Evolution of the volcanic plumbing systemof Alicudi (Aeolian Islands - Italy): evidence from fluid and melt inclusionsin quartz xenoliths
Main Article Content
Abstract
Quartz-rich xenoliths in lavas (basalts to andesites; 90-30 ka) from Alicudi contain abundant melt and fluid inclusions. Two generations of CO2-rich fluid inclusions are present in quartz-rich xenolith grains: early (Type I) inclusions related to partial melting of the host xenoliths, and late Type II inclusions related to the
fluid trapping during xenolith ascent. Homogenisation temperatures of fluid inclusions correspond to two density intervals: 0.93-0.68 g/cm3 (Type I) and 0.47-0.26 g/cm3 (Type II). Early Type I fluid inclusions indicate trapping pressures around 6 kbar, which are representative for the levels of partial melting of crustal rocks and xenolith formation. Late Type II fluid inclusions show lower trapping pressures, between 1.7 kbar and 0.2 kbar, indicative for shallow magma rest and accumulation during ascent to the surface. Data suggest the presence of two magma reservoirs: the first is located at lower crustal depths (about 24 km), site of fractional crystallization, mixing with source derived magma, and various degrees of crustal assimilation.
The second magma reservoir is located at shallow crustal depths (about 6 km), the site where magma rested for a short time before erupting.
fluid trapping during xenolith ascent. Homogenisation temperatures of fluid inclusions correspond to two density intervals: 0.93-0.68 g/cm3 (Type I) and 0.47-0.26 g/cm3 (Type II). Early Type I fluid inclusions indicate trapping pressures around 6 kbar, which are representative for the levels of partial melting of crustal rocks and xenolith formation. Late Type II fluid inclusions show lower trapping pressures, between 1.7 kbar and 0.2 kbar, indicative for shallow magma rest and accumulation during ascent to the surface. Data suggest the presence of two magma reservoirs: the first is located at lower crustal depths (about 24 km), site of fractional crystallization, mixing with source derived magma, and various degrees of crustal assimilation.
The second magma reservoir is located at shallow crustal depths (about 6 km), the site where magma rested for a short time before erupting.
Article Details
How to Cite
1.
Bonelli R, Frezzotti ML, Zanon V, Peccerillo A. Evolution of the volcanic plumbing systemof Alicudi (Aeolian Islands - Italy): evidence from fluid and melt inclusionsin quartz xenoliths. Ann. Geophys. [Internet]. 2004Dec.25 [cited 2023Dec.6];47(4). Available from: https://www.annalsofgeophysics.eu/index.php/annals/article/view/3351
Issue
Section
OLD
Open-Access License
No Permission Required
Istituto Nazionale di Geofisica e Vulcanologia applies the Creative Commons Attribution License (CCAL) to all works we publish.
Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, so long as the original authors and source are cited. No permission is required from the authors or the publishers.
In most cases, appropriate attribution can be provided by simply citing the original article.
If the item you plan to reuse is not part of a published article (e.g., a featured issue image), then please indicate the originator of the work, and the volume, issue, and date of the journal in which the item appeared. For any reuse or redistribution of a work, you must also make clear the license terms under which the work was published.
This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your own work will ensure your right to make your work freely and openly available. For queries about the license, please contact ann.geophys@ingv.it.