Finite element modeling of ground deformation and gravity field at Mt. Etna
Main Article Content
Abstract
An elastic 3-D axi-symmetric model based on Finite Element Method (FEM) is proposed to compute ground deformation
and gravity changes caused by overpressure sources in volcanic areas. The numerical computations
are focused on the modeling of a complex description of Mt Etna in order to evaluate the effect of topography,
medium heterogeneities and source geometries. Both ground deformation and gravity changes are investigated
by solving a coupled numerical problem considering a simplified ground surface profile and a multi-layered
crustal structure inferred from seismic tomography. The role of the source geometry is also explored taking into
account spherical and ellipsoidal volumetric sources. The comparison between numerical results and those
predicted by analytical solutions disclosed significant discrepancies. These differences constrain the applicability
of simple spherical source and homogeneous half-space hypotheses, which are usually implicitly assumed
when analytical solutions are applied.
and gravity changes caused by overpressure sources in volcanic areas. The numerical computations
are focused on the modeling of a complex description of Mt Etna in order to evaluate the effect of topography,
medium heterogeneities and source geometries. Both ground deformation and gravity changes are investigated
by solving a coupled numerical problem considering a simplified ground surface profile and a multi-layered
crustal structure inferred from seismic tomography. The role of the source geometry is also explored taking into
account spherical and ellipsoidal volumetric sources. The comparison between numerical results and those
predicted by analytical solutions disclosed significant discrepancies. These differences constrain the applicability
of simple spherical source and homogeneous half-space hypotheses, which are usually implicitly assumed
when analytical solutions are applied.
Article Details
How to Cite
1.
Currenti G, Del Negro C, Ganci G. Finite element modeling of ground deformation and gravity field at Mt. Etna. Ann. Geophys. [Internet]. 2008Feb.18 [cited 2023Dec.6];51(1). Available from: https://www.annalsofgeophysics.eu/index.php/annals/article/view/3037
Issue
Section
OLD
Open-Access License
No Permission Required
Istituto Nazionale di Geofisica e Vulcanologia applies the Creative Commons Attribution License (CCAL) to all works we publish.
Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, so long as the original authors and source are cited. No permission is required from the authors or the publishers.
In most cases, appropriate attribution can be provided by simply citing the original article.
If the item you plan to reuse is not part of a published article (e.g., a featured issue image), then please indicate the originator of the work, and the volume, issue, and date of the journal in which the item appeared. For any reuse or redistribution of a work, you must also make clear the license terms under which the work was published.
This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your own work will ensure your right to make your work freely and openly available. For queries about the license, please contact ann.geophys@ingv.it.