Using neural networks to study the geomagnetic field evolution
Main Article Content
Abstract
study their time evolution in years. In order to find the best NN for the time predictions, we tested many different
kinds of NN and different ways of their training, when the inputs and targets are long annual time series of
synthetic geomagnetic field values. The found NN was used to predict the values of the annual means of the
geomagnetic field components beyond the time registration periods of a Geomagnetic Observatory. In order to
predict a time evolution of the global field over the Earth, we considered annual means of 105 Geomagnetic
Observatories, chosen to have more than 30 years registration (1960.5-2005.5) and to be well distributed over
the Earth. Using the NN technique, we created 137 «virtual geomagnetic observatories» in the places where
real Geomagnetic Observatories are missing. Then, using NN, we predicted the time evolution of the three
components of the global geomagnetic field beyond 2005.5.
kinds of NN and different ways of their training, when the inputs and targets are long annual time series of
synthetic geomagnetic field values. The found NN was used to predict the values of the annual means of the
geomagnetic field components beyond the time registration periods of a Geomagnetic Observatory. In order to
predict a time evolution of the global field over the Earth, we considered annual means of 105 Geomagnetic
Observatories, chosen to have more than 30 years registration (1960.5-2005.5) and to be well distributed over
the Earth. Using the NN technique, we created 137 «virtual geomagnetic observatories» in the places where
real Geomagnetic Observatories are missing. Then, using NN, we predicted the time evolution of the three
components of the global geomagnetic field beyond 2005.5.
Article Details
How to Cite
1.
Duka B, Hyka N. Using neural networks to study the geomagnetic field evolution. Ann. Geophys. [Internet]. 2008Dec.25 [cited 2023Dec.11];51(5-6):755-67. Available from: https://www.annalsofgeophysics.eu/index.php/annals/article/view/3014
Issue
Section
OLD
Open-Access License
No Permission Required
Istituto Nazionale di Geofisica e Vulcanologia applies the Creative Commons Attribution License (CCAL) to all works we publish.
Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, so long as the original authors and source are cited. No permission is required from the authors or the publishers.
In most cases, appropriate attribution can be provided by simply citing the original article.
If the item you plan to reuse is not part of a published article (e.g., a featured issue image), then please indicate the originator of the work, and the volume, issue, and date of the journal in which the item appeared. For any reuse or redistribution of a work, you must also make clear the license terms under which the work was published.
This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your own work will ensure your right to make your work freely and openly available. For queries about the license, please contact ann.geophys@ingv.it.