An alternative 3D inversion method for magnetic anomalies with depth resolution
Main Article Content
Abstract
This paper presents a new method to invert magnetic anomaly data in a variety of non-complex contexts when
a priori information about the sources is not available. The region containing magnetic sources is discretized into
a set of homogeneously magnetized rectangular prisms, polarized along a common direction. The magnetization
distribution is calculated by solving an underdetermined linear system, and is accomplished through the simultaneous
minimization of the norm of the solution and the misfit between the observed and the calculated
field. Our algorithm makes use of a dipolar approximation to compute the magnetic field of the rectangular
blocks. We show how this approximation, in conjunction with other correction factors, presents numerous advantages
in terms of computing speed and depth resolution, and does not affect significantly the success of the
inversion. The algorithm is tested on both synthetic and real magnetic datasets.
a priori information about the sources is not available. The region containing magnetic sources is discretized into
a set of homogeneously magnetized rectangular prisms, polarized along a common direction. The magnetization
distribution is calculated by solving an underdetermined linear system, and is accomplished through the simultaneous
minimization of the norm of the solution and the misfit between the observed and the calculated
field. Our algorithm makes use of a dipolar approximation to compute the magnetic field of the rectangular
blocks. We show how this approximation, in conjunction with other correction factors, presents numerous advantages
in terms of computing speed and depth resolution, and does not affect significantly the success of the
inversion. The algorithm is tested on both synthetic and real magnetic datasets.
Article Details
How to Cite
1.
Pignatelli A, Nicolosi I, Chiappini M. An alternative 3D inversion method for magnetic anomalies with depth resolution. Ann. Geophys. [Internet]. 2006Dec.25 [cited 2023Dec.3];49(4-5). Available from: https://www.annalsofgeophysics.eu/index.php/annals/article/view/3114
Issue
Section
OLD
Open-Access License
No Permission Required
Istituto Nazionale di Geofisica e Vulcanologia applies the Creative Commons Attribution License (CCAL) to all works we publish.
Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, so long as the original authors and source are cited. No permission is required from the authors or the publishers.
In most cases, appropriate attribution can be provided by simply citing the original article.
If the item you plan to reuse is not part of a published article (e.g., a featured issue image), then please indicate the originator of the work, and the volume, issue, and date of the journal in which the item appeared. For any reuse or redistribution of a work, you must also make clear the license terms under which the work was published.
This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your own work will ensure your right to make your work freely and openly available. For queries about the license, please contact ann.geophys@ingv.it.