} ^ 0.99. 

Table 1 summarizes the results obtained performing 1 000 
trials for each simulation hypocentre: 



T A B L E 1 

RESULTS OBTAINED PERFORMING 1 000 TRIALS FOR FOUR SIMULATION HYPOCENTRES AND STAN-
DARD DEVIATIONS s = 0.1, 0.05, 0.01. 

X Y D ID s DIV DE TE A1 A2 A3 NE NS1 NS2 

A 30. 19. 5. 3. 0.1 0 3.178 0.108 1.356 2.211 5'xl 07 899 935 996 
0.05 0 1.444 0.031 0.658 1.058 4x10s 972 933 990 
0.01 0 0.279 0.001 0.130 0.207 1.126 990 928 994 

B 19. 19. 7. 10. 0.1 0 1.962 0.047 1.471 1.783 1x10' 968 884 975 
0.05 0 0:914 0.004 0.723 0.875 3.497 989 905 995 
0.01 0 0.181 0.001 0.144 0.174 0.690 992 906 995 

C 25 15. 4. 6. 0.1 0 1.640 0.027 1.046 1.287 7x10' 996 934 998 
0.05 0 0.764 0.004 0.517 0.635 3.072 997 902 997 
0.01 0 0.148 0.001 0.103 0.126 0.587 992 863 992 

D 24. 25. 9. 7. 0.1 3 93.263 18.064 11.890 20.136 3x10s 966 883 969 
0.05 0 1.876 0.063 0.899 1.502 7.330 969 900 976 
0.01 0 0.346 0.004 0.176 0.294 1.385 986 912 994 
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1) X, Y, D are the epicentre coordinates (referred to the coordinate 
system of Fig. 2) and the depth of the simulation hvpocentre; 
ID is the initial guess for the depth; 
DIV is the number of algorithm divergences; 

2) s is the standard deviation of the reading errors; 
3) DE average distance between the simulation and computed 

hvpocentre; 
TE average error in the estimation ol origin time; 
Al, A2, A3 average lenghts of the axes of the computed 
99% confidence ellipsoid; 

4) NE number of 99% confidence ellipsoids containing the simula-
tion hvpocentre; 
NS1, NS2 number of hvperrectangles S093, S ° " (as defined in 
the previous section) containing the simulation hvpocentre. 

Fig. 2 - The region of Aneona. Black dots indicate simula-
tion epicentres, white dots indicate the stations of the 

network. 
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From Table 1 it can be seen that the average error in the 
location is small in most cases except for the case s = 0.1, for 
which in 3 trials no minimum of the least squares function could 
be found by the minimization routine in a neighborhood of the 
hypocentre. 

As far as confidence ellipsoids are concerned, a significant 
deviation of the computed confidence level NE/1 000 f rom the 
expected one 0.99 can be observed for A with s = 0.1, 0.05, for B 
with s = 0.1, for D with s = 0.1, 0.05. 

For the value s = 0.1, in all cases (for s = 0.05 in case A 
too), a consistent number of ellipsoids, about 10%, turn out to 
be unbounded along one axis (see A3 in Table 1) giving no estima-
tion of the error along one direction. 

A closer analysis of these cases showed that such anomalous 
feature was due to the fact that the minimum of the least squares 
function lays on the surface of null depth, where the matrix J 'J 
defining the ellipsoid (see formula [4]) is singular. 

The results quoted for hvperrectangles are not easy to ex-
plain: the confidence level NS1/1 000 of S0 95 is considerably lower 
than 0.95 in all cases, but it is not increasing as s decreases; the 
confidence level NS2/1 COO of S°" is generally higher than 0.99 
except case B with s - 0.1 and case D with s = 0.1, 0.05. 

This behaviour is likely due to the fact that confidence regions 
of rectangular shape do not take into appropriate account the 
real mutual positions of the actual and estimated parameters 
even for small variances. 

HYPOCENTRE LOCATION AS A MEASUREMENT PROBLEM: FEATURES OF 

THE MEASUREMENT INS TRUMENT 

The measurement problem, in its classical formulation, re-
quires a quantity to be measured, a measurement instrument and 
in general the possibility of repeating the trials, under the same 
conditions, any number of times. Let us examine the hypocentre 
location situation. 
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Generally, hypocentral coordinates are considered as the 
quantit ies to be measured: as far as the instrument is concerned, 
it is generally viewed as the set of seismometers, or seismographs, 
equipped with a clock. Let us assume in the regression scheme 
that the functions f; are exactly known; then the terms et represent 
the "reading er rors" related to fluctuations in the observer-
instrument system. 

In such case fi (x0) can be viewed as a part of the instrument 
a part whose response is known and does not give origin to 
fluctuations. The problem of increasing the precision of the 
measurement instrument, that is of decreasing confidence regions 
volume at the same level p, can be solved in two ways: increasing 
the accuracy of the readings, that is reducing Sj2 or, at least in 
principle, increasing the number of the stations. This first claim 
is obvious; we will discuss now in detail the second one which 
needs, in our opinion, some mathematical evidence. 

Confidence regions obviously depend, in shape and dimen-
sions, also on the number and on the distribution of the seismic 
stations. Confidence regions should be finite and should get 
smaller, in some sense, when the number of stations increase; 
in the limit, they should shrink to a single point. 

In this section we list some conditions under which such 
properties hold for confidence ellipsoids. More details and proof 
will be given in the appendix. We do not treat here the strictly 
related problem of the optimality of the distribution of a network. 
Optimality criteria are discussed in Archetti, Betro, 1979; Kijko, 
1978, who also gives several examples. We assume, for sake of 
simplicity, that reading errors have equal variances si2 = s2, that 
is S — s2 I, I being the identity matrix. Jm(x) will represent the 
Jacobian matrix of the residuals given by [1] for an hypocentre 
placed at x. We remark that Jm can be written as 

J m = [ J m - I I . 

where J m contains only spatial derivatives and 1 is a 
m-dimensional vector with components 1, and hence doesn't 
depend on t„. We can state the following propositions. 
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Proposition 1: JT
m Jm is singular if and only if one of the 

following two situations occurs: a) there u # 0 such that 
J ,nu = 0; b) there exists z 0 such that Jmz = 1. 

Proposition 2: If JT
m Jm is not singular for some m, then for 

any positive k, J T
m + k Jm+k is not singular and det ( J T

m + k Jm+k) > 

det ( J T
m J , „ ) . 

m m m m 
Proposition 3: If O^Se ^ e ^ e ^ e are the eigenvalues of 

1 2 3 4 

Jm, then the eigenvalues of J m+i Jm+i are such that 

O ^ e ^ e sC c e ^ c e ^ e e 
1 1 2 2 3 3 4 4 

If JT
m Jm is n o t s i n g u l a r t h e n e i m < e i m + 1 f o r s o m e 1 < i < 4. 

Proposition 4: If an infinite sequence of stations is consi-
dered, then, if there exists a sequence of groups of p stations (for 
some p > 4) such that Jp

(k)T Jp
(k) doesn't tend to be singular for 

k -> + oo where Jp
(k)T Jp

(k) represents the Jacobian matrix relative 
to the p stations of the R-th group, then eim -» + oo for m —> + oc. 

Propositions 1-2-3-4 have the following geometrical interpretat ion: 

1) JTm Jm singular means that the confidence ellipsoid is 
unbounded along some direction. 

2) As the volume of the ellipsoid is proport ional to 1 / 
V det (J1 m Jm) ; proposition 2 is equivalent to the geometrical 
statement "the volume of the ellipsoid decreases". 

3) The length of each axis is not increased and, if the 
ellipsoids are bounded, at least one axis is shortened. 

4) When the number of stations increases, if there is a 
sequence of groups of p stations which doesn't tend to a singular 
configuration, according to proposition 1, then the ellipsoid 
shrinks to a single point. 

In the simple case when a half space model can be assumed 
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as crustal model, then Proposition 1 has the following interesting 
geometrical picture. For the half space model fi (x0) = 

1 
dist (xi, xo) and hence 

v 

(x, — xu)T / dist (Xj, x j 

(xm — xo)T / dist (xm, xQ) 

Then 

a) J m u = 0 means 

i = 1,. . ., m. 

which is the complanarity condition for Xi and x0 . 
This fact explains the difficulties in solving the hypocentre 

location problem for shallow earthquakes. The complanarity 
condition is always satisfied if the stations are on a straight line. 

b) J m z = 1 means 

(x, — x J T z = v i = 1, . . ., m. 
dist (x^ x„ 

which is the complanarity condition for the points 

Wi = Xo + (Xi — Xo) / dist (Xi, Xo) . 

When the points Xi lie on a plane, Wi lie on a plane if and 
only if dist (x,, x0) = cost., that is the stations are on a circle 
centered at x0. 
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We can therefore come to the conclusion that, as far as the 
accuracy of the location is concerned, there is a sort of symmetry 
in the results between the operation of increasing the accuracy 
of the observations (i.e., increasing signal-to-noise ratio, increasing 
chart speed or sampling rate, and so on), and the operation of 
increasing the number of observation points. 

We wish to stress that this statement holds in principle 
only under the above conditions, that is fi are known exactly. 
Out of this case, the error in the location is not automatically 
reduced when the number of the stations is increased; in pre-
sence of large travel-times deviations, due to s t ructural anomalies 
related to the new station ray-paths, an even worse location may 
be obtained. 

This fact can be seen as a "weakness" in the conventional 
approach: before discussing how it could be overcome, we want 
to analyze another weakness. 

ON THE PROBABILISTIC MEANING OF CONFIDENCE REGIONS IN THE 
HYPOCENTRE LOCATION PROBLEM 

We have introduced confidence regions, in particular confi-
dence ellipsoids, as a probabilistic measure of the accuracy in 
the hvpocentre and origin time estimates. Confidence regions are 
random, sets, in which the random element depends somehow 
on the observations. In region (4) the random element is w, which 
is a function of the reading times t|. 

The straightforward interpretat ion of the probabilistic state-
ment connected to a confidence region at a 100 p % level is as 
follows: 

"If the observations t;, i = 1, . . , m where indipendently per-
formed a certain number n of times, for any set of observations 
ti, i = 1, . . ., m a different confidence region would be obtained, 
but the ' true' parameters would be contained, when n approaches 
infinity, in 100 p% of such regions". 

It looks very easy to prove that in the traditional approach 
to the hypocentre location problem such interpretat ion contrasts 
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with the fact that observations cannot be repeated. If the set of 
seismographs is to be viewed as the instrument, the measure 
can be performed only once, that is when the earthquake occurs. 
It follows that for practical purposes such interpretation of 
confidence regions, even if correct f rom a probabilistic point of 
view, can be of restricted use. Actually in those problems where 
single hypocentres, fitted up with the accuracy of the estimates, 
play a relevant role (in some seismotectonic maps, for example), 
the impossibility of being '100% sure' that the computed region 
will cover the ' true hypocentre' might invalidate the application 
of confidence regions, as well as of any other measure of accuracy. 

In our opinion the above difficulties arise because of the 
a t tempt to use for classifying single events methods and quan-
tities introduced to classify a population of events. 

The only way to overcome the contradiction, apart f rom a 
radical change in the approach and in the formalism, is to give 
a qualitatively different meaning to confidence regions, consi-
dering not single seismic events, but a whole set of them. 

Actually we can find in the li terature authors considering 
simultaneous location of several events (Douglas 1967, Lilwall and 
Douglas 1970, Veith, 1975). 

But in our opinion this approach has not been exploited 
enough, and these authors rather consider joint location as a tool 
for refining individual determinations. 

We want to propose another interpretation. 
Indeed, the probabilistic statement: 

Pr { w" e A (y„ . . . , y j } = p 

where y,, . . ., ym are the observations of w*, can be read in the 
following way: 

"Assume that a distribution is given to w*, that is each 
value of w* can be viewed as a realization of a random variable. 
If n realizations w * are observed, and the observations yj = 
y(Wj*), j = 1, . . ., m are statistically independent on w* , then, 
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when n approaches infinity, for 100 p % of realizations w* , 
e A [y, (Wj*), . . .,ym (w*)|, regardless the distribution 

of w*". 
The statement follows immediately by the so called total 

probabili ty formula: 

Pr { w* e A (y„ . . ., y j } = 

= E [ Pr { w* e A (y„ . . ., y j | w* } ] = E (p) = p 

In other words, the proposed interpretation allows to give 
a judgement on the accuracy of the hypocentre location of a set 
of events, recorded by the same network, provided that the 
measurement errors at each station do not depend on each 
single event. When the number of events increases, the percentage 
of confidence regions covering the " t rue" hypocentres appro-
aches 100 p°/o. 

This interpretat ion looks more useful and more consistent 
with the initial statements. 

More useful because, when we turn to the classification ot 
several rather than single events the influence of negative cases 
(i.e. confidence regions not covering the " t rue" hypocentre) does 
not weaken the entire measure operation, as it could happen 
classifying single events separately. It looks also more consistent 
with the proper meaning of the condition "e-, are normally distri-
buted random variables, with sr variances and zero mean". Even 
disregarding the actual procedure under which this condition is 
proved, it's clear that the condition itself can be assumed if, and 
only if, at each single station, a large number of measurements, 
that is readings of events, has been globally examined and 
classified. 
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C O N C L U S I O N S 

The analysis should have focussed some internal limits of the 
hypocentre location conventional approach, suggesting the follow-
ing considerations. 

— Confidence regions can provide an estimate of the location 
accuracy, though the probabilistic statement connected with them 
is seldom clearly defined in most location computer programs, 
therefore causing difficulties in the interpretation and use of the 
results. 

— If the condition of exact knowledge about travel times is 
not satisfied, the increase of the accuracy is not automaticallv 
accomplished by increasing the number of the station, nor by 
increasing the precision of the readings. 

— As a consequence of the previous points, the problem 
itself of assessing and increasing the accuracy of the estimates 
should be considered less dramatically: the difficulties coming 
f rom the point-source measurement approach suggest that big 
effor ts in the direction of an increase in the accuracy may provide 
very poor results. 

— A positive solution to the problem can be achieved only 
changing the approach, that is dropping individual hypocentres 
as main figures and giving more relevance to joint hypocentres, 
or hypocentres and travel-times, determination and, more im-
portant , to joint accuracy estimations. 

There are still some considerations to be made in the f rame 
of the measurement problem. 

In the last two sections, we mainly tried to give an answer, 
in the f rame of a measurement problem, to the following 
questions: 

— how to increase the precision of the measurement instru-
ment? 

— how to use more correctly the probabilistic statement con-
nected to confidence regions? 

In both cases we have pointed out some difficulties which 
are inside the conventional approach, and which do exist inde-
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pendently f rom the knowledge of ft: in both cases we got answers 
which are satisfactory, but which hold only under the condition 
that h are exactly known. A direct consequence could be the indi-
cation that principal efforts are to be made in the direction of 
increasing the knowledge of fi, in order to approximate, as close 
as possible, the condition that they are " exactly known ". 

The obvious problem is whether this aim is to be pursued 
independently f rom the hypocentres location procedures. Though 
we can find in the li terature some works, referring mostly to 
Douglas, proposing joint hypocentre determination as a method 
to detect bias in the travel-time functions, the location routines 
most commonly widespread and used in the ordinary work of 
most seismologists are normally informed to the following posi-
tions: 

— each single hypocentre is located individually and it is 
fitted up with individual accuracy estimates; 

— hypocentre location and travel-times determination are 
considered as separated problems, though the solution of each 
one of them needs some contribution f rom the other one (*). 

The approach proposed in 1976 by Crosson and by Aki and 
Lee seems to go fur ther in solving these contradictions. Aki and 
Lee, when saying: 

"In addition to four source parameters (epicenter coordina-
tes, focal depth and origin time), each ear thquake event con-
tributes independent observations, as much as the number of 
observed stations in excess of 4, to the potential data set for 
determining the earth 's s tructure", point out a definite symmetry 
between the operation of increasing the number of events and the 
operation of increasing the number of stations, exceeding 4; 
that is, is a certain way between the operations of increasing the 
observations in space and in time. 

It's interesting to observe that in this scheme the measurement pro-
cedure of each one of these quantities is usually performed restraining 
alternatively the other one taken as exactly known, though it's clear 
that those also come from a measurement operation and are therefore 
affected by measurement errors. 



SOME CONSIDERATIONS ON THE HYPOCENTRE ETC. 1 8 3 

In our opinion, in such position the measurement instrument 
has not changed, while the quanti ty to be measured has turned 
to be both focal and crustal parameters simultaneously. In this 
scheme the repetition of the trials is represented both by the 
stations, exceeding four, and by the seismic events, whose indi-
vidual relevance is therefore decreased. Some conceptual obstacle 
could be overcome in this way, like the use of a probabilistic 
statement connected to confidence regions: the interpretation 
proposed in the previous section, for instance, could find a more 
complete application within the development of methods based 
on such scheme. 

It is clear that joint interpretat ion requires in principle a 
different formalism and, inside, it, a different assessment and 
computat ion of the 'accurary'; moreover, a rather high number 
of observations is required to obtain good solutions (Crosson 
and Koyanagi, 1979) (*). 

It seems to be the only way, in principle, to build up a more 
dynamic description of ear thquake activity, which could lead to 
the measure of a quantity, still to be defined (seismic or geo-
dinamic state or something like that), which could provide a 
more direct and expressive measure of tectonic activity, taking 
into account focal and crustal parameters together. 

Such approach, in which it is not compulsory to restrain alternatively 
focal or crustal parameters, could be, in principle, the only one which 
allows to follow time variations of the crustal parameters during a 
swarm or an aftershocks sequence, and, therefore, to re-evaluate 
critically some observed migrations of the foci during the same 
periods. 
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APPENDIX 

Proposition 1 : We may write 

- T - T r T 
If det (Jm Jm) = 0 then, as Jm Jm is semipositive definite, det (Jm Jm) = 0 

- T - T - T -

too. But det (Jm Jm) = 0 if and only if for some u u Jm Jm u = 0, that 
is Jm u = 0. 

~ T -If det (Jm J m ) ^ 0 the following equality holds 

det (J,; J J = al JJ (1T 1 - r Jm (JT
m J,,,)"' Jl, 1); 

moreover 

(lT
m 1 - lTm Jm (JJ J J " ' f m 1) = (1 - Jm ( J l J J " ' j J 1) ' 

d - jm al s J fm d 

Thus det (J^ Jm) = 0 if and only if 1 — Jm (£„ J)' f m 1 = 0, that is if 
and only if there exists z such that Jm z = 1. 

T 

Proposition 2: We can write Jm = [c, . . . cm], where Cj (q # 0) is 
the gradient of the residual for the i-th station. Thus 

T T M T 

J™ Jm = £ C, Cm 
i = I 

and 

Jm + l Jm+I — Jm Jm L Cm+1 Cm+1 1^1 1 
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If J,', Jm is not singular then, by (Al), the following equality holds 

det ( J L . Jm + .) = det (J* J J (1 + c * ( j J J J ' 1 cm + l) [A2J 

which implies 

det (J*+1 Jm+i) > det (/m Jm ) • 

Proposition 3: The first part follows from Wilkinson (1965) pp. 
95-98. For the second part, we remark that it follows from [A2| 
and the observation that 

. . T T T . m m m m det (Jm J J = e, e2 e3 e4 

Proposition 4: By Proposition 3, e'" is an increasing sequence, and 
hence has a limit, finite or infinite, for m —»+ °o. 
By (Al) we have, for fixed p 3= 4 

inf 
T m - p 

[x ( S T, 
C,) X + X ( V c, Cj, 

i= m-p+1 

j m-p j j m 
inf x I Cj c ) x + inf x ( v Ts 

Cj Cj) X -
= m - p - + l 

= e , + e. ( v c 
un v i i = m-p +1 ¿X 

Should•e,'"—» a, then e l"'P —» a too, and hence emin ( 2 ^ c t) 
i =m-p + 1 

m j 
would tend to be zero, that is £ ¡ = m . p + i C; c, would tend to be 
singular, which contrasts with the assumption. 
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